Eviction.java 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. package protocols;
  2. import java.util.Arrays;
  3. import com.oblivm.backend.flexsc.CompEnv;
  4. import com.oblivm.backend.gc.GCSignal;
  5. import com.oblivm.backend.gc.regular.GCEva;
  6. import com.oblivm.backend.gc.regular.GCGen;
  7. import com.oblivm.backend.network.Network;
  8. import communication.Communication;
  9. import crypto.Crypto;
  10. import gc.GCRoute;
  11. import gc.GCUtil;
  12. import oram.Bucket;
  13. import oram.Forest;
  14. import oram.Metadata;
  15. import oram.Tree;
  16. import oram.Tuple;
  17. import struct.Party;
  18. import subprotocols.PermuteIndex;
  19. import subprotocols.PermuteTarget;
  20. import subprotocols.SSXOT;
  21. import util.M;
  22. import util.Util;
  23. // TODO: set bucket on path
  24. public class Eviction extends Protocol {
  25. public Eviction(Communication con1, Communication con2) {
  26. super(con1, con2);
  27. }
  28. private int[] prepareEviction(int[] target, int[] ti, int W) {
  29. int d = ti.length;
  30. int[] evict = new int[W * d];
  31. for (int r = 0; r < d; r++) {
  32. int tupleIndex = r * W + ti[r];
  33. for (int c = 0; c < W; c++) {
  34. int currIndex = r * W + c;
  35. if (currIndex == tupleIndex) {
  36. int targetIndex = target[r] * W + ti[target[r]];
  37. evict[targetIndex] = currIndex;
  38. } else
  39. evict[currIndex] = currIndex;
  40. }
  41. }
  42. return evict;
  43. }
  44. public void runE(boolean firstTree, int[] tupleParam, byte[] Li, Tuple[] originalPath, Tree OTi) {
  45. if (firstTree) {
  46. // OTi.setBucketsOnPath(new BigInteger(1, Li).longValue(), new Bucket[] { new
  47. // Bucket(originalPath) });
  48. return;
  49. }
  50. timer.start(M.offline_comp);
  51. // GC
  52. int d = OTi.getD();
  53. int sw = OTi.getStashSize();
  54. int w = OTi.getW();
  55. int logW = (int) Math.ceil(Math.log(w + 1) / Math.log(2));
  56. GCSignal[][] evict_LiKeyPairs = GCUtil.genKeyPairs(d - 1);
  57. GCSignal[] LiZeroKeys = GCUtil.getZeroKeys(evict_LiKeyPairs);
  58. GCSignal[][][] evict_E_feKeyPairs = new GCSignal[d][][];
  59. GCSignal[][][] evict_C_feKeyPairs = new GCSignal[d][][];
  60. GCSignal[][] E_feZeroKeys = new GCSignal[d][];
  61. GCSignal[][] C_feZeroKeys = new GCSignal[d][];
  62. GCSignal[][][][] evict_E_labelKeyPairs = new GCSignal[d][w][][];
  63. GCSignal[][][][] evict_C_labelKeyPairs = new GCSignal[d][w][][];
  64. GCSignal[][][] E_labelZeroKeys = new GCSignal[d][w][];
  65. GCSignal[][][] C_labelZeroKeys = new GCSignal[d][w][];
  66. GCSignal[][][] evict_deltaKeyPairs = new GCSignal[d][][];
  67. GCSignal[][] deltaZeroKeys = new GCSignal[d][];
  68. for (int i = 0; i < d; i++) {
  69. evict_E_feKeyPairs[i] = GCUtil.genKeyPairs(w);
  70. evict_C_feKeyPairs[i] = GCUtil.genKeyPairs(w);
  71. E_feZeroKeys[i] = GCUtil.getZeroKeys(evict_E_feKeyPairs[i]);
  72. C_feZeroKeys[i] = GCUtil.getZeroKeys(evict_C_feKeyPairs[i]);
  73. evict_deltaKeyPairs[i] = GCUtil.genKeyPairs(logW);
