preprocessing.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671
  1. #include <type_traits> // std::is_same<>
  2. #include <limits> // std::numeric_limits<>
  3. #include <climits> // CHAR_BIT
  4. #include <cmath> // std::log2, std::ceil, std::floor
  5. #include <stdexcept> // std::runtime_error
  6. #include <array> // std::array<>
  7. #include <iostream> // std::istream and std::ostream
  8. #include <vector> // std::vector<>
  9. #include <memory> // std::shared_ptr<>
  10. #include <utility> // std::move
  11. #include <algorithm> // std::copy
  12. #include <cstring> // std::memcpy
  13. #include <bsd/stdlib.h> // arc4random_buf
  14. #include <x86intrin.h> // SSE and AVX intrinsics
  15. #include <boost/asio/thread_pool.hpp>
  16. #include "bitutils.h"
  17. #include "block.h"
  18. #include "prg.h"
  19. #include "prg_aes_impl.h"
  20. #include <iostream>
  21. #include <fcntl.h>
  22. #include <cstdlib>
  23. #include "block.h"
  24. #include <chrono>
  25. #include <sys/mman.h>
  26. #include <sys/stat.h>
  27. #include <fcntl.h>
  28. #include <fstream>
  29. #include <future>
  30. #include <boost/asio.hpp>
  31. using boost::asio::ip::tcp;
  32. #include <mutex>
  33. #include <boost/lexical_cast.hpp>
  34. using socket_t = boost::asio::ip::tcp::socket;
  35. typedef unsigned char byte_t;
  36. typedef __m128i node_t;
  37. block<__m128i> seed_for_blinds;
  38. constexpr size_t leaf_size = 1;
  39. typedef __m128i leaf_type;
  40. typedef std::array<leaf_type, leaf_size> leaf_t;
  41. size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
  42. bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
  43. size_t leaves_per_node = is_packed ? sizeof(node_t) * CHAR_BIT / bits_per_leaf : 1;
  44. size_t input_bits(const size_t nitems) { return std::ceil(std::log2(nitems)); }
  45. leaf_t val;
  46. using namespace dpf;
  47. #include "mpc.h"
  48. void compute_CW(bool party, tcp::socket& sout, __m128i L, __m128i R, uint8_t bit, __m128i & CW)
  49. {
  50. //struct cw_construction
  51. //{
  52. __m128i rand_b, gamma_b;
  53. uint8_t bit_b;
  54. //};
  55. //cw_construction computecw;
  56. // read(sin, boost::asio::buffer(&computecw, sizeof(computecw)));
  57. //computecw.rand_b;
  58. //__m128i gamma_b = computecw.gamma_b;
  59. if(party)
  60. {
  61. rand_b = _mm_set_epi32(0x6fef9434, 0x6768121e, 0x20942286, 0x1b59f7a7);
  62. gamma_b = _mm_set_epi32(0x6a499109 , 0x803067dd , 0xd1e2281b , 0xe71b6262);
  63. bit_b = 1;// computecw.bit_b;
  64. }
  65. else
  66. {
  67. rand_b = _mm_set_epi32(0xb29747df, 0xf7300f6d, 0x9476d971, 0xd5f75d98);
  68. gamma_b = _mm_set_epi32(0xb73142e2 , 0x10687aae , 0x06500d3ec , 0x29b5c85d);
  69. bit_b = 1;// computecw.bit_b;
  70. }
  71. // #ifdef DEBUG
  72. // __m128i rand_b2, gamma_b2;
  73. // uint8_t bit_b2;
  74. // read(sin, boost::asio::buffer(&rand_b2, sizeof(rand_b)));
  75. // read(sin, boost::asio::buffer(&gamma_b2, sizeof(gamma_b)));
  76. // read(sin, boost::asio::buffer(&bit_b2, sizeof(bit_b)));
  77. // assert(rand_b2[0] == rand_b[0]);
  78. // assert(rand_b2[1] == rand_b[1]);
  79. // assert(gamma_b2[0] == gamma_b[0]);
  80. // assert(gamma_b2[1] == gamma_b[1]);
  81. // assert(bit_b2 == bit_b);
  82. // #endif
  83. uint8_t blinded_bit, blinded_bit_read;
  84. blinded_bit = bit ^ bit_b;
  85. __m128i blinded_L = L ^ R ^ rand_b;
