preprocessing.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. #include <type_traits> // std::is_same<>
  2. #include <limits> // std::numeric_limits<>
  3. #include <climits> // CHAR_BIT
  4. #include <cmath> // std::log2, std::ceil, std::floor
  5. #include <stdexcept> // std::runtime_error
  6. #include <array> // std::array<>
  7. #include <iostream> // std::istream and std::ostream
  8. #include <vector> // std::vector<>
  9. #include <memory> // std::shared_ptr<>
  10. #include <utility> // std::move
  11. #include <algorithm> // std::copy
  12. #include <cstring> // std::memcpy
  13. #include <bsd/stdlib.h> // arc4random_buf
  14. #include <x86intrin.h> // SSE and AVX intrinsics
  15. #include <boost/asio/thread_pool.hpp>
  16. size_t communication_cost = 0;
  17. #include "bitutils.h"
  18. #include "block.h"
  19. #include "prg.h"
  20. #include "prg_aes_impl.h"
  21. #include <iostream>
  22. #include <fcntl.h>
  23. #include <cstdlib>
  24. #include "block.h"
  25. #include <chrono>
  26. #include <sys/mman.h>
  27. #include <sys/stat.h>
  28. #include <fcntl.h>
  29. #include <fstream>
  30. #include <future>
  31. #include <boost/asio.hpp>
  32. using boost::asio::ip::tcp;
  33. #include <mutex>
  34. #include <boost/lexical_cast.hpp>
  35. using socket_t = boost::asio::ip::tcp::socket;
  36. typedef unsigned char byte_t;
  37. typedef __m128i node_t;
  38. block<__m128i> seed_for_blinds;
  39. constexpr size_t leaf_size = 1;
  40. typedef __m128i leaf_type;
  41. typedef std::array<leaf_type, leaf_size> leaf_t;
  42. size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
  43. bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
  44. size_t leaves_per_node = is_packed ? sizeof(node_t) * CHAR_BIT / bits_per_leaf : 1;
  45. size_t input_bits(const size_t nitems) {
  46. return std::ceil(std::log2(nitems));
  47. }
  48. leaf_t val;
  49. using namespace dpf;
  50. #include "mpc.h"
  51. void generate_random_targets(uint8_t **target_share_read, size_t n_threads, bool party, size_t expo)
  52. {
  53. for (size_t i = 0; i < n_threads; i++)
  54. {
  55. target_share_read[i] = new uint8_t[64];
  56. }
  57. for (size_t j = 0; j < 64; ++j)
  58. {
  59. for (size_t i = 0; i < n_threads; ++i)
  60. {
  61. uint8_t random_value;
  62. arc4random_buf(&random_value, sizeof(uint8_t));
  63. target_share_read[i][j] = random_value; // rand();
  64. }
  65. }
  66. }
  67. void compute_CW(bool party, tcp::socket &sout, __m128i L, __m128i R, uint8_t bit, __m128i &CW)
  68. {
  69. // struct cw_construction
  70. //{
  71. __m128i rand_b, gamma_b;
  72. uint8_t bit_b;
  73. //};
  74. __m128i *X, *Y;
  75. if (party)
  76. {
  77. std::string qfile = std::string("./gamma1");
  78. int qfd = open(qfile.c_str(), O_RDWR);
  79. X = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  80. PROT_READ, MAP_PRIVATE, qfd, 0);
  81. qfile = std::string("./x1");
  82. qfd = open(qfile.c_str(), O_RDWR);
  83. Y = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  84. PROT_READ, MAP_PRIVATE, qfd, 0);
  85. close(qfd);