  74. deltaZeroKeys[i] = GCUtil.getZeroKeys(evict_deltaKeyPairs[i]);
  75. for (int j = 0; j < w; j++) {
  76. evict_E_labelKeyPairs[i][j] = GCUtil.genKeyPairs(d - 1);
  77. evict_C_labelKeyPairs[i][j] = GCUtil.genKeyPairs(d - 1);
  78. E_labelZeroKeys[i][j] = GCUtil.getZeroKeys(evict_E_labelKeyPairs[i][j]);
  79. C_labelZeroKeys[i][j] = GCUtil.getZeroKeys(evict_C_labelKeyPairs[i][j]);
  80. }
  81. }
  82. Network channel = new Network(null, con1);
  83. CompEnv<GCSignal> gen = new GCGen(channel, timer, offline_band, M.offline_write);
  84. GCSignal[][][] outZeroKeys = new GCRoute<GCSignal>(gen, d, w).routing(LiZeroKeys, E_feZeroKeys, C_feZeroKeys,
  85. E_labelZeroKeys, C_labelZeroKeys, deltaZeroKeys);
  86. ((GCGen) gen).sendLastSetGTT();
  87. byte[][][] evict_tiOutKeyHashes = new byte[d][][];
  88. GCSignal[][][] evict_targetOutKeyPairs = new GCSignal[d][][];
  89. for (int i = 0; i < d; i++) {
  90. evict_tiOutKeyHashes[i] = GCUtil.genOutKeyHashes(outZeroKeys[1][i]);
  91. evict_targetOutKeyPairs[i] = GCUtil.recoverOutKeyPairs(outZeroKeys[0][i]);
  92. }
  93. timer.start(M.offline_write);
  94. con2.write(offline_band, evict_C_feKeyPairs);
  95. con2.write(offline_band, evict_C_labelKeyPairs);
  96. con1.write(offline_band, evict_tiOutKeyHashes);
  97. timer.stop(M.offline_write);
  98. // Permutation
  99. int[] evict_pi = Util.randomPermutation(d, Crypto.sr_CE);
  100. byte[][] evict_delta = new byte[d][(logW + 7) / 8];
  101. byte[][] evict_rho = new byte[d][(logW + 7) / 8];
  102. int[][] evict_delta_p = new int[d][];
  103. int[][] evict_rho_p = new int[d][];
  104. for (int i = 0; i < d; i++) {
  105. Crypto.sr_CE.nextBytes(evict_delta[i]);
  106. Crypto.sr_CE.nextBytes(evict_rho[i]);
  107. evict_delta_p[i] = Util.getXorPermutation(evict_delta[i], logW);
  108. evict_rho_p[i] = Util.getXorPermutation(evict_rho[i], logW);
  109. }
  110. timer.stop(M.offline_comp);
  111. ///////////////////////////////////////////////////////////////////
  112. timer.start(M.online_comp);
  113. Tuple[] pathTuples = new Tuple[d * w];
  114. System.arraycopy(originalPath, 0, pathTuples, 0, w);
  115. System.arraycopy(originalPath, sw, pathTuples, w, (d - 1) * w);
  116. Bucket[] pathBuckets = Bucket.tuplesToBuckets(pathTuples, d, w, w);
  117. GCSignal[] LiInputKeys = GCUtil.revSelectKeys(evict_LiKeyPairs, Li);
  118. GCSignal[][] E_feInputKeys = new GCSignal[d][];
  119. GCSignal[][][] E_labelInputKeys = new GCSignal[d][][];
  120. GCSignal[][] deltaInputKeys = new GCSignal[d][];
  121. for (int i = 0; i < d; i++) {
  122. E_feInputKeys[i] = GCUtil.selectFeKeys(evict_E_feKeyPairs[i], pathBuckets[i].getTuples());
  123. E_labelInputKeys[i] = GCUtil.selectLabelKeys(evict_E_labelKeyPairs[i], pathBuckets[i].getTuples());
  124. deltaInputKeys[i] = GCUtil.revSelectKeys(evict_deltaKeyPairs[i], evict_delta[i]);
  125. }
  126. timer.start(M.online_write);
  127. con1.write(online_band, LiInputKeys);
  128. con1.write(online_band, E_feInputKeys);
