preprocessing.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546
  1. #include <type_traits> // std::is_same<>
  2. #include <limits> // std::numeric_limits<>
  3. #include <climits> // CHAR_BIT
  4. #include <cmath> // std::log2, std::ceil, std::floor
  5. #include <stdexcept> // std::runtime_error
  6. #include <array> // std::array<>
  7. #include <iostream> // std::istream and std::ostream
  8. #include <vector> // std::vector<>
  9. #include <memory> // std::shared_ptr<>
  10. #include <utility> // std::move
  11. #include <algorithm> // std::copy
  12. #include <cstring> // std::memcpy
  13. #include <bsd/stdlib.h> // arc4random_buf
  14. #include <x86intrin.h> // SSE and AVX intrinsics
  15. #include <boost/asio/thread_pool.hpp>
  16. #include "bitutils.h"
  17. #include "block.h"
  18. #include "prg.h"
  19. #include "prg_aes_impl.h"
  20. #include <iostream>
  21. #include <fcntl.h>
  22. #include <cstdlib>
  23. #include "block.h"
  24. #include <chrono>
  25. #include <sys/mman.h>
  26. #include <sys/stat.h>
  27. #include <fcntl.h>
  28. #include <fstream>
  29. #include <future>
  30. #include <boost/asio.hpp>
  31. using boost::asio::ip::tcp;
  32. #include <mutex>
  33. #include <boost/lexical_cast.hpp>
  34. using socket_t = boost::asio::ip::tcp::socket;
  35. typedef unsigned char byte_t;
  36. typedef __m128i node_t;
  37. block<__m128i> seed_for_blinds;
  38. constexpr size_t leaf_size = 1;
  39. typedef __m128i leaf_type;
  40. typedef std::array<leaf_type, leaf_size> leaf_t;
  41. size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
  42. bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
  43. size_t leaves_per_node = is_packed ? sizeof(node_t) * CHAR_BIT / bits_per_leaf : 1;
  44. size_t input_bits(const size_t nitems) { return std::ceil(std::log2(nitems)); }
  45. leaf_t val;
  46. using namespace dpf;
  47. #include "mpc.h"
  48. void generate_random_targets(uint8_t **target_share_read, size_t n_threads, bool party, size_t expo)
  49. {
  50. for (size_t i = 0; i < n_threads; i++)
  51. {
  52. target_share_read[i] = new uint8_t[64];
  53. }
  54. for (size_t j = 0; j < 64; ++j)
  55. {
  56. for (size_t i = 0; i < n_threads; ++i)
  57. {
  58. uint8_t random_value;
  59. arc4random_buf(&random_value, sizeof(uint8_t));
  60. target_share_read[i][j] = random_value; // rand();
  61. }
  62. }
  63. }
  64. void compute_CW(bool party, tcp::socket &sout, __m128i L, __m128i R, uint8_t bit, __m128i &CW)
  65. {
  66. // struct cw_construction
  67. //{
  68. __m128i rand_b, gamma_b;
  69. uint8_t bit_b;
  70. //};
  71. __m128i *X, *Y;
  72. if (party)
  73. {
  74. std::string qfile = std::string("./gamma1");
  75. int qfd = open(qfile.c_str(), O_RDWR);
  76. X = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  77. PROT_READ, MAP_PRIVATE, qfd, 0);
  78. qfile = std::string("./x1");
  79. qfd = open(qfile.c_str(), O_RDWR);
  80. Y = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  81. PROT_READ, MAP_PRIVATE, qfd, 0);
  82. }
  83. if (!party)
  84. {
  85. std::string qfile = std::string("./gamma0");
  86. int qfd = open(qfile.c_str(), O_RDWR);
  87. X = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  88. PROT_READ, MAP_PRIVATE, qfd, 0);
  89. qfile = std::string("./x0");
  90. qfd = open(qfile.c_str(), O_RDWR);
  91. Y = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  92. PROT_READ, MAP_PRIVATE, qfd, 0);
  93. }
  94. // cw_construction computecw;