  86. munmap(X, 8 * sizeof(__m128i));
  87. munmap(Y, 8 * sizeof(__m128i));
  88. }
  89. if (!party)
  90. {
  91. std::string qfile = std::string("./gamma0");
  92. int qfd = open(qfile.c_str(), O_RDWR);
  93. X = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  94. PROT_READ, MAP_PRIVATE, qfd, 0);
  95. qfile = std::string("./x0");
  96. qfd = open(qfile.c_str(), O_RDWR);
  97. Y = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  98. PROT_READ, MAP_PRIVATE, qfd, 0);
  99. close(qfd);
  100. munmap(X, 8 * sizeof(__m128i));
  101. munmap(Y, 8 * sizeof(__m128i));
  102. }
  103. // cw_construction computecw;
  104. // read(sin, boost::asio::buffer(&computecw, sizeof(computecw)));
  105. // computecw.rand_b;
  106. //__m128i gamma_b = computecw.gamma_b;
  107. if (party)
  108. {
  109. rand_b = Y[0]; //_mm_set_epi32(0x6fef9434, 0x6768121e, 0x20942286, 0x1b59f7a7);
  110. gamma_b = X[0]; // _mm_set_epi32(0x6a499109 , 0x803067dd , 0xd1e2281b , 0xe71b6262);
  111. bit_b = 1; // computecw.bit_b;
  112. }
  113. else
  114. {
  115. rand_b = Y[0]; // _mm_set_epi32(0xb29747df, 0xf7300f6d, 0x9476d971, 0xd5f75d98);
  116. gamma_b = X[0]; // _mm_set_epi32(0xb73142e2 , 0x10687aae , 0x06500d3ec , 0x29b5c85d);
  117. bit_b = 1; // computecw.bit_b;
  118. }
  119. uint8_t blinded_bit, blinded_bit_read;
  120. blinded_bit = bit ^ bit_b;
  121. __m128i blinded_L = L ^ R ^ rand_b;
  122. __m128i blinded_L_read;
  123. struct BlindsCW
  124. {
  125. __m128i blinded_message;
  126. uint8_t blinded_bit;
  127. };
  128. BlindsCW blinds_sent, blinds_recv;
  129. blinds_sent.blinded_bit = blinded_bit;
  130. blinds_sent.blinded_message = blinded_L;
  131. boost::asio::write(sout, boost::asio::buffer(&blinds_sent, sizeof(blinds_sent)));
  132. boost::asio::read(sout, boost::asio::buffer(&blinds_recv, sizeof(blinds_recv)));
  133. communication_cost += sizeof(blinds_recv);
  134. blinded_bit_read = blinds_recv.blinded_bit;
  135. blinded_L_read = blinds_recv.blinded_message;
  136. __m128i out_ = R ^ gamma_b; //_mm_setzero_si128;
  137. if (bit)
  138. {
  139. out_ ^= (L ^ R ^ blinded_L_read);
  140. }
  141. if (blinded_bit_read)
  142. {
  143. out_ ^= rand_b;
  144. }
  145. __m128i out_reconstruction;
  146. boost::asio::write(sout, boost::asio::buffer(&out_, sizeof(out_)));
  147. boost::asio::read(sout, boost::asio::buffer(&out_reconstruction, sizeof(out_reconstruction)));
  148. communication_cost += sizeof(out_reconstruction);
  149. out_reconstruction = out_ ^ out_reconstruction;
  150. CW = out_reconstruction;
  151. #ifdef DEBUG
  152. uint8_t bit_reconstruction;
  153. boost::asio::write(sout, boost::asio::buffer(&bit, sizeof(bit)));
  154. boost::asio::read(sout, boost::asio::buffer(&bit_reconstruction, sizeof(bit_reconstruction)));
  155. bit_reconstruction = bit ^ bit_reconstruction;
  156. __m128i L_reconstruction;
  157. boost::asio::write(sout, boost::asio::buffer(&L, sizeof(L)));
  158. boost::asio::read(sout, boost::asio::buffer(&L_reconstruction, sizeof(L_reconstruction)));
  159. L_reconstruction = L ^ L_reconstruction;