  129. con1.write(online_band, E_labelInputKeys);
  130. con1.write(online_band, deltaInputKeys);
  131. timer.stop(M.online_write);
  132. PermuteTarget permutetarget = new PermuteTarget(con1, con2);
  133. permutetarget.runE(d, evict_pi, evict_targetOutKeyPairs);
  134. PermuteIndex permuteindex = new PermuteIndex(con1, con2);
  135. permuteindex.runE(w, evict_pi);
  136. int W = (int) Math.pow(2, logW);
  137. for (int i = 0; i < d; i++) {
  138. pathBuckets[i].expand(W);
  139. pathBuckets[i].permute(evict_delta_p[i]);
  140. }
  141. pathBuckets = Util.permute(pathBuckets, evict_pi);
  142. for (int i = 0; i < d; i++) {
  143. pathBuckets[i].permute(evict_rho_p[i]);
  144. }
  145. pathTuples = Bucket.bucketsToTuples(pathBuckets);
  146. SSXOT ssxot = new SSXOT(con1, con2);
  147. pathTuples = ssxot.runE(pathTuples, tupleParam);
  148. pathBuckets = Bucket.tuplesToBuckets(pathTuples, d, W, W);
  149. for (int i = 0; i < d; i++) {
  150. int[] rho_ivs = Util.inversePermutation(evict_rho_p[i]);
  151. pathBuckets[i].permute(rho_ivs);
  152. }
  153. int[] pi_ivs = Util.inversePermutation(evict_pi);
  154. pathBuckets = Util.permute(pathBuckets, pi_ivs);
  155. for (int i = 0; i < d; i++) {
  156. int[] delta_ivs = Util.inversePermutation(evict_delta_p[i]);
  157. pathBuckets[i].permute(delta_ivs);
  158. pathBuckets[i].shrink(w);
  159. }
  160. pathBuckets[0].expand(Arrays.copyOfRange(originalPath, w, sw));
  161. // OTi.setBucketsOnPath(new BigInteger(1, Li).longValue(), pathBuckets);
  162. timer.stop(M.online_comp);
  163. }
  164. public void runD(boolean firstTree, int[] tupleParam, byte[] Li, Tree OTi) {
  165. if (firstTree) {
  166. timer.start(M.online_read);
  167. // Tuple[] originalPath = con2.readTupleArrayAndDec();
  168. timer.stop(M.online_read);
  169. // OTi.setBucketsOnPath(new BigInteger(1, Li).longValue(), new Bucket[] { new
  170. // Bucket(originalPath) });
  171. return;
  172. }
  173. timer.start(M.offline_comp);
  174. // GC
  175. int d = OTi.getD();
  176. int w = OTi.getW();
  177. int logW = (int) Math.ceil(Math.log(w + 1) / Math.log(2));
  178. GCSignal[] LiZeroKeys = GCUtil.genEmptyKeys(d - 1);
  179. GCSignal[][] E_feZeroKeys = new GCSignal[d][];
  180. GCSignal[][] C_feZeroKeys = new GCSignal[d][];
  181. GCSignal[][][] E_labelZeroKeys = new GCSignal[d][w][];
  182. GCSignal[][][] C_labelZeroKeys = new GCSignal[d][w][];
  183. GCSignal[][] deltaZeroKeys = new GCSignal[d][];
  184. for (int i = 0; i < d; i++) {
  185. E_feZeroKeys[i] = GCUtil.genEmptyKeys(w);
  186. C_feZeroKeys[i] = GCUtil.genEmptyKeys(w);
  187. deltaZeroKeys[i] = GCUtil.genEmptyKeys(logW);
  188. for (int j = 0; j < w; j++) {
  189. E_labelZeroKeys[i][j] = GCUtil.genEmptyKeys(d - 1);
  190. C_labelZeroKeys[i][j] = GCUtil.genEmptyKeys(d - 1);
  191. }
  192. }
  193. Network channel = new Network(con1, null);
  194. CompEnv<GCSignal> eva = new GCEva(channel, timer, M.offline_read);
  195. GCRoute<GCSignal> evict_gcroute = new GCRoute<GCSignal>(eva, d, w);
