123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391 |
- struct dpfP2
- {
- __m128i root;
- __m128i CW[32];
- uint8_t cwt_L[32];
- uint8_t cwt_R[32];
- };
- void generate_random_targets(uint8_t ** target_share_read, size_t n_threads, bool party, size_t expo)
- {
- for(size_t i = 0; i < n_threads; i++)
- {
- target_share_read[i] = new uint8_t[64];
- }
- for(size_t j = 0; j < 64; ++j)
- {
- for(size_t i = 0; i < n_threads; ++i)
- {
- uint8_t random_value;
- arc4random_buf(&random_value, sizeof(uint8_t));
- target_share_read[i][j] = random_value;//rand();
- target_share_read[i][j] = target_share_read[i][j] % 2;
- //if(party) target_share_read[i][expo-2] = 1;
- }
- }
- }
- struct cw_construction
- {
- __m128i rand_b, gamma_b;
- uint8_t bit_b;
- };
- struct BlindsCW
- {
- __m128i blinded_message;
- uint8_t blinded_bit;
- };
- struct reconstructioncw
- {
- __m128i cw;
- uint8_t cwbit[2];
- };
-
- void compute_CW(cw_construction computecw_array, size_t ind, size_t layer,tcp::socket& sout, __m128i L, __m128i R, uint8_t bit, __m128i & CW, uint8_t &cwt_L, uint8_t &cwt_R)
- {
- reconstructioncw cwsent, cwrecv;
- __m128i rand_b = computecw_array.rand_b; // computecw.rand_b;
- __m128i gamma_b = computecw_array.gamma_b; // computecw.gamma_b;
- uint8_t bit_b = computecw_array.bit_b; // computecw.bit_b;
-
- uint8_t blinded_bit, blinded_bit_read;
- blinded_bit = bit ^ bit_b;
- __m128i blinded_L = L ^ R ^ rand_b;
- __m128i blinded_L_read;
- BlindsCW blinds_sent, blinds_recv;
- blinds_sent.blinded_bit = blinded_bit;
- blinds_sent.blinded_message = blinded_L;
- //exchange blinded shares for OSWAP.
- boost::asio::write(sout, boost::asio::buffer(&blinds_sent, sizeof(BlindsCW)));
- communication_cost += sizeof(__m128i);
- boost::asio::read(sout, boost::asio::buffer(&blinds_recv, sizeof(BlindsCW)));
-
- blinded_bit_read = blinds_recv.blinded_bit;
- blinded_L_read = blinds_recv.blinded_message;
- cwsent.cw = R ^ gamma_b;
- if(bit)
- {
- cwsent.cw ^= (L ^ R ^ blinded_L_read);
- }
- if(blinded_bit_read)
- {
- cwsent.cw ^= rand_b;
- }
-
- cwsent.cwbit[0] = get_lsb(L) ^ bit;//advice[0];
- cwsent.cwbit[1] = get_lsb(R) ^ bit;//advice[1];
- boost::asio::write(sout, boost::asio::buffer(&cwsent, sizeof(cwsent)));
- boost::asio::read(sout, boost::asio::buffer(&cwrecv, sizeof(cwrecv)));
- communication_cost += sizeof(__m128i);
- cwrecv.cw ^= cwsent.cw;
- cwrecv.cwbit[0] ^= (cwsent.cwbit[0] ^ 1);
- cwrecv.cwbit[1] ^= (cwsent.cwbit[1]);
-
- cwt_L = cwrecv.cwbit[0];
- cwt_R = cwrecv.cwbit[1];
- CW = cwrecv.cw;
- // The following asserts the correctness of ComputeCW
- #ifdef DEBUG
- uint8_t bit_reconstruction;
- boost::asio::write(sout, boost::asio::buffer(&bit, sizeof(bit)));
- boost::asio::read(sout, boost::asio::buffer(&bit_reconstruction, sizeof(bit_reconstruction)));
- bit_reconstruction = bit ^ bit_reconstruction;
- __m128i L_reconstruction;
- boost::asio::write(sout, boost::asio::buffer(&L, sizeof(L)));
- boost::asio::read(sout, boost::asio::buffer(&L_reconstruction, sizeof(L_reconstruction)));
- L_reconstruction = L ^ L_reconstruction;
- __m128i R_reconstruction;
- boost::asio::write(sout, boost::asio::buffer(&R, sizeof(R)));
- boost::asio::read(sout, boost::asio::buffer(&R_reconstruction, sizeof(R_reconstruction)));
- R_reconstruction = R ^ R_reconstruction;
- __m128i CW_debug;
- if(bit_reconstruction != 0)
- {
- CW_debug = L_reconstruction;
- }
- else
- {
- CW_debug = R_reconstruction;
- }
- assert(CW_debug[0] == CW[0]);
- assert(CW_debug[1] == CW[1]);
- #endif
- }
- template<typename node_t, typename prgkey_t>
- static inline void traverse(const prgkey_t & prgkey, const node_t & seed, node_t s[2])
- {
- dpf::PRG(prgkey, clear_lsb(seed, 0b11), s, 2);
- } // dpf::expand
- /**
- * @brief
- *
- * @param nodes_per_leaf
- * @param depth
- * @param nbits
- * @param nodes_in_interval