  160. __m128i R_reconstruction;
  161. boost::asio::write(sout, boost::asio::buffer(&R, sizeof(R)));
  162. boost::asio::read(sout, boost::asio::buffer(&R_reconstruction, sizeof(R_reconstruction)));
  163. R_reconstruction = R ^ R_reconstruction;
  164. __m128i CW_debug;
  165. if (bit_reconstruction != 0)
  166. {
  167. CW_debug = L_reconstruction;
  168. }
  169. else
  170. {
  171. CW_debug = R_reconstruction;
  172. }
  173. assert(CW_debug[0] == CW[0]);
  174. assert(CW_debug[1] == CW[1]);
  175. #endif
  176. }
  177. __m128i bit_mask_avx2_msb(unsigned int n)
  178. {
  179. __m128i ones = _mm_set1_epi32(-1);
  180. __m128i cnst32_128 = _mm_set_epi32(32, 64, 96, 128);
  181. __m128i shift = _mm_set1_epi32(n);
  182. shift = _mm_subs_epu16(cnst32_128, shift);
  183. return _mm_sllv_epi32(ones, shift);
  184. }
  185. __m128i bit_mask_avx2_lsb(unsigned int n)
  186. {
  187. __m128i ones = _mm_set1_epi32(-1);
  188. __m128i cnst32_128 = _mm_set_epi32(128, 96, 64, 32);
  189. __m128i shift = _mm_set1_epi32(n);
  190. shift = _mm_subs_epu16(cnst32_128, shift);
  191. return _mm_srlv_epi32(ones, shift);
  192. }
  193. template <typename node_t, typename prgkey_t>
  194. static inline void traverse(const prgkey_t &prgkey, const node_t &seed, node_t s[2])
  195. {
  196. dpf::PRG(prgkey, clear_lsb(seed, 0b11), s, 2);
  197. } // dpf::expand
  198. inline void evalfull_mpc(const size_t &nodes_per_leaf, const size_t &depth, const size_t &nbits, const size_t &nodes_in_interval,
  199. const AES_KEY &prgkey, uint8_t target_share[64], std::vector<socket_t> &socketsPb,
  200. const size_t from, const size_t to, __m128i *output, int8_t *_t, __m128i &final_correction_word, bool party, size_t socket_no = 0)
  201. {
  202. __m128i root;
  203. arc4random_buf(&root, sizeof(root));
  204. root = set_lsb(root, party);
  205. const size_t from_node = std::floor(static_cast<double>(from) / nodes_per_leaf);
  206. __m128i *s[2] = {
  207. reinterpret_cast<__m128i *>(output) + nodes_in_interval * (nodes_per_leaf - 1),
  208. s[0] + nodes_in_interval / 2
  209. };
  210. int8_t *t[2] = {_t, _t + nodes_in_interval / 2};
  211. int curlayer = depth % 2;
  212. s[curlayer][0] = root;
  213. t[curlayer][0] = get_lsb(root, 0b01);
  214. __m128i *CW = (__m128i *)std::aligned_alloc(sizeof(__m256i), depth * sizeof(__m128i));
  215. for (size_t layer = 0; layer < depth; ++layer)
  216. {
  217. #ifdef VERBOSE
  218. printf("layer = %zu\n", layer);
  219. #endif
  220. curlayer = 1 - curlayer;
  221. size_t i = 0, j = 0;
  222. auto nextbit = (from_node >> (nbits - layer - 1)) & 1;
  223. size_t nodes_in_prev_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth - layer)));
  224. size_t nodes_in_cur_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth - layer - 1)));
  225. __m128i L = _mm_setzero_si128();
  226. __m128i R = _mm_setzero_si128();
  227. for (i = nextbit, j = nextbit; j < nodes_in_prev_layer - 1; ++j, i += 2)
  228. {
  229. traverse(prgkey, s[1 - curlayer][j], &s[curlayer][i]);
  230. L ^= s[curlayer][i];
  231. R ^= s[curlayer][i + 1];
