DenseMatrixLib.java 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. package com.oblivm.backend.circuits.arithmetic;
  2. import com.oblivm.backend.flexsc.CompEnv;
  3. public class DenseMatrixLib<T> {
  4. public ArithmeticLib<T> lib;
  5. VectorLib<T> veclib;
  6. CompEnv<T> env;
  7. IntegerLib<T> integerlib;
  8. public DenseMatrixLib(CompEnv<T> e, ArithmeticLib<T> lib) {
  9. env = e;
  10. this.lib = lib;
  11. integerlib = new IntegerLib<T>(e);
  12. veclib = new VectorLib<T>(e, lib);
  13. }
  14. public T[][][] xor(T[][][] a, T[][][] b) {
  15. T[][][] res = env.newTArray(a.length, a[0].length, 1);
  16. for (int i = 0; i < a.length; ++i)
  17. res[i] = veclib.xor(a[i], b[i]);
  18. return res;
  19. }
  20. public T[][][] add(T[][][] a, T[][][] b) {
  21. T[][][] res = env.newTArray(a.length, a[0].length, 1);
  22. for (int i = 0; i < a.length; ++i)
  23. res[i] = veclib.add(a[i], b[i]);
  24. return res;
  25. }
  26. public T[][][] sub(T[][][] a, T[][][] b) {
  27. T[][][] res = env.newTArray(a.length, a[0].length, 1);
  28. for (int i = 0; i < a.length; ++i)
  29. res[i] = veclib.sub(a[i], b[i]);
  30. return res;
  31. }
  32. public T[][][] multiply(T[][][] a, T[][][] b) {
  33. T[][][] res = env.newTArray(a.length, b[0].length, 1);
  34. for (int i = 0; i < a.length; ++i)
  35. for (int j = 0; j < b[0].length; ++j) {
  36. res[i][j] = lib.multiply(a[i][0], b[0][j]);
  37. for (int k = 1; k < a[0].length; ++k)
  38. res[i][j] = lib.add(res[i][j], lib.multiply(a[i][k], b[k][j]));
  39. }
  40. return res;
  41. }
  42. public T[][][] transpose(T[][][] a) {
  43. T[][][] res = env.newTArray(a[0].length, a.length, 1);
  44. for (int i = 0; i < a.length; ++i)
  45. for (int j = 0; j < a[0].length; ++j)
  46. res[j][i] = a[i][j];
  47. return res;
  48. }
  49. public T[][][] rref(T[][][] m) {
  50. T[][][] result = env.newTArray(m.length, m[0].length, 1);
  51. for (int r = 0; r < m.length; ++r)
  52. for (int c = 0; c < m[r].length; ++c)
  53. result[r][c] = m[r][c];
  54. for (int p = 0; p < result.length; ++p) {
  55. /* Make this pivot 1 */
  56. T[] pv = result[p][p];
  57. T pvZero = lib.eq(pv, lib.publicValue(0));
  58. T[] pvInv = lib.div(lib.publicValue(1), pv);
  59. for (int i = 0; i < result[p].length; ++i)
  60. result[p][i] = integerlib.mux(lib.multiply(result[p][i], pvInv), result[p][i], pvZero);
  61. /* Make other rows zero */
  62. for (int r = 0; r < result.length; ++r) {
  63. if (r != p) {
  64. T[] f = result[r][p];
  65. for (int i = 0; i < result[r].length; ++i)
  66. result[r][i] = lib.sub(result[r][i], lib.multiply(f, result[p][i]));
  67. }
  68. }
  69. }
  70. return result;
  71. }
  72. public T[][][] fastInverse(T[][][] m) {
  73. int dimension = m.length;
  74. T[][][] extended = env.newTArray(dimension, dimension * 2, 1);
  75. T[] zeroFloat = lib.publicValue(0);
  76. T[] oneFloat = lib.publicValue(1);
  77. for (int i = 0; i < dimension; ++i) {
  78. for (int j = 0; j < dimension; ++j)
  79. extended[i][j] = m[i][j];
  80. for (int j = 0; j < dimension; ++j)
  81. extended[i][dimension + j] = zeroFloat;
  82. extended[i][dimension + i] = oneFloat;
  83. }
  84. extended = rref(extended);
  85. T[][][] result = env.newTArray(dimension, dimension, 1);