  86. __m128i blinded_L_read;
  87. struct BlindsCW
  88. {
  89. __m128i blinded_message;
  90. uint8_t blinded_bit;
  91. };
  92. BlindsCW blinds_sent, blinds_recv;
  93. blinds_sent.blinded_bit = blinded_bit;
  94. blinds_sent.blinded_message = blinded_L;
  95. boost::asio::write(sout, boost::asio::buffer(&blinds_sent, sizeof(blinds_sent)));
  96. boost::asio::read(sout, boost::asio::buffer(&blinds_recv, sizeof(blinds_recv)));
  97. blinded_bit_read = blinds_recv.blinded_bit;
  98. blinded_L_read = blinds_recv.blinded_message;
  99. __m128i out_ = R ^ gamma_b;//_mm_setzero_si128;
  100. if(bit)
  101. {
  102. out_ ^= (L ^ R ^ blinded_L_read);
  103. }
  104. if(blinded_bit_read)
  105. {
  106. out_ ^= rand_b;
  107. }
  108. __m128i out_reconstruction;
  109. boost::asio::write(sout, boost::asio::buffer(&out_, sizeof(out_)));
  110. boost::asio::read(sout, boost::asio::buffer(&out_reconstruction, sizeof(out_reconstruction)));
  111. out_reconstruction = out_ ^ out_reconstruction;
  112. CW = out_reconstruction;
  113. // #ifdef DEBUG
  114. // uint8_t bit_reconstruction;
  115. // boost::asio::write(sout, boost::asio::buffer(&bit, sizeof(bit)));
  116. // boost::asio::read(sout, boost::asio::buffer(&bit_reconstruction, sizeof(bit_reconstruction)));
  117. // bit_reconstruction = bit ^ bit_reconstruction;
  118. // __m128i L_reconstruction;
  119. // boost::asio::write(sout, boost::asio::buffer(&L, sizeof(L)));
  120. // boost::asio::read(sout, boost::asio::buffer(&L_reconstruction, sizeof(L_reconstruction)));
  121. // L_reconstruction = L ^ L_reconstruction;
  122. // __m128i R_reconstruction;
  123. // boost::asio::write(sout, boost::asio::buffer(&R, sizeof(R)));
  124. // boost::asio::read(sout, boost::asio::buffer(&R_reconstruction, sizeof(R_reconstruction)));
  125. // R_reconstruction = R ^ R_reconstruction;
  126. // __m128i CW_debug;
  127. // if(bit_reconstruction != 0)
  128. // {
  129. // CW_debug = L_reconstruction;
  130. // }
  131. // else
  132. // {
  133. // CW_debug = R_reconstruction;
  134. // }
  135. // assert(CW_debug[0] == CW[0]);
  136. // assert(CW_debug[1] == CW[1]);
  137. // #endif
  138. }
  139. __m128i bit_mask_avx2_msb(unsigned int n)
  140. {
  141. __m128i ones = _mm_set1_epi32(-1);
  142. __m128i cnst32_128 = _mm_set_epi32(32,64,96,128);
  143. __m128i shift = _mm_set1_epi32(n);
  144. shift = _mm_subs_epu16(cnst32_128,shift);
  145. return _mm_sllv_epi32(ones,shift);
  146. }
  147. __m128i bit_mask_avx2_lsb(unsigned int n)
  148. {
  149. __m128i ones = _mm_set1_epi32(-1);
  150. __m128i cnst32_128 = _mm_set_epi32(128,96,64,32);
  151. __m128i shift = _mm_set1_epi32(n);
  152. shift = _mm_subs_epu16(cnst32_128,shift);
  153. return _mm_srlv_epi32(ones,shift);
  154. }
  155. template<typename node_t, typename prgkey_t>
  156. static inline void traverse(const prgkey_t & prgkey, const node_t & seed, node_t s[2])
  157. {
  158. dpf::PRG(prgkey, clear_lsb(seed, 0b11), s, 2);
  159. } // dpf::expand
  160. inline void evalfull_mpc(const size_t& nodes_per_leaf, const size_t& depth, const size_t& nbits, const size_t& nodes_in_interval,
  161. const AES_KEY& prgkey, uint8_t target_share[64], std::vector<socket_t>& socketsPb,
  162. const size_t from, const size_t to, __m128i * output, int8_t * _t, __m128i& final_correction_word, bool party, size_t socket_no = 0)
  163. {