  196. evict_gcroute.routing(LiZeroKeys, E_feZeroKeys, C_feZeroKeys, E_labelZeroKeys, C_labelZeroKeys, deltaZeroKeys);
  197. ((GCEva) eva).receiveLastSetGTT();
  198. eva.setEvaluate();
  199. timer.start(M.offline_read);
  200. byte[][][] evict_tiOutKeyHashes = con1.readTripleByteArrayAndDec();
  201. timer.stop(M.offline_read);
  202. timer.stop(M.offline_comp);
  203. //////////////////////////////////////////////////////////////////////
  204. timer.start(M.online_comp);
  205. timer.start(M.online_read);
  206. GCSignal[] LiInputKeys = con1.readGCSignalArrayAndDec();
  207. GCSignal[][] E_feInputKeys = con1.readDoubleGCSignalArrayAndDec();
  208. GCSignal[][][] E_labelInputKeys = con1.readTripleGCSignalArrayAndDec();
  209. GCSignal[][] deltaInputKeys = con1.readDoubleGCSignalArrayAndDec();
  210. GCSignal[][] C_feInputKeys = con2.readDoubleGCSignalArrayAndDec();
  211. GCSignal[][][] C_labelInputKeys = con2.readTripleGCSignalArrayAndDec();
  212. timer.stop(M.online_read);
  213. GCSignal[][][] outKeys = evict_gcroute.routing(LiInputKeys, E_feInputKeys, C_feInputKeys, E_labelInputKeys,
  214. C_labelInputKeys, deltaInputKeys);
  215. byte[][] ti_p = new byte[deltaInputKeys.length][];
  216. for (int i = 0; i < ti_p.length; i++) {
  217. ti_p[i] = Util.padArray(GCUtil.evaOutKeys(outKeys[1][i], evict_tiOutKeyHashes[i]).toByteArray(),
  218. (logW + 7) / 8);
  219. }
  220. PermuteTarget permutetarget = new PermuteTarget(con1, con2);
  221. int[] target_pp = permutetarget.runD(firstTree, outKeys[0]);
  222. PermuteIndex permuteindex = new PermuteIndex(con1, con2);
  223. int[] ti_pp = permuteindex.runD(firstTree, ti_p, w);
  224. int W = (int) Math.pow(2, logW);
  225. int[] evict = prepareEviction(target_pp, ti_pp, W);
  226. SSXOT ssxot = new SSXOT(con1, con2);
  227. ssxot.runD(evict.length, evict.length, tupleParam, evict);
  228. timer.start(M.online_read);
  229. // Bucket[] pathBuckets = con2.readBucketArrayAndDec();
  230. timer.stop(M.online_read);
  231. // OTi.setBucketsOnPath(new BigInteger(1, Li).longValue(), pathBuckets);
  232. timer.stop(M.online_comp);
  233. }
  234. public void runC(boolean firstTree, int[] tupleParam, Tuple[] originalPath, int d, int sw, int w) {
  235. if (firstTree) {
  236. timer.start(M.online_write);
  237. // con2.write(online_band, originalPath);
  238. timer.stop(M.online_write);
  239. return;
  240. }
  241. timer.start(M.offline_comp);
  242. // GC
  243. timer.start(M.offline_read);
  244. GCSignal[][][] evict_C_feKeyPairs = con1.readTripleGCSignalArrayAndDec();
  245. GCSignal[][][][] evict_C_labelKeyPairs = con1.readQuadGCSignalArrayAndDec();
  246. timer.stop(M.offline_read);
  247. // Permutation
  248. int logW = (int) Math.ceil(Math.log(w + 1) / Math.log(2));
  249. int[] evict_pi = Util.randomPermutation(d, Crypto.sr_CE);
  250. byte[][] evict_delta = new byte[d][(logW + 7) / 8];
  251. byte[][] evict_rho = new byte[d][(logW + 7) / 8];
  252. int[][] evict_delta_p = new int[d][];
