|  | @@ -0,0 +1,1766 @@
 | 
	
		
			
				|  |  | +#include "ptwist.h"
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* 32-bit version of ptwist168.c by Ian Goldberg. Based on: */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* crypto/ec/ecp_nistp224.c */
 | 
	
		
			
				|  |  | +/*
 | 
	
		
			
				|  |  | + * Written by Emilia Kasper (Google) for the OpenSSL project.
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +/* ====================================================================
 | 
	
		
			
				|  |  | + * Copyright (c) 2000-2010 The OpenSSL Project.  All rights reserved.
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * Redistribution and use in source and binary forms, with or without
 | 
	
		
			
				|  |  | + * modification, are permitted provided that the following conditions
 | 
	
		
			
				|  |  | + * are met:
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * 1. Redistributions of source code must retain the above copyright
 | 
	
		
			
				|  |  | + *    notice, this list of conditions and the following disclaimer.
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * 2. Redistributions in binary form must reproduce the above copyright
 | 
	
		
			
				|  |  | + *    notice, this list of conditions and the following disclaimer in
 | 
	
		
			
				|  |  | + *    the documentation and/or other materials provided with the
 | 
	
		
			
				|  |  | + *    distribution.
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * 3. All advertising materials mentioning features or use of this
 | 
	
		
			
				|  |  | + *    software must display the following acknowledgment:
 | 
	
		
			
				|  |  | + *    "This product includes software developed by the OpenSSL Project
 | 
	
		
			
				|  |  | + *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 | 
	
		
			
				|  |  | + *    endorse or promote products derived from this software without
 | 
	
		
			
				|  |  | + *    prior written permission. For written permission, please contact
 | 
	
		
			
				|  |  | + *    licensing@OpenSSL.org.
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * 5. Products derived from this software may not be called "OpenSSL"
 | 
	
		
			
				|  |  | + *    nor may "OpenSSL" appear in their names without prior written
 | 
	
		
			
				|  |  | + *    permission of the OpenSSL Project.
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * 6. Redistributions of any form whatsoever must retain the following
 | 
	
		
			
				|  |  | + *    acknowledgment:
 | 
	
		
			
				|  |  | + *    "This product includes