  95. // read(sin, boost::asio::buffer(&computecw, sizeof(computecw)));
  96. // computecw.rand_b;
  97. //__m128i gamma_b = computecw.gamma_b;
  98. if (party)
  99. {
  100. rand_b = Y[0]; //_mm_set_epi32(0x6fef9434, 0x6768121e, 0x20942286, 0x1b59f7a7);
  101. gamma_b = X[0]; // _mm_set_epi32(0x6a499109 , 0x803067dd , 0xd1e2281b , 0xe71b6262);
  102. bit_b = 1; // computecw.bit_b;
  103. }
  104. else
  105. {
  106. rand_b = Y[0]; // _mm_set_epi32(0xb29747df, 0xf7300f6d, 0x9476d971, 0xd5f75d98);
  107. gamma_b = X[0]; // _mm_set_epi32(0xb73142e2 , 0x10687aae , 0x06500d3ec , 0x29b5c85d);
  108. bit_b = 1; // computecw.bit_b;
  109. }
  110. uint8_t blinded_bit, blinded_bit_read;
  111. blinded_bit = bit ^ bit_b;
  112. __m128i blinded_L = L ^ R ^ rand_b;
  113. __m128i blinded_L_read;
  114. struct BlindsCW
  115. {
  116. __m128i blinded_message;
  117. uint8_t blinded_bit;
  118. };
  119. BlindsCW blinds_sent, blinds_recv;
  120. blinds_sent.blinded_bit = blinded_bit;
  121. blinds_sent.blinded_message = blinded_L;
  122. boost::asio::write(sout, boost::asio::buffer(&blinds_sent, sizeof(blinds_sent)));
  123. boost::asio::read(sout, boost::asio::buffer(&blinds_recv, sizeof(blinds_recv)));
  124. blinded_bit_read = blinds_recv.blinded_bit;
  125. blinded_L_read = blinds_recv.blinded_message;
  126. __m128i out_ = R ^ gamma_b; //_mm_setzero_si128;
  127. if (bit)
  128. {
  129. out_ ^= (L ^ R ^ blinded_L_read);
  130. }
  131. if (blinded_bit_read)
  132. {
  133. out_ ^= rand_b;
  134. }
  135. __m128i out_reconstruction;
  136. boost::asio::write(sout, boost::asio::buffer(&out_, sizeof(out_)));
  137. boost::asio::read(sout, boost::asio::buffer(&out_reconstruction, sizeof(out_reconstruction)));
  138. out_reconstruction = out_ ^ out_reconstruction;
  139. CW = out_reconstruction;
  140. #ifdef DEBUG
  141. uint8_t bit_reconstruction;
  142. boost::asio::write(sout, boost::asio::buffer(&bit, sizeof(bit)));
  143. boost::asio::read(sout, boost::asio::buffer(&bit_reconstruction, sizeof(bit_reconstruction)));
  144. bit_reconstruction = bit ^ bit_reconstruction;
  145. __m128i L_reconstruction;
  146. boost::asio::write(sout, boost::asio::buffer(&L, sizeof(L)));
  147. boost::asio::read(sout, boost::asio::buffer(&L_reconstruction, sizeof(L_reconstruction)));
  148. L_reconstruction = L ^ L_reconstruction;
  149. __m128i R_reconstruction;
  150. boost::asio::write(sout, boost::asio::buffer(&R, sizeof(R)));
  151. boost::asio::read(sout, boost::asio::buffer(&R_reconstruction, sizeof(R_reconstruction)));
  152. R_reconstruction = R ^ R_reconstruction;
  153. __m128i CW_debug;
  154. if (bit_reconstruction != 0)
  155. {
  156. CW_debug = L_reconstruction;
  157. }
  158. else
  159. {
  160. CW_debug = R_reconstruction;
  161. }
  162. assert(CW_debug[0] == CW[0]);
  163. assert(CW_debug[1] == CW[1]);
  164. #endif
  165. }
  166. __m128i bit_mask_avx2_msb(unsigned int n)
  167. {
  168. __m128i ones = _mm_set1_epi32(-1);
  169. __m128i cnst32_128 = _mm_set_epi32(32, 64, 96, 128);
  170. __m128i shift = _mm_set1_epi32(n);
  171. shift = _mm_subs_epu16(cnst32_128, shift);
  172. return _mm_sllv_epi32(ones, shift);
  173. }
  174. __m128i bit_mask_avx2_lsb(unsigned int n)
  175. {
  176. __m128i ones = _mm_set1_epi32(-1);
  177. __m128i cnst32_128 = _mm_set_epi32(128, 96, 64, 32);
  178. __m128i shift = _mm_set1_epi32(n);
  179. shift = _mm_subs_epu16(cnst32_128, shift);
  180. return _mm_srlv_epi32(ones, shift);
  181. }