  232. }
  233. if (nodes_in_prev_layer > j)
  234. {
  235. if (i < nodes_in_cur_layer - 1)
  236. {
  237. traverse(prgkey, s[1 - curlayer][j], &s[curlayer][i]);
  238. L ^= s[curlayer][i];
  239. R ^= s[curlayer][i + 1];
  240. }
  241. }
  242. compute_CW(party, socketsPb[socket_no], L, R, target_share[layer], CW[layer]);
  243. uint8_t advice_L = get_lsb(L) ^ target_share[layer];
  244. uint8_t advice_R = get_lsb(R) ^ target_share[layer];
  245. uint8_t cwt_L, cwt_R;
  246. uint8_t advice[2];
  247. uint8_t cwts[2];
  248. advice[0] = advice_L;
  249. advice[1] = advice_R;
  250. boost::asio::write(socketsPb[socket_no + 1], boost::asio::buffer(&advice, sizeof(advice)));
  251. boost::asio::read(socketsPb[socket_no + 1], boost::asio::buffer(&cwts, sizeof(cwts)));
  252. cwt_L = cwts[0];
  253. cwt_R = cwts[1];
  254. cwt_L = cwt_L ^ advice_L ^ 1;
  255. cwt_R = cwt_R ^ advice_R;
  256. for (size_t j = 0; j < nodes_in_prev_layer; ++j)
  257. {
  258. t[curlayer][2 * j] = get_lsb(s[curlayer][2 * j]) ^ (cwt_L & t[1 - curlayer][j]);
  259. s[curlayer][2 * j] = clear_lsb(xor_if(s[curlayer][2 * j], CW[layer], !t[1 - curlayer][j]), 0b11);
  260. t[curlayer][(2 * j) + 1] = get_lsb(s[curlayer][(2 * j) + 1]) ^ (cwt_R & t[1 - curlayer][j]);
  261. s[curlayer][(2 * j) + 1] = clear_lsb(xor_if(s[curlayer][(2 * j) + 1], CW[layer], !t[1 - curlayer][j]), 0b11);
  262. }
  263. }
  264. free(CW);
  265. __m128i Gamma = _mm_setzero_si128();
  266. for (size_t i = 0; i < to + 1; ++i)
  267. {
  268. Gamma[0] += output[i][0];
  269. Gamma[1] += output[i][1];
  270. }
  271. if (party)
  272. {
  273. Gamma[0] = -Gamma[0];
  274. Gamma[1] = -Gamma[1];
  275. }
  276. boost::asio::write(socketsPb[socket_no + 3], boost::asio::buffer(&Gamma, sizeof(Gamma)));
  277. boost::asio::read(socketsPb[socket_no + 3], boost::asio::buffer(&final_correction_word, sizeof(final_correction_word)));
  278. communication_cost += sizeof(Gamma);
  279. final_correction_word = Gamma; // final_correction_word + Gamma;
  280. } // dpf::__evalinterval
  281. void convert_shares(__m128i **output, int8_t **flags, size_t n_threads, size_t db_nitems, __m128i *final_correction_word, tcp::socket &sb, bool party)
  282. {
  283. for (size_t j = 0; j < db_nitems; ++j)
  284. {
  285. for (size_t k = 0; k < n_threads; ++k)
  286. {
  287. if (party)
  288. {
  289. output[k][j] = -output[k][j];
  290. flags[k][j] = -flags[k][j];
  291. }
  292. }
  293. #ifdef DEBUG
  294. int8_t out = flags[0][j];
  295. int8_t out_rec;
  296. boost::asio::write(sb, boost::asio::buffer(&out, sizeof(out)));
  297. boost::asio::read(sb, boost::asio::buffer(&out_rec, sizeof(out_rec)));
  298. out_rec = out_rec + out;
  299. if (out_rec != 0)
  300. std::cout << j << "(flags) --> " << (int)out_rec << std::endl
  301. << std::endl;
  302. __m128i out2 = output[0][j];
  303. __m128i out_rec2;
  304. boost::asio::write(sb, boost::asio::buffer(&out2, sizeof(out2)));
  305. boost::asio::read(sb, boost::asio::buffer(&out_rec2, sizeof(out_rec2)));
  306. out_rec2 = out_rec2 + out2;
  307. if (out_rec2[0] != 0)