  164. __m128i root;
  165. arc4random_buf(&root, sizeof(root));
  166. root = set_lsb(root, party);
  167. const size_t from_node = std::floor(static_cast<double>(from) / nodes_per_leaf);
  168. __m128i * s[2] = {
  169. reinterpret_cast<__m128i *>(output) + nodes_in_interval * (nodes_per_leaf - 1),
  170. s[0] + nodes_in_interval / 2
  171. };
  172. int8_t * t[2] = { _t, _t + nodes_in_interval / 2};
  173. int curlayer = depth % 2;
  174. s[curlayer][0] = root;
  175. t[curlayer][0] = get_lsb(root, 0b01);
  176. __m128i * CW = (__m128i *) std::aligned_alloc(sizeof(__m256i), depth * sizeof(__m128i));
  177. for (size_t layer = 0; layer < depth; ++layer)
  178. {
  179. #ifdef VERBOSE
  180. printf("layer = %zu\n", layer);
  181. #endif
  182. curlayer = 1-curlayer;
  183. size_t i=0, j=0;
  184. auto nextbit = (from_node >> (nbits-layer-1)) & 1;
  185. size_t nodes_in_prev_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth-layer)));
  186. size_t nodes_in_cur_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth-layer-1)));
  187. __m128i L = _mm_setzero_si128();
  188. __m128i R = _mm_setzero_si128();
  189. for (i = nextbit, j = nextbit; j < nodes_in_prev_layer-1; ++j, i+=2)
  190. {
  191. traverse(prgkey, s[1-curlayer][j], &s[curlayer][i]);
  192. L ^= s[curlayer][i];
  193. R ^= s[curlayer][i+1];
  194. }
  195. if (nodes_in_prev_layer > j)
  196. {
  197. if (i < nodes_in_cur_layer - 1)
  198. {
  199. traverse(prgkey, s[1-curlayer][j], &s[curlayer][i]);
  200. L ^= s[curlayer][i];
  201. R ^= s[curlayer][i+1];
  202. }
  203. }
  204. compute_CW(party, socketsPb[socket_no], L, R, target_share[layer], CW[layer]);
  205. uint8_t advice_L = get_lsb(L) ^ target_share[layer];
  206. uint8_t advice_R = get_lsb(R) ^ target_share[layer];
  207. uint8_t cwt_L, cwt_R;
  208. uint8_t advice[2];
  209. uint8_t cwts[2];
  210. advice[0] = advice_L;
  211. advice[1] = advice_R;
  212. boost::asio::write(socketsPb[socket_no+1], boost::asio::buffer(&advice, sizeof(advice)));
  213. boost::asio::read(socketsPb[socket_no+1], boost::asio::buffer(&cwts, sizeof(cwts)));
  214. cwt_L = cwts[0];
  215. cwt_R = cwts[1];
  216. cwt_L = cwt_L ^ advice_L ^ 1;
  217. cwt_R = cwt_R ^ advice_R;
  218. for(size_t j = 0; j < nodes_in_prev_layer; ++j)
  219. {
  220. t[curlayer][2*j] = get_lsb(s[curlayer][2*j]) ^ (cwt_L & t[1-curlayer][j]);
  221. s[curlayer][2*j] = clear_lsb(xor_if(s[curlayer][2*j], CW[layer], !t[1-curlayer][j]), 0b11);
  222. t[curlayer][(2*j)+1] = get_lsb(s[curlayer][(2*j)+1]) ^ (cwt_R & t[1-curlayer][j]);
  223. s[curlayer][(2*j)+1] = clear_lsb(xor_if(s[curlayer][(2*j)+1], CW[layer], !t[1-curlayer][j]), 0b11);
  224. }
  225. }
  226. __m128i Gamma = _mm_setzero_si128();
  227. for (size_t i = 0; i < to + 1; ++i)
  228. {
  229. Gamma[0] += output[i][0];
  230. Gamma[1] += output[i][1];
  231. }
  232. if(party)
  233. {
  234. Gamma[0] = -Gamma[0];
  235. Gamma[1] = -Gamma[1];
  236. }
  237. boost::asio::write(socketsPb[socket_no + 3], boost::asio::buffer(&Gamma, sizeof(Gamma)));
  238. boost::asio::read(socketsPb[socket_no + 3], boost::asio::buffer(&final_correction_word, sizeof(final_correction_word)));
  239. final_correction_word = Gamma; // final_correction_word + Gamma;
  240. } // dpf::__evalinterval
  241. void convert_shares(__m128i ** output, int8_t ** flags, size_t n_threads, size_t db_nitems, __m128i * final_correction_word, tcp::socket& sb, bool party)