  182. template <typename node_t, typename prgkey_t>
  183. static inline void traverse(const prgkey_t &prgkey, const node_t &seed, node_t s[2])
  184. {
  185. dpf::PRG(prgkey, clear_lsb(seed, 0b11), s, 2);
  186. } // dpf::expand
  187. inline void evalfull_mpc(const size_t &nodes_per_leaf, const size_t &depth, const size_t &nbits, const size_t &nodes_in_interval,
  188. const AES_KEY &prgkey, uint8_t target_share[64], std::vector<socket_t> &socketsPb,
  189. const size_t from, const size_t to, __m128i *output, int8_t *_t, __m128i &final_correction_word, bool party, size_t socket_no = 0)
  190. {
  191. __m128i root;
  192. arc4random_buf(&root, sizeof(root));
  193. root = set_lsb(root, party);
  194. const size_t from_node = std::floor(static_cast<double>(from) / nodes_per_leaf);
  195. __m128i *s[2] = {
  196. reinterpret_cast<__m128i *>(output) + nodes_in_interval * (nodes_per_leaf - 1),
  197. s[0] + nodes_in_interval / 2};
  198. int8_t *t[2] = {_t, _t + nodes_in_interval / 2};
  199. int curlayer = depth % 2;
  200. s[curlayer][0] = root;
  201. t[curlayer][0] = get_lsb(root, 0b01);
  202. __m128i *CW = (__m128i *)std::aligned_alloc(sizeof(__m256i), depth * sizeof(__m128i));
  203. for (size_t layer = 0; layer < depth; ++layer)
  204. {
  205. #ifdef VERBOSE
  206. printf("layer = %zu\n", layer);
  207. #endif
  208. curlayer = 1 - curlayer;
  209. size_t i = 0, j = 0;
  210. auto nextbit = (from_node >> (nbits - layer - 1)) & 1;
  211. size_t nodes_in_prev_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth - layer)));
  212. size_t nodes_in_cur_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth - layer - 1)));
  213. __m128i L = _mm_setzero_si128();
  214. __m128i R = _mm_setzero_si128();
  215. for (i = nextbit, j = nextbit; j < nodes_in_prev_layer - 1; ++j, i += 2)
  216. {
  217. traverse(prgkey, s[1 - curlayer][j], &s[curlayer][i]);
  218. L ^= s[curlayer][i];
  219. R ^= s[curlayer][i + 1];
  220. }
  221. if (nodes_in_prev_layer > j)
  222. {
  223. if (i < nodes_in_cur_layer - 1)
  224. {
  225. traverse(prgkey, s[1 - curlayer][j], &s[curlayer][i]);
  226. L ^= s[curlayer][i];
  227. R ^= s[curlayer][i + 1];
  228. }
  229. }
  230. compute_CW(party, socketsPb[socket_no], L, R, target_share[layer], CW[layer]);
  231. uint8_t advice_L = get_lsb(L) ^ target_share[layer];
  232. uint8_t advice_R = get_lsb(R) ^ target_share[layer];
  233. uint8_t cwt_L, cwt_R;
  234. uint8_t advice[2];
  235. uint8_t cwts[2];
  236. advice[0] = advice_L;
  237. advice[1] = advice_R;
  238. boost::asio::write(socketsPb[socket_no + 1], boost::asio::buffer(&advice, sizeof(advice)));
  239. boost::asio::read(socketsPb[socket_no + 1], boost::asio::buffer(&cwts, sizeof(cwts)));
  240. cwt_L = cwts[0];
  241. cwt_R = cwts[1];
  242. cwt_L = cwt_L ^ advice_L ^ 1;
  243. cwt_R = cwt_R ^ advice_R;
  244. for (size_t j = 0; j < nodes_in_prev_layer; ++j)
  245. {
  246. t[curlayer][2 * j] = get_lsb(s[curlayer][2 * j]) ^ (cwt_L & t[1 - curlayer][j]);
  247. s[curlayer][2 * j] = clear_lsb(xor_if(s[curlayer][2 * j], CW[layer], !t[1 - curlayer][j]), 0b11);
  248. t[curlayer][(2 * j) + 1] = get_lsb(s[curlayer][(2 * j) + 1]) ^ (cwt_R & t[1 - curlayer][j]);
  249. s[curlayer][(2 * j) + 1] = clear_lsb(xor_if(s[curlayer][(2 * j) + 1], CW[layer], !t[1 - curlayer][j]), 0b11);
  250. }
  251. }
  252. __m128i Gamma = _mm_setzero_si128();
  253. for (size_t i = 0; i < to + 1; ++i)
  254. {
  255. Gamma[0] += output[i][0];