  308. std::cout << j << "--> " << out_rec2[0] << std::endl;
  309. #endif
  310. }
  311. for (size_t i = 0; i < n_threads; ++i)
  312. {
  313. int64_t pm = 0;
  314. int64_t rb;
  315. arc4random_buf(&rb, sizeof(rb));
  316. for (size_t j = 0; j < db_nitems; ++j)
  317. {
  318. if (party)
  319. {
  320. if (flags[i][j] != 0)
  321. pm -= 1;
  322. }
  323. if (!party)
  324. {
  325. if (flags[i][j] != 0)
  326. pm += 1; // flags[0][j];
  327. }
  328. }
  329. }
  330. }
  331. void accept_conncections_from_Pb(boost::asio::io_context &io_context, std::vector<socket_t> &socketsPb, int port, size_t j)
  332. {
  333. tcp::acceptor acceptor_a(io_context, tcp::endpoint(tcp::v4(), port));
  334. tcp::socket sb_a(acceptor_a.accept());
  335. socketsPb[j] = std::move(sb_a);
  336. }
  337. int main(int argc, char *argv[])
  338. {
  339. boost::asio::io_context io_context;
  340. tcp::resolver resolver(io_context);
  341. const std::string host1 = argv[1];
  342. const size_t n_threads = atoi(argv[2]);
  343. const size_t number_of_sockets = 5 * n_threads;
  344. const size_t expo = atoi(argv[3]);
  345. const size_t maxRAM = atoi(argv[4]);
  346. const size_t db_nitems = 1ULL << expo;
  347. size_t RAM_needed_per_thread = 164 * db_nitems;
  348. std::cout << "RAM needed = " << n_threads*RAM_needed_per_thread << " bytes = " << n_threads*RAM_needed_per_thread/1073741824 << " GiB" << std::endl;
  349. std::cout << "RAM needed per thread = " << RAM_needed_per_thread << " bytes = " << (RAM_needed_per_thread>>30) << " GiB" << std::endl;
  350. size_t thread_per_batch = std::floor(double(maxRAM<<30)/RAM_needed_per_thread);
  351. if (thread_per_batch > n_threads) {
  352. thread_per_batch = n_threads;
  353. }
  354. std::cout << "thread_per_batch = " << thread_per_batch << std::endl;
  355. if (thread_per_batch < 1) {
  356. std::cout << "You need more RAM" << std::endl;
  357. exit(0);
  358. }
  359. size_t n_batches = std::ceil(double(n_threads)/thread_per_batch);
  360. std::cout << "n_batches = " << n_batches << std::endl;
  361. std::vector<socket_t> socketsPb;
  362. for (size_t j = 0; j < number_of_sockets + 1; ++j)
  363. {
  364. tcp::socket emptysocket(io_context);
  365. socketsPb.emplace_back(std::move(emptysocket));
  366. }
  367. socketsPb.reserve(number_of_sockets + 1);
  368. std::vector<int> ports;
  369. for (size_t j = 0; j < number_of_sockets; ++j)
  370. {
  371. int port = 6000;
  372. ports.push_back(port + j);
  373. }
  374. std::vector<int> ports2_0;
  375. for (size_t j = 0; j < number_of_sockets; ++j)
  376. {
  377. int port = 20000;
  378. ports2_0.push_back(port + j);
  379. }
  380. std::vector<int> ports2_1;
  381. for (size_t j = 0; j < number_of_sockets; ++j)
  382. {
  383. int port = 40000;
  384. ports2_1.push_back(port + j);
  385. }
  386. bool party;
  387. #if (PARTY == 0)
  388. party = false;
  389. for (size_t j = 0; j < number_of_sockets; ++j)
  390. {
  391. tcp::socket sb_a(io_context);
  392. boost::asio::connect(sb_a, resolver.resolve({host1, std::to_string(ports[j])}));