- * @param prgkey The PRG Key
- * @param target_share
- * @param socketsPb Array of sockets to write to Pb
- * @param socketsP2 Array of sockets to write to P2
- * @param from
- * @param to
- * @param output
- * @param _t
- * @param final_correction_word the final correction word is written in to this
- * @param party Party
- * @param socket_no
- */
- inline void create_dpfs (bool reading, size_t db_nitems, const AES_KEY& prgkey,
- uint8_t target_share[64], std::vector<socket_t>& socketsPb, std::vector<socket_t>& socketsP2, const size_t from, const size_t to, __m128i * output, int8_t * _t, __m128i& final_correction_word,
- cw_construction computecw_array, dpfP2 * dpf_instance,
- bool party, size_t socket_no, size_t ind = 0)
- {
- const size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
- const bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
- const size_t nodes_per_leaf = is_packed ? 1 : std::ceil(static_cast<double>(bits_per_leaf) / (sizeof(node_t) * CHAR_BIT));
- const size_t depth = std::ceil(std::log2(db_nitems));
- const size_t nbits = std::ceil(std::log2(db_nitems));
- const size_t nodes_in_interval = db_nitems-1;
-
- __m128i root;
- arc4random_buf(&root, sizeof(root));
- root = set_lsb(root, party);
- const size_t from_node = std::floor(static_cast<double>(from) / nodes_per_leaf);
- __m128i * s[2] = {
- reinterpret_cast<__m128i *>(output) + nodes_in_interval * (nodes_per_leaf - 1),
- s[0] + nodes_in_interval / 2
- };
-
- int8_t * t[2] = { _t, _t + nodes_in_interval / 2};
- int curlayer = depth % 2;
- s[curlayer][0] = root;
- t[curlayer][0] = get_lsb(root, 0b01);
-
- __m128i * CW = (__m128i *) std::aligned_alloc(sizeof(__m256i), depth * sizeof(__m128i));
-
- #ifdef VERBOSE
- if(ind == 0)
- {
- std::cout << "root = " << root[0] << " " << root[1] << std::endl;
- std::cout << "t[curlayer][0] " << (int) t[curlayer][0] << std::endl;
- }
- #endif
- dpf_instance[ind].root = root;
-
- // cw_construction computecw_array[15];
- // boost::asio::read(socketsP2[0], boost::asio::buffer(&computecw_array, 15 * sizeof(computecw_array[0])));
- for (size_t layer = 0; layer < depth; ++layer)
- {
- #ifdef VERBOSE
- printf("layer = %zu\n", layer);
- #endif
- curlayer = 1-curlayer;
- size_t i=0, j=0;
- auto nextbit = (from_node >> (nbits-layer-1)) & 1;
- size_t nodes_in_prev_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth-layer)));
- size_t nodes_in_cur_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth-layer-1)));
- __m128i L = _mm_setzero_si128();
- __m128i R = _mm_setzero_si128();
-
- for (i = nextbit, j = nextbit; j < nodes_in_prev_layer-1; ++j, i+=2)
- {
-
- traverse(prgkey, s[1-curlayer][j], &s[curlayer][i]);
- L ^= s[curlayer][i];
- R ^= s[curlayer][i+1];
- }
-
- if (nodes_in_prev_layer > j)
- {
- if (i < nodes_in_cur_layer - 1)
- {
- traverse(prgkey, s[1-curlayer][j], &s[curlayer][i]);
- L ^= s[curlayer][i];
- R ^= s[curlayer][i+1];
- }
- }
- uint8_t cwt_L, cwt_R;
-
- // Computes the correction word using OSWAP
- compute_CW(computecw_array, ind, layer, socketsPb[socket_no], L, R, target_share[layer], CW[layer], cwt_L, cwt_R);
-
- #ifdef DEBUG
- if(ind == 0)
- {
- std::cout << "CW reconstruction = " << CW[layer][0] << " " << CW[layer][1] << std::endl;
- std::cout << " cwt_L = " << (int) cwt_L << std::endl;
- std::cout << " cwt_R = " << (int) cwt_R << std::endl;
- }
- #endif
- dpf_instance[ind].CW[layer] = CW[layer];
- dpf_instance[ind].cwt_L[layer] = cwt_L;
- dpf_instance[ind].cwt_R[layer] = cwt_R;
-
- for(size_t j = 0; j < nodes_in_prev_layer; ++j)
- {
- t[curlayer][2*j] = get_lsb(s[curlayer][2*j]) ^ (cwt_L & t[1-curlayer][j]);
- s[curlayer][2*j] = clear_lsb(xor_if(s[curlayer][2*j], CW[layer], !t[1-curlayer][j]), 0b01);
- t[curlayer][(2*j)+1] = get_lsb(s[curlayer][(2*j)+1]) ^ (cwt_R & t[1-curlayer][j]);