  256. Gamma[1] += output[i][1];
  257. }
  258. if (party)
  259. {
  260. Gamma[0] = -Gamma[0];
  261. Gamma[1] = -Gamma[1];
  262. }
  263. boost::asio::write(socketsPb[socket_no + 3], boost::asio::buffer(&Gamma, sizeof(Gamma)));
  264. boost::asio::read(socketsPb[socket_no + 3], boost::asio::buffer(&final_correction_word, sizeof(final_correction_word)));
  265. final_correction_word = Gamma; // final_correction_word + Gamma;
  266. } // dpf::__evalinterval
  267. void convert_shares(__m128i **output, int8_t **flags, size_t n_threads, size_t db_nitems, __m128i *final_correction_word, tcp::socket &sb, bool party)
  268. {
  269. for (size_t j = 0; j < db_nitems; ++j)
  270. {
  271. for (size_t k = 0; k < n_threads; ++k)
  272. {
  273. if (party)
  274. {
  275. output[k][j] = -output[k][j];
  276. flags[k][j] = -flags[k][j];
  277. }
  278. }
  279. #ifdef DEBUG
  280. int8_t out = flags[0][j];
  281. int8_t out_rec;
  282. boost::asio::write(sb, boost::asio::buffer(&out, sizeof(out)));
  283. boost::asio::read(sb, boost::asio::buffer(&out_rec, sizeof(out_rec)));
  284. out_rec = out_rec + out;
  285. if (out_rec != 0)
  286. std::cout << j << "(flags) --> " << (int)out_rec << std::endl
  287. << std::endl;
  288. __m128i out2 = output[0][j];
  289. __m128i out_rec2;
  290. boost::asio::write(sb, boost::asio::buffer(&out2, sizeof(out2)));
  291. boost::asio::read(sb, boost::asio::buffer(&out_rec2, sizeof(out_rec2)));
  292. out_rec2 = out_rec2 + out2;
  293. if (out_rec2[0] != 0)
  294. std::cout << j << "--> " << out_rec2[0] << std::endl;
  295. #endif
  296. }
  297. for (size_t i = 0; i < n_threads; ++i)
  298. {
  299. int64_t pm = 0;
  300. int64_t rb;
  301. arc4random_buf(&rb, sizeof(rb));
  302. for (size_t j = 0; j < db_nitems; ++j)
  303. {
  304. if (party)
  305. {
  306. if (flags[i][j] != 0)
  307. pm -= 1;
  308. }
  309. if (!party)
  310. {
  311. if (flags[i][j] != 0)
  312. pm += 1; // flags[0][j];
  313. }
  314. }
  315. }
  316. }
  317. void accept_conncections_from_Pb(boost::asio::io_context &io_context, std::vector<socket_t> &socketsPb, int port, size_t j)
  318. {
  319. tcp::acceptor acceptor_a(io_context, tcp::endpoint(tcp::v4(), port));
  320. tcp::socket sb_a(acceptor_a.accept());
  321. socketsPb[j] = std::move(sb_a);
  322. }
  323. int main(int argc, char *argv[])
  324. {
  325. boost::asio::io_context io_context;
  326. tcp::resolver resolver(io_context);
  327. const std::string host1 = argv[1];
  328. const size_t n_threads = atoi(argv[2]);
  329. const size_t number_of_sockets = 5 * n_threads;
  330. const size_t expo = atoi(argv[3]);
  331. const size_t db_nitems = 1ULL << expo;
  332. std::vector<socket_t> socketsPb;
  333. for (size_t j = 0; j < number_of_sockets + 1; ++j)
  334. {
  335. tcp::socket emptysocket(io_context);
  336. socketsPb.emplace_back(std::move(emptysocket));
  337. }
  338. socketsPb.reserve(number_of_sockets + 1);
  339. std::vector<int> ports;
  340. for (size_t j = 0; j < number_of_sockets; ++j)
  341. {
  342. int port = 6000;
  343. ports.push_back(port + j);
  344. }
  345. std::vector<int> ports2_0;
  346. for (size_t j = 0; j < number_of_sockets; ++j)
  347. {
  348. int port = 20000;
  349. ports2_0.push_back(port + j);
  350. }
  351. std::vector<int> ports2_1;
  352. for (size_t j = 0; j < number_of_sockets; ++j)
  353. {
  354. int port = 40000;
  355. ports2_1.push_back(port + j);
  356. }
  357. bool party;
  358. #if (PARTY == 0)
  359. party = false;