  393. socketsPb[j] = std::move(sb_a);
  394. }
  395. #else
  396. party = true;
  397. boost::asio::thread_pool pool2(number_of_sockets);
  398. for (size_t j = 0; j < number_of_sockets; ++j)
  399. {
  400. boost::asio::post(pool2, std::bind(accept_conncections_from_Pb, std::ref(io_context), std::ref(socketsPb), ports[j], j));
  401. }
  402. pool2.join();
  403. #endif
  404. __m128i *final_correction_word = (__m128i *)std::aligned_alloc(sizeof(__m256i), thread_per_batch * sizeof(__m128i));
  405. AES_KEY aeskey;
  406. __m128i **output = (__m128i **)malloc(sizeof(__m128i *) * thread_per_batch);
  407. int8_t **flags = (int8_t **)malloc(sizeof(uint8_t *) * thread_per_batch);
  408. for (size_t j = 0; j < thread_per_batch; ++j)
  409. {
  410. output[j] = (__m128i *)std::aligned_alloc(sizeof(node_t), db_nitems * sizeof(__m128i));
  411. flags[j] = (int8_t *)std::aligned_alloc(sizeof(node_t), db_nitems * sizeof(uint8_t));
  412. }
  413. const size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
  414. const bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
  415. const size_t nodes_per_leaf = is_packed ? 1 : std::ceil(static_cast<double>(bits_per_leaf) / (sizeof(node_t) * CHAR_BIT));
  416. const size_t depth = std::ceil(std::log2(db_nitems));
  417. const size_t nbits = std::ceil(std::log2(db_nitems));
  418. const size_t nodes_in_interval = db_nitems - 1;
  419. auto start = std::chrono::steady_clock::now();
  420. #ifdef VERBOSE
  421. printf("n_threads = %zu\n\n", n_threads);
  422. #endif
  423. for(size_t iters = 0; iters < n_batches; ++iters)
  424. {
  425. if (n_batches > 1) {
  426. printf("Starting evalfull_mpc batch %lu / %lu\n", iters+1, n_batches);
  427. }
  428. uint8_t **target_share_read = new uint8_t *[thread_per_batch];
  429. generate_random_targets(target_share_read, thread_per_batch, party, expo);
  430. boost::asio::thread_pool pool(thread_per_batch);
  431. for (size_t j = 0; j < thread_per_batch; ++j)
  432. {
  433. boost::asio::post(pool, std::bind(evalfull_mpc, std::ref(nodes_per_leaf), std::ref(depth), std::ref(nbits), std::ref(nodes_in_interval),
  434. std::ref(aeskey), target_share_read[j], std::ref(socketsPb), 0, db_nitems - 1, output[j],
  435. flags[j], std::ref(final_correction_word[j]), party, 5 * j));
  436. }
  437. pool.join();
  438. for(size_t j = 0; j < thread_per_batch; ++j)
  439. {
  440. delete[] target_share_read[j];
  441. }
  442. delete[] target_share_read;
  443. convert_shares(output, flags, thread_per_batch, db_nitems, final_correction_word, socketsPb[0], party);
  444. }
  445. for(size_t j = 0; j < thread_per_batch; ++j)
  446. {
  447. free(output[j]);
  448. free(flags[j]);
  449. }
  450. free(output);
  451. free(flags);
  452. free(final_correction_word);
  453. auto end = std::chrono::steady_clock::now();
  454. std::chrono::duration<double> elapsed_seconds = end - start;
  455. std::cout << "WallClockTime: " << elapsed_seconds.count() << " s" << std::endl;
  456. std::cout << "CommunicationCost: " << communication_cost << " bytes" << std::endl;
  457. return 0;
  458. }