| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 | #include <type_traits>  // std::is_same<>#include <limits>       // std::numeric_limits<>#include <climits>      // CHAR_BIT#include <cmath>        // std::log2, std::ceil, std::floor#include <stdexcept>    // std::runtime_error#include <array>        // std::array<>#include <iostream>     // std::istream and std::ostream#include <vector>       // std::vector<>#include <memory>       // std::shared_ptr<>#include <utility>      // std::move#include <algorithm>    // std::copy#include <cstring>      // std::memcpy#include <bsd/stdlib.h> // arc4random_buf#include <x86intrin.h>  // SSE and AVX intrinsics#include <chrono>#include <sys/mman.h>#include <sys/stat.h>#include <fcntl.h>#include <fstream> #include <mutex>#include <../boost/asio.hpp>#include <../boost/lexical_cast.hpp> using boost::asio::ip::tcp;#include "prg.h"#include "prg_aes_impl.h" #include "block.h" #include "duoram-utils.h"#include "readvectors.h"  DB_t * X0;DB_t * X1; DB_t alpha;typedef __m128i leaf_t;typedef __m128i node_t;  using socket_t = boost::asio::ip::tcp::socket;using namespace std; size_t communication_cost_dep_read = 0;size_t communication_cost_write    = 0;size_t communication_cost_ind_read = 0;double dependent_read_time = 0.0;double write_time = 0.0;auto generate_cancelation_terms(int8_t c0[], int8_t d1[], size_t db_nitems, size_t rotate_by = 0){   DB_t Z0 =  dot_product_with_bool(X0, d1, db_nitems, rotate_by);   DB_t Z1 =  dot_product_with_bool(X1, c0, db_nitems, rotate_by);   DB_t cancelation_term0 = -Z0 ;   DB_t cancelation_term1 = -Z1 ;    return std::make_pair(cancelation_term0, cancelation_term1);}   void refresh_blinds(int8_t writing_c[], int8_t writing_d[],                     DB_t c[], DB_t d[],                    DB_t finalcw0, DB_t finalcw1, size_t db_nitems, size_t rotate_by = 0){  for(size_t j = 0; j < db_nitems; ++j)  {    X0[j] = X0[j] - c[(j + rotate_by) % db_nitems] - ((writing_c[(j + rotate_by) % db_nitems]) * finalcw0);//   tmp0; //c0    X1[j] = X1[j] - d[(j + rotate_by) % db_nitems] - ((writing_d[(j + rotate_by) % db_nitems]) * finalcw1); //c2  }} void accept_conncections_from_Pb(boost::asio::io_context&io_context, std::vector<socket_t>& sockets_0, int port, size_t j){  tcp::acceptor acceptor2_(io_context, tcp::endpoint(tcp::v4(), port));  tcp::socket s2(acceptor2_.accept());  sockets_0[j] = std::move(s2); }int main(int argc, char* argv[]){   size_t expo =  atoi(argv[3]);  size_t db_nitems            = 1ULL << expo;  size_t number_of_ind_writes = atoi(argv[4]);;  size_t number_of_ind_reads  = atoi(argv[5]);;  size_t number_of_dep_reads  = atoi(argv[6]);;  size_t number_of_accesses   =  atoi(argv[7]);    b = (DB_t *) std::aligned_alloc(sizeof(__m256i), db_nitems * sizeof(DB_t));  c = (DB_t *) std::aligned_alloc(sizeof(__m256i), db_nitems * sizeof(DB_t));  d = (DB_t *) std::aligned_alloc(sizeof(__m256i), db_nitems * sizeof(DB_t));     reading_b = (int8_t *) malloc(db_nitems * sizeof(int8_t));  reading_c = (int8_t *) malloc(db_nitems * sizeof(int8_t));  reading_d = (int8_t *) malloc(db_nitems * sizeof(int8_t));  writing_b = (int8_t *) malloc(db_nitems * sizeof(int8_t));  writing_c = (int8_t *) malloc(db_nitems * sizeof(int8_t));  writing_d = (int8_t *) malloc(db_nitems * sizeof(int8_t));     boost::asio::io_context io_context;      AES_KEY