- s[curlayer][(2*j)+1] = clear_lsb(xor_if(s[curlayer][(2*j)+1], CW[layer], !t[1-curlayer][j]), 0b01);
- }
- }
-
-
- __m128i Gamma = _mm_setzero_si128();
-
- for (size_t i = 0; i < to + 1; ++i)
- {
- Gamma[0] += output[i][0]; // the correction word for duoram update
- Gamma[1] += output[i][1]; // the correction word for share conversion
- }
-
- if(party)
- {
- Gamma[0] = -Gamma[0]; // the correction word for duoram update
- Gamma[1] = -Gamma[1]; // the correction word for share conversion
- }
-
- #ifdef DEBUG
- boost::asio::write(socketsPb[socket_no + 3], boost::asio::buffer(&Gamma, sizeof(Gamma)));
- boost::asio::read(socketsPb[socket_no + 3], boost::asio::buffer(&final_correction_word, sizeof(final_correction_word)));
- #endif
- final_correction_word = Gamma;
- } // create_dpfs
- inline void evaluate_dpfs( size_t db_nitems, dpfP2 dpfinstance, const AES_KEY& prgkey, const size_t from, const size_t to,
- __m128i * output, int8_t * _t, bool party, size_t ind)
- {
- const size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
- const bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
- const size_t nodes_per_leaf = is_packed ? 1 : std::ceil(static_cast<double>(bits_per_leaf) / (sizeof(node_t) * CHAR_BIT));
- const size_t depth = std::ceil(std::log2(db_nitems));
- const size_t nbits = std::ceil(std::log2(db_nitems));
- const size_t nodes_in_interval = db_nitems-1;
-
- __m128i root = dpfinstance.root;
- __m128i * CW = (__m128i *) std::aligned_alloc(sizeof(__m256i), depth * sizeof(__m128i));
-
- uint8_t * cwt_L = (uint8_t *) std::aligned_alloc(sizeof(__m256i), depth * sizeof(uint8_t));
- uint8_t * cwt_R = (uint8_t *) std::aligned_alloc(sizeof(__m256i), depth * sizeof(uint8_t));
-
- for(size_t j = 0; j < depth; ++j)
- {
- CW[j] = dpfinstance.CW[j];
- cwt_L[j] = dpfinstance.cwt_L[j];
- cwt_R[j] = dpfinstance.cwt_R[j];
- }
-
-
- root = set_lsb(root, party);
- const size_t from_node = std::floor(static_cast<double>(from) / nodes_per_leaf);
- __m128i * s[2] = {
- reinterpret_cast<__m128i *>(output) + nodes_in_interval * (nodes_per_leaf - 1),
- s[0] + nodes_in_interval / 2
- };
- int8_t * t[2] = { _t, _t + nodes_in_interval / 2};
- int curlayer = depth % 2;
- s[curlayer][0] = root;
- t[curlayer][0] = get_lsb(root, 0b01);
-
- #ifdef VERBOSE
- if(ind == 0)
- {
- std::cout << "root = " << root[0] << " " << root[1] << std::endl;
- std::cout << "t[curlayer][0] " << (int) t[curlayer][0] << std::endl;
- }
- #endif
- for (size_t layer = 0; layer < depth; ++layer)
- {
- #ifdef VERBOSE
- printf("layer = %zu\n", layer);
- #endif
- curlayer = 1-curlayer;
- size_t i=0, j=0;
- auto nextbit = (from_node >> (nbits-layer-1)) & 1;
- size_t nodes_in_prev_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth-layer)));
- size_t nodes_in_cur_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth-layer-1)));
-
- for (i = nextbit, j = nextbit; j < nodes_in_prev_layer-1; ++j, i+=2)
- {
- traverse(prgkey, s[1-curlayer][j], &s[curlayer][i]);
- }
-
- if (nodes_in_prev_layer > j)
- {
- if (i < nodes_in_cur_layer - 1)
- {
- traverse(prgkey, s[1-curlayer][j], &s[curlayer][i]);
- }
- }
- #ifdef VERBOSE
- if(ind == 0)
- {
- std::cout << "CW reconstruction = " << CW[layer][0] << " " << CW[layer][1] << std::endl;
- std::cout << " cwt_L = " << (int) cwt_L[layer] << std::endl;
- std::cout << " cwt_R = " << (int) cwt_R[layer] << std::endl;
- }
- #endif
- for(size_t j = 0; j < nodes_in_prev_layer; ++j)
- {
- t[curlayer][2*j] = get_lsb(s[curlayer][2*j]) ^ (cwt_L[layer] & t[1-curlayer][j]);
- s[curlayer][2*j] = clear_lsb(xor_if(s[curlayer][2*j], CW[layer], !t[1-curlayer][j]), 0b11);
- t[curlayer][(2*j)+1] = get_lsb(s[curlayer][(2*j)+1]) ^ (cwt_R[layer] & t[1-curlayer][j]);
- s[curlayer][(2*j)+1] = clear_lsb(xor_if(s[curlayer][(2*j)+1], CW[layer], !t[1-curlayer][j]), 0b11);
- }
- }
- } // evaluate_dpfs
|