  360. for (size_t j = 0; j < number_of_sockets; ++j)
  361. {
  362. tcp::socket sb_a(io_context);
  363. boost::asio::connect(sb_a, resolver.resolve({host1, std::to_string(ports[j])}));
  364. socketsPb[j] = std::move(sb_a);
  365. }
  366. #else
  367. party = true;
  368. boost::asio::thread_pool pool2(number_of_sockets);
  369. for (size_t j = 0; j < number_of_sockets; ++j)
  370. {
  371. boost::asio::post(pool2, std::bind(accept_conncections_from_Pb, std::ref(io_context), std::ref(socketsPb), ports[j], j));
  372. }
  373. pool2.join();
  374. #endif
  375. __m128i *final_correction_word = (__m128i *)std::aligned_alloc(sizeof(__m256i), n_threads * sizeof(__m128i));
  376. AES_KEY aeskey;
  377. __m128i **output = (__m128i **)malloc(sizeof(__m128i *) * n_threads);
  378. int8_t **flags = (int8_t **)malloc(sizeof(uint8_t *) * n_threads);
  379. for (size_t j = 0; j < n_threads; ++j)
  380. {
  381. output[j] = (__m128i *)std::aligned_alloc(sizeof(node_t), db_nitems * sizeof(__m128i));
  382. flags[j] = (int8_t *)std::aligned_alloc(sizeof(node_t), db_nitems * sizeof(uint8_t));
  383. }
  384. const size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
  385. const bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
  386. const size_t nodes_per_leaf = is_packed ? 1 : std::ceil(static_cast<double>(bits_per_leaf) / (sizeof(node_t) * CHAR_BIT));
  387. const size_t depth = std::ceil(std::log2(db_nitems));
  388. const size_t nbits = std::ceil(std::log2(db_nitems));
  389. const size_t nodes_in_interval = db_nitems - 1;
  390. boost::asio::thread_pool pool(n_threads);
  391. //#ifdef VERBOSE
  392. printf("n_threads = %zu\n\n", n_threads);
  393. //#endif
  394. auto start = std::chrono::steady_clock::now();
  395. uint8_t **target_share_read = new uint8_t *[n_threads];
  396. generate_random_targets(target_share_read, n_threads, party, expo);
  397. for (size_t j = 0; j < n_threads; ++j)
  398. {
  399. boost::asio::post(pool, std::bind(evalfull_mpc, std::ref(nodes_per_leaf), std::ref(depth), std::ref(nbits), std::ref(nodes_in_interval),
  400. std::ref(aeskey), target_share_read[j], std::ref(socketsPb), 0, db_nitems - 1, output[j],
  401. flags[j], std::ref(final_correction_word[j]), party, 5 * j));
  402. }
  403. pool.join();
  404. convert_shares(output, flags, n_threads, db_nitems, final_correction_word, socketsPb[0], party);
  405. auto end = std::chrono::steady_clock::now();
  406. std::chrono::duration<double> elapsed_seconds = end - start;
  407. std::cout << "time to generate and evaluate " << n_threads << " dpfs of size 2^" << expo << " is: " << elapsed_seconds.count() << "s" << std::endl<< std::endl;
  408. std::cout << "done with preproecessing" << std::endl;
  409. if(!party)
  410. {
  411. char const *p0_filename0;
  412. p0_filename0 = "../duoram-online/preprocflags/party0_read_flags_b";
  413. int w0 = open(p0_filename0, O_WRONLY | O_CREAT, S_IWRITE | S_IREAD);
  414. int written = write(w0, flags[0], db_nitems * sizeof(flags[0][0]));
  415. if (written < 0) perror("Write error");
  416. close(w0);
  417. }
  418. else
  419. {
  420. char const *p0_filename0;
  421. p0_filename0 = "../duoram-online/preprocflags/party1_read_flags_b";
  422. int w0 = open(p0_filename0, O_WRONLY | O_CREAT, S_IWRITE | S_IREAD);
  423. int written = write(w0, flags[0], db_nitems * sizeof(flags[0][0]));
  424. if (written < 0) perror("Write error");
  425. close(w0);
  426. }
  427. return 0;
  428. }