/**
\file gmp-pk-crypto.h
\author michael.zohner@ec-spride.de
\copyright ABY - A Framework for Efficient Mixed-protocol Secure Two-party Computation
Copyright (C) 2019 ENCRYPTO Group, TU Darmstadt
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
ABY is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
\brief Class with finite-field-cryptography operations (using the GMP library)
*/
#ifndef GMP_PK_CRYPTO_H_
#define GMP_PK_CRYPTO_H_
#include "pk-crypto.h"
#include "../utils.h"
#include
class prime_field;
class gmp_fe;
class gmp_num;
class gmp_brickexp;
#define fe2mpz(fieldele) (((gmp_fe*) (fieldele))->get_val())
#define num2mpz(number) (((gmp_num*) (number))->get_val())
class prime_field: public pk_crypto {
public:
prime_field(seclvl sp, uint8_t* seed) :
pk_crypto(sp) {
init(sp, seed);
}
;
~prime_field();
num* get_num();
num* get_rnd_num(uint32_t bitlen = 0);
fe* get_fe();
fe* get_rnd_fe();
fe* get_generator();
fe* get_rnd_generator();
num* get_order();
mpz_t* get_p();
uint32_t get_size();
brickexp* get_brick(fe* gen);
uint32_t num_byte_size() {
return ceil_divide(secparam.ifcbits, 8);
}
uint32_t get_field_size() {
return secparam.ifcbits;
}
;
protected:
void init(seclvl sp, uint8_t* seed);
private:
mpz_t p;
mpz_t g;
mpz_t q;
};
class gmp_fe: public fe {
public:
gmp_fe(prime_field* fld);
gmp_fe(prime_field* fld, mpz_t src);
~gmp_fe();
void set(fe* src);
mpz_t* get_val();
void set_mul(fe* a, fe* b);
void set_pow(fe* b, num* e);
void set_div(fe* a, fe* b);
void set_double_pow_mul(fe* b1, num* e1, fe* b2, num* e2);
void export_to_bytes(uint8_t* buf);
void import_from_bytes(uint8_t* buf);
void sample_fe_from_bytes(uint8_t* buf, uint32_t bytelen);
bool eq(fe* a);
void print();
private:
void init() {
mpz_init(val);
}
;
mpz_t val;
prime_field* field;
};
class gmp_num: public num {
public:
gmp_num(prime_field* fld);
gmp_num(prime_field* fld, mpz_t src);
~gmp_num();
void set(num* src);
void set_si(int32_t src);
void set_add(num* a, num* b);
void set_sub(num* a, num* b);
void set_mul(num* a, num* b);
void mod(num* mod);
void set_mul_mod(num* a, num* b, num* modulus) ;
mpz_t* get_val();
void export_to_bytes(uint8_t* buf, uint32_t field_size);
void import_from_bytes(uint8_t* buf, uint32_t field_size);
void set_rnd(uint32_t bits);
void print();
private:
mpz_t val;
prime_field* field;
};
class gmp_brickexp: public brickexp {
public:
gmp_brickexp(fe* g, prime_field* pfield) {
init(g, pfield);
}
;
~gmp_brickexp();
void pow(fe* result, num* e);
void init(fe* g, prime_field* pfield);
private:
uint32_t m_numberOfElements;
mpz_t* m_table;
prime_field* field;
};
// mpz_export does not fill leading zeros, thus a prepending of leading 0s is required
void mpz_export_padded(uint8_t* pBufIdx, uint32_t field_size, mpz_t to_export);
#endif /* GMP_PK_CRYPTO_H_ */