aeskey;         const size_t number_of_sockets = 40;  std::vector<int> ports2_0;    for(size_t j = 0; j < number_of_sockets; ++j)   {    int port = 8000;    ports2_0.push_back(port + j);  }   std::vector<int> ports2_1;      for(size_t j = 0; j < number_of_sockets; ++j)    {     int port = 9000;     ports2_1.push_back(port + j);   }   std::vector<socket_t> sockets_0;   std::vector<socket_t> sockets_1;   sockets_0.reserve(number_of_sockets + 1);   sockets_1.reserve(number_of_sockets + 1);   boost::asio::thread_pool pool2(number_of_sockets * 2);    for(size_t j = 0; j < number_of_sockets; ++j)   {     boost::asio::post(pool2, std::bind(accept_conncections_from_Pb,  std::ref(io_context), std::ref(sockets_1), ports2_1[j],  j));   }   for(size_t j = 0; j < number_of_sockets; ++j)   {     boost::asio::post(pool2, std::bind(accept_conncections_from_Pb,  std::ref(io_context), std::ref(sockets_0), ports2_0[j],  j));   }   pool2.join();   X0 = (DB_t *) std::aligned_alloc(sizeof(__m256i), db_nitems * sizeof(DB_t));   X1 = (DB_t *) std::aligned_alloc(sizeof(__m256i), db_nitems * sizeof(DB_t));       for(size_t j = 0; j < db_nitems; ++j)   {    X0[j] = 0;    X1[j] = 0;    }     DuORAM_Write * WriteP0_recv = new DuORAM_Write[number_of_ind_writes];   DuORAM_Write * WriteP1_recv = new DuORAM_Write[number_of_ind_writes];   DB_t * Gamma0_ = new DB_t[number_of_ind_writes];   DB_t * Gamma1_ = new DB_t[number_of_ind_writes];   DB_t * update_message0 = new DB_t[number_of_ind_writes];   DB_t * update_message1 = new DB_t[number_of_ind_writes];   DB_t * FCW = new DB_t[number_of_ind_writes];    for(size_t i = 0; i < number_of_accesses; ++i)   {    auto start_writes = std::chrono::steady_clock::now();     for(size_t w = 0; w < number_of_ind_writes; ++w)     {       read_flags_for_refreshing(db_nitems);       size_t rotate_by_ = WriteP0_recv[w].shift + WriteP1_recv[w].shift;            auto [Gamma0, Gamma1] = generate_cancelation_terms(writing_c, writing_d, db_nitems, rotate_by_);       Gamma0_[w] = Gamma0;       Gamma1_[w] = Gamma1;         boost::asio::read(sockets_0[0], boost::asio::buffer(&WriteP0_recv[w],  sizeof(DuORAM_Write)));       boost::asio::read(sockets_1[0], boost::asio::buffer(&WriteP1_recv[w],  sizeof(DuORAM_Write)));       boost::asio::write(sockets_0[1], boost::asio::buffer(&Gamma0_[w], sizeof(DB_t)));        boost::asio::write(sockets_1[1], boost::asio::buffer(&Gamma1_[w], sizeof(DB_t)));       communication_cost_write += sizeof(DB_t);       communication_cost_write += sizeof(DB_t);       boost::asio::read(sockets_0[2], boost::asio::buffer(&update_message0[w],  sizeof(DB_t)));        boost::asio::read(sockets_1[2], boost::asio::buffer(&update_message1[w],  sizeof(DB_t)));              FCW[w] = update_message0[w] + update_message1[w];           }     for(size_t w = 0; w < number_of_ind_writes; ++w)     {       size_t rotate_by_ = WriteP0_recv[w].shift + WriteP1_recv[w].shift;       refresh_blinds(writing_c, writing_d, c, d, FCW[w], FCW[w], db_nitems, -rotate_by_);          #ifdef DEBUG       for(size_t j = 0; j < db_nitems; ++j)       {         boost::asio::write(sockets_0[0], boost::asio::buffer(&X0[j], sizeof(X0[j]))); //DEBUG         boost::asio::write(sockets_1[0], boost::asio::buffer(&X1[j], sizeof(X1[j]))); //DUBUG       }       #endif     }   auto end_writes = std::chrono::steady_clock::now();   