  242. {
  243. for(size_t j = 0; j < db_nitems; ++j)
  244. {
  245. for(size_t k = 0; k < n_threads; ++k)
  246. {
  247. if(party)
  248. {
  249. output[k][j] = -output[k][j];
  250. flags[k][j] = -flags[k][j];
  251. }
  252. }
  253. //#ifdef DEBUG
  254. int8_t out = flags[0][j];
  255. int8_t out_rec;
  256. boost::asio::write(sb, boost::asio::buffer(&out, sizeof(out)));
  257. boost::asio::read(sb, boost::asio::buffer(&out_rec, sizeof(out_rec)));
  258. out_rec = out_rec + out;
  259. if(out_rec != 0) std::cout << j << "(flags) --> " << (int) out_rec << std::endl << std::endl;
  260. __m128i out2 = output[0][j];
  261. __m128i out_rec2;
  262. boost::asio::write(sb, boost::asio::buffer(&out2, sizeof(out2)));
  263. boost::asio::read(sb, boost::asio::buffer(&out_rec2, sizeof(out_rec2)));
  264. out_rec2 = out_rec2 + out2;
  265. if(out_rec2[0] != 0)std::cout << j << "--> " << out_rec2[0] << std::endl;
  266. //#endif
  267. }
  268. for(size_t i = 0; i < n_threads; ++i)
  269. {
  270. int64_t pm = 0;
  271. int64_t rb;
  272. arc4random_buf(&rb, sizeof(rb));
  273. for(size_t j = 0; j < db_nitems; ++j)
  274. {
  275. if(party)
  276. {
  277. if(flags[i][j] != 0) pm -= 1;
  278. }
  279. if(!party)
  280. {
  281. if(flags[i][j] != 0) pm += 1;//flags[0][j];
  282. }
  283. }
  284. // int64_t rp_prime;
  285. // rb_prime = du_attalah_Pb(rb, pm, s2, sb);
  286. // int64_t FCWshare = du_attalah_Pb(final_correction_word[i][1] + rb_prime, pm, s2, sb);
  287. // int64_t FCWshare_reconstruction;
  288. // boost::asio::write(sb, boost::asio::buffer(&FCWshare, sizeof(FCWshare)));
  289. // boost::asio::read(sb, boost::asio::buffer(&FCWshare_reconstruction, sizeof(FCWshare_reconstruction)));
  290. // FCWshare_reconstruction = FCWshare_reconstruction + FCWshare;
  291. // int64_t PM = pm + rb;
  292. // int64_t PM_recv;
  293. // boost::asio::write(sb, boost::asio::buffer(&PM, sizeof(PM)));
  294. // boost::asio::read(sb, boost::asio::buffer(&PM_recv, sizeof(PM_recv)));
  295. // int64_t * flags_ = (int64_t *)std::aligned_alloc(sizeof(node_t), db_nitems * sizeof(int64_t));
  296. // for(size_t j = 0; j < db_nitems; ++j)
  297. // {
  298. // flags_[j] = (flags[i][j] * pm) + (flags[i][j] * PM_recv) + (flags[i][j] * rb);
  299. // #ifdef DEBUG
  300. // // int64_t flags_rec;
  301. // // boost::asio::write(sb, boost::asio::buffer(&flags_[j], sizeof(flags_[j])));
  302. // // boost::asio::read(sb, boost::asio::buffer(&flags_rec, sizeof(flags_rec)));
  303. // // flags_rec = flags_rec + flags_[j];
  304. // // if(flags_rec != 0) std::cout << "intermediate value = " << flags_rec << std::endl;
  305. // #endif
  306. // }
  307. // for(size_t j = 0; j < db_nitems; ++j)
  308. // {
  309. // flags_[j] += output[i][j][1];
  310. // if(!party)
  311. // {
  312. // if(flags[i][j] != 0) flags_[j] -= FCWshare_reconstruction;//(rb_reconstruction) + rbpm_fcw;
  313. // }
  314. // if(party)
  315. // {
  316. // if(flags[i][j] != 0) flags_[j] += FCWshare_reconstruction;// (rb_reconstruction) + rbpm_fcw;
  317. // }
  318. // #ifdef DEBUG
  319. // int64_t flags_rec;
  320. // boost::asio::write(sb, boost::asio::buffer(&flags_[j], sizeof(flags_[j])));
  321. // boost::asio::read(sb, boost::asio::buffer(&flags_rec, sizeof(flags_rec)));
  322. // flags_rec = flags_rec + flags_[j];