  253. int[][] evict_rho_p = new int[d][];
  254. for (int i = 0; i < d; i++) {
  255. Crypto.sr_CE.nextBytes(evict_delta[i]);
  256. Crypto.sr_CE.nextBytes(evict_rho[i]);
  257. evict_delta_p[i] = Util.getXorPermutation(evict_delta[i], logW);
  258. evict_rho_p[i] = Util.getXorPermutation(evict_rho[i], logW);
  259. }
  260. timer.stop(M.offline_comp);
  261. ///////////////////////////////////////////////////////////////
  262. timer.start(M.online_comp);
  263. Tuple[] pathTuples = new Tuple[d * w];
  264. System.arraycopy(originalPath, 0, pathTuples, 0, w);
  265. System.arraycopy(originalPath, sw, pathTuples, w, (d - 1) * w);
  266. Bucket[] pathBuckets = Bucket.tuplesToBuckets(pathTuples, d, w, w);
  267. GCSignal[][] C_feInputKeys = new GCSignal[d][];
  268. GCSignal[][][] C_labelInputKeys = new GCSignal[d][][];
  269. for (int i = 0; i < d; i++) {
  270. C_feInputKeys[i] = GCUtil.selectFeKeys(evict_C_feKeyPairs[i], pathBuckets[i].getTuples());
  271. C_labelInputKeys[i] = GCUtil.selectLabelKeys(evict_C_labelKeyPairs[i], pathBuckets[i].getTuples());
  272. }
  273. timer.start(M.online_write);
  274. con2.write(online_band, C_feInputKeys);
  275. con2.write(online_band, C_labelInputKeys);
  276. timer.stop(M.online_write);
  277. PermuteTarget permutetarget = new PermuteTarget(con1, con2);
  278. permutetarget.runC(firstTree, d, evict_pi);
  279. PermuteIndex permuteindex = new PermuteIndex(con1, con2);
  280. permuteindex.runC(firstTree, w, evict_pi, evict_rho);
  281. int W = (int) Math.pow(2, logW);
  282. for (int i = 0; i < d; i++) {
  283. pathBuckets[i].expand(W);
  284. pathBuckets[i].permute(evict_delta_p[i]);
  285. }
  286. pathBuckets = Util.permute(pathBuckets, evict_pi);
  287. for (int i = 0; i < d; i++) {
  288. pathBuckets[i].permute(evict_rho_p[i]);
  289. }
  290. pathTuples = Bucket.bucketsToTuples(pathBuckets);
  291. SSXOT ssxot = new SSXOT(con1, con2);
  292. pathTuples = ssxot.runC(pathTuples, tupleParam);
  293. pathBuckets = Bucket.tuplesToBuckets(pathTuples, d, W, W);
  294. for (int i = 0; i < d; i++) {
  295. int[] rho_ivs = Util.inversePermutation(evict_rho_p[i]);
  296. pathBuckets[i].permute(rho_ivs);
  297. }
  298. int[] pi_ivs = Util.inversePermutation(evict_pi);
  299. pathBuckets = Util.permute(pathBuckets, pi_ivs);
  300. for (int i = 0; i < d; i++) {
  301. int[] delta_ivs = Util.inversePermutation(evict_delta_p[i]);
  302. pathBuckets[i].permute(delta_ivs);
  303. pathBuckets[i].shrink(w);
  304. }
  305. pathBuckets[0].expand(Arrays.copyOfRange(originalPath, w, sw));
  306. timer.start(M.online_write);
  307. // con2.write(online_band, pathBuckets);
  308. timer.stop(M.online_write);
  309. timer.stop(M.online_comp);
  310. }
  311. @Override
  312. public void run(Party party, Metadata md, Forest[] forest) {
  313. System.out.println("Use PIRRetrieve to test Eviction");
  314. }
  315. @Override
  316. public void run(Party party, Metadata md, Forest forest) {
  317. }
  318. }