std::chrono::duration<double> elapsed_seconds_writes = end_writes - start_writes;   write_time = elapsed_seconds_writes.count();    auto start_ind_reads = std::chrono::steady_clock::now();     DB_t * Gamma0_reads = new DB_t[number_of_ind_reads];     DB_t * Gamma1_reads = new DB_t[number_of_ind_reads];          size_t * reads_shift_from_P0 = new size_t[number_of_ind_reads];     size_t * reads_shift_from_P1 = new size_t[number_of_ind_reads];     size_t *  rotate              = new size_t[number_of_ind_reads];          boost::asio::read(sockets_0[3], boost::asio::buffer(reads_shift_from_P0, number_of_ind_reads * sizeof(size_t)));      boost::asio::read(sockets_1[3], boost::asio::buffer(reads_shift_from_P1, number_of_ind_reads * sizeof(size_t)));     for(size_t r = 0; r < number_of_ind_reads; ++r)     {         #ifdef VERBOSE         std::cout << "rotate[r] " << rotate[r] << std::endl;       #endif       rotate[r] = reads_shift_from_P0[r] + reads_shift_from_P1[r];       read_flags_for_generating_cancellation_terms(db_nitems);        auto [Gamma0, Gamma1] =   generate_cancelation_terms(reading_c, reading_d, db_nitems, rotate[r]);            Gamma0_reads[r] = Gamma0;       Gamma1_reads[r] = Gamma1;     }     boost::asio::write(sockets_0[4], boost::asio::buffer(Gamma0_reads, number_of_ind_reads * sizeof(DB_t)));       boost::asio::write(sockets_1[4], boost::asio::buffer(Gamma1_reads, number_of_ind_reads * sizeof(DB_t)));     communication_cost_ind_read += number_of_ind_reads * sizeof(DB_t);     communication_cost_ind_read += number_of_ind_reads * sizeof(DB_t);    auto end_ind_reads = std::chrono::steady_clock::now();    std::chrono::duration<double> elapsed_seconds_ind_reads = end_ind_reads - start_ind_reads;    auto start_dep_reads = std::chrono::steady_clock::now();     for(size_t d = 0; d < number_of_dep_reads; ++d)     {         size_t shifts0, shifts1, rotate;       boost::asio::read(sockets_0[5], boost::asio::buffer(&shifts0, sizeof(shifts0)));       boost::asio::read(sockets_1[5], boost::asio::buffer(&shifts1, sizeof(shifts1)));       rotate = shifts0 + shifts1;                read_flags_for_generating_cancellation_terms(db_nitems);                auto [Gamma0, Gamma1] =   generate_cancelation_terms(reading_c, reading_d, db_nitems, rotate);       boost::asio::write(sockets_0[6], boost::asio::buffer(&Gamma0, sizeof(Gamma0)));         boost::asio::write(sockets_1[6], boost::asio::buffer(&Gamma1, sizeof(Gamma1)));       communication_cost_dep_read += sizeof(Gamma0);       communication_cost_dep_read += sizeof(Gamma1);     }    auto end_dep_reads = std::chrono::steady_clock::now();    std::chrono::duration<double> elapsed_seconds_dep_reads = end_dep_reads - start_dep_reads;    dependent_read_time = elapsed_seconds_dep_reads.count();  }std::cout << "write_time = " << write_time << std::endl;std::cout << "communication_cost_writes = " << communication_cost_write << " bytes" << std::endl;  std::cout << "dependent_read_time =  " << dependent_read_time << std::endl; std::cout << "communication_cost_dep_read = " << communication_cost_dep_read << " bytes" << std::endl;  std::cout << "interleaved_time =  " << dependent_read_time + write_time  << std::endl; std::cout << "communication_cost_interleaved = " << (communication_cost_dep_read + communication_cost_write) << " bytes" << std::endl;   return 0;}  
 |