  323. // if(flags_rec != 0)
  324. // {
  325. // printf("flag reconstruction = %ld\n", flags_rec);
  326. // }
  327. // #endif
  328. // }
  329. //std::cout << std::endl << std::endl << " ------------------------------------------------------------------------------------------ " << std::endl << std::endl;
  330. }
  331. }
  332. void accept_conncections_from_Pb(boost::asio::io_context&io_context, std::vector<socket_t>& socketsPb, int port, size_t j)
  333. {
  334. tcp::acceptor acceptor_a(io_context, tcp::endpoint(tcp::v4(), port));
  335. tcp::socket sb_a(acceptor_a.accept());
  336. socketsPb[j] = std::move(sb_a);
  337. }
  338. int main(int argc, char * argv[])
  339. {
  340. boost::asio::io_context io_context;
  341. tcp::resolver resolver(io_context);
  342. std::string addr = "127.0.0.1";
  343. const std::string host1 = (argc < 2) ? "127.0.0.1" : argv[1];
  344. const std::string host2 = (argc < 3) ? "127.0.0.1" : argv[2];
  345. const size_t n_threads = atoi(argv[3]);
  346. const size_t number_of_sockets = 5 * n_threads;
  347. std::vector<socket_t> socketsPb;
  348. for(size_t j = 0; j < number_of_sockets + 1; ++j)
  349. {
  350. tcp::socket emptysocket(io_context);
  351. socketsPb.emplace_back(std::move(emptysocket));
  352. }
  353. socketsPb.reserve(number_of_sockets + 1);
  354. //std::vector<socket_t> socketsP2;
  355. std::vector<int> ports;
  356. for(size_t j = 0; j < number_of_sockets; ++j)
  357. {
  358. int port = 6000;
  359. ports.push_back(port + j);
  360. }
  361. std::vector<int> ports2_0;
  362. for(size_t j = 0; j < number_of_sockets; ++j)
  363. {
  364. int port = 20000;
  365. ports2_0.push_back(port + j);
  366. }
  367. std::vector<int> ports2_1;
  368. for(size_t j = 0; j < number_of_sockets; ++j)
  369. {
  370. int port = 40000;
  371. ports2_1.push_back(port + j);
  372. }
  373. bool party;
  374. #if (PARTY == 0)
  375. party = false;
  376. // for(size_t j = 0; j < number_of_sockets; ++j)
  377. // {
  378. // tcp::socket sb_a(io_context);
  379. // boost::asio::connect(sb_a, resolver.resolve({host2, std::to_string(ports2_0[j])}));
  380. // socketsP2.emplace_back(std::move(sb_a));
  381. // }
  382. for(size_t j = 0; j < number_of_sockets; ++j)
  383. {
  384. tcp::socket sb_a(io_context);
  385. boost::asio::connect(sb_a, resolver.resolve({host1, std::to_string(ports[j])}));
  386. socketsPb[j] = std::move(sb_a);
  387. }
  388. #else
  389. party = true;
  390. for(size_t j = 0; j < number_of_sockets; ++j)
  391. {
  392. // tcp::socket sb_a(io_context);
  393. // boost::asio::connect(sb_a, resolver.resolve({host2, std::to_string(ports2_1[j])}));
  394. // socketsP2.emplace_back(std::move(sb_a));
  395. }
  396. boost::asio::thread_pool pool2(number_of_sockets);
  397. for(size_t j = 0; j < number_of_sockets; ++j)
  398. {
  399. boost::asio::post(pool2, std::bind(accept_conncections_from_Pb, std::ref(io_context), std::ref(socketsPb), ports[j], j));
  400. }
  401. pool2.join();
  402. #endif
  403. const size_t db_nitems = 1ULL << atoi(argv[4]);
  404. const size_t n_writes = atoi(argv[5]);
  405. const size_t n_reads = atoi(argv[6]);
  406. std::cout << "n_reads = " << n_reads << std::endl;
  407. std::cout << "n_writes = " << n_writes << std::endl;
  408. __m128i * final_correction_word = (__m128i *) std::aligned_alloc(sizeof(__m256i), n_threads * sizeof(__m128i));