  86. for (int i = 0; i < dimension; ++i) {
  87. for (int j = 0; j < dimension; ++j)
  88. result[i][j] = extended[i][dimension + j];
  89. }
  90. return result;
  91. }
  92. public T[][] solve(T[][][] A, T[][] b) {
  93. int dimension = A.length;
  94. T[][][] extended = env.newTArray(dimension, dimension + 1, 1);
  95. for (int i = 0; i < dimension; ++i) {
  96. for (int j = 0; j < dimension; ++j)
  97. extended[i][j] = A[i][j];
  98. extended[i][dimension] = b[i];
  99. }
  100. extended = rref(extended);
  101. T[][] result = env.newTArray(dimension, 1);
  102. for (int i = 0; i < dimension; ++i) {
  103. result[i] = extended[i][dimension];
  104. }
  105. return result;
  106. }
  107. public T[][] getColumn(T[][][] matrix, int col) {
  108. T[][] res = env.newTArray(matrix[0].length, 1);
  109. for (int i = 0; i < matrix[0].length; ++i)
  110. res[i] = matrix[i][col];
  111. return res;
  112. }
  113. public T[][] getRow(T[][][] matrix, int row) {
  114. T[][] res = env.newTArray(matrix.length, 1);
  115. for (int i = 0; i < matrix.length; ++i)
  116. res[i] = matrix[row][i];
  117. return res;
  118. }
  119. // using Gram-Schmidt process
  120. public void QRDecomposition(T[][][] matrix, T[][][] res1, T[][][] res2) {
  121. T[][][] u = env.newTArray(matrix[0].length, matrix.length, 1);
  122. T[][][] e = env.newTArray(matrix[0].length, matrix.length, 1);
  123. T[][][] a = transpose(matrix);
  124. for (int i = 0; i < matrix[0].length; ++i) {
  125. u[i] = a[i];
  126. for (int j = 0; j < i; ++j) {
  127. u[i] = veclib.sub(u[i], veclib.projection(a[i], e[j]));
  128. }
  129. e[i] = veclib.normalize(u[i]);
  130. }
  131. T[][][] r = env.newTArray(matrix.length, matrix[0].length, 1);
  132. T[] zero = lib.publicValue(0);
  133. for (int i = 0; i < r.length; ++i) {
  134. for (int j = 0; j < r[0].length; ++j) {
  135. if (i <= j)
  136. r[i][j] = veclib.innerProduct(e[i], a[j]);
  137. else
  138. r[i][j] = zero;
  139. }
  140. }
  141. res1 = transpose(e);
  142. res2 = r;
  143. }
  144. public T[][][] eigenValues(T[][][] matrix, int numberOfIterations) {
  145. T[][][] e1 = null, e2 = null;
  146. QRDecomposition(matrix, e1, e2);
  147. T[][][] newMatrix = null;
  148. for (int i = 0; i < numberOfIterations; ++i) {
  149. newMatrix = multiply(e1, e2);
  150. QRDecomposition(newMatrix, e1, e2);
  151. }
  152. return newMatrix;
  153. }
  154. public static double[][] rref(double[][] mat) {
  155. double[][] rref = new double[mat.length][mat[0].length];
  156. /* Copy matrix */
  157. for (int r = 0; r < rref.length; ++r) {
  158. for (int c = 0; c < rref[r].length; ++c) {
  159. rref[r][c] = mat[r][c];
  160. }
  161. }
  162. for (int p = 0; p < rref.length; ++p) {
  163. /* Make this pivot 1 */
  164. double pv = rref[p][p];
  165. if (pv != 0) {
  166. double pvInv = 1.0 / pv;
  167. for (int i = 0; i < rref[p].length; ++i) {
  168. rref[p][i] *= pvInv;
  169. }
  170. }
  171. /* Make other rows zero */
  172. for (int r = 0; r < rref.length; ++r) {
  173. if (r != p) {
  174. double f = rref[r][p];
  175. for (int i = 0; i < rref[0].length; ++i) {
  176. rref[r][i] -= (f * rref[p][i]);
  177. }
  178. }
  179. }
  180. }
  181. return rref;
  182. }
  183. }