  409. uint8_t target_share[64];
  410. int** target_share_written = new int*[n_writes];
  411. for(size_t i = 0; i < n_writes; i++)
  412. {
  413. target_share_written[i] = new int[64];
  414. }
  415. int** target_share_read = new int*[n_reads];
  416. for(size_t i = 0; i < n_reads; i++)
  417. {
  418. target_share_read[i] = new int[64];
  419. }
  420. for(size_t j = 0; j < 64; ++j)
  421. {
  422. target_share[j] = rand();
  423. target_share[j] = target_share[j] % 2;
  424. for(size_t i = 0; i < n_writes; ++i)
  425. {
  426. srand(2);
  427. target_share_written[i][j] = rand();
  428. target_share_written[i][j] = target_share_written[i][j] % 2;
  429. }
  430. for(size_t i = 0; i < n_reads; ++i)
  431. {
  432. srand(3);
  433. target_share_read[i][j] = rand();
  434. target_share_read[i][j] = target_share_read[i][j] % 2;
  435. }
  436. }
  437. AES_KEY aeskey;
  438. __m128i ** output = (__m128i ** ) malloc(sizeof(__m128i *) * n_threads);
  439. int8_t ** flags = (int8_t ** ) malloc(sizeof(uint8_t *) * n_threads);
  440. for(size_t j = 0; j < n_threads; ++j)
  441. {
  442. output[j] = (__m128i *)std::aligned_alloc(sizeof(node_t), db_nitems * sizeof(__m128i));
  443. flags[j] = (int8_t *)std::aligned_alloc(sizeof(node_t), db_nitems * sizeof(uint8_t));
  444. }
  445. const size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
  446. const bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
  447. const size_t nodes_per_leaf = is_packed ? 1 : std::ceil(static_cast<double>(bits_per_leaf) / (sizeof(node_t) * CHAR_BIT));
  448. const size_t depth = std::ceil(std::log2(db_nitems));
  449. const size_t nbits = std::ceil(std::log2(db_nitems));
  450. const size_t nodes_in_interval = db_nitems-1;
  451. boost::asio::thread_pool pool(n_threads);
  452. printf("n_threads = %zu\n\n", n_threads);
  453. auto start = std::chrono::steady_clock::now();
  454. for(size_t j = 0; j < n_threads; ++j)
  455. {
  456. boost::asio::post(pool, std::bind(evalfull_mpc, std::ref(nodes_per_leaf), std::ref(depth), std::ref(nbits), std::ref(nodes_in_interval),
  457. std::ref(aeskey), target_share, std::ref(socketsPb), 0, db_nitems-1, output[j],
  458. flags[j], std::ref(final_correction_word[j]), party, 5 * j));
  459. }
  460. pool.join();
  461. auto end = std::chrono::steady_clock::now();
  462. std::chrono::duration<double> elapsed_seconds = end-start;
  463. std::cout << "time to generate and evaluate " << n_threads << " dpfs of size 2^" << atoi(argv[4]) << " is: " << elapsed_seconds.count() << "s\n";
  464. convert_shares(output, flags, n_threads, db_nitems ,final_correction_word, socketsPb[0], party);
  465. if(!party)
  466. {
  467. char const * p0_filename0;
  468. p0_filename0 = "party0_read_flags_b";
  469. int w0 = open( p0_filename0, O_WRONLY | O_CREAT, S_IWRITE | S_IREAD);
  470. int written = write(w0, flags[0], db_nitems * sizeof(flags[0][0]));
  471. if(written<0) {
  472. perror("Write error");
  473. }
  474. close(w0);
  475. }
  476. else
  477. {
  478. char const * p0_filename0;
  479. p0_filename0 = "party1_read_flags_b";
  480. int w0 = open( p0_filename0, O_WRONLY | O_CREAT, S_IWRITE | S_IREAD);
  481. int written = write(w0, flags[0], db_nitems * sizeof(flags[0][0]));
  482. if(written<0) {
  483. perror("Write error");
  484. }
  485. close(w0);
  486. }
  487. return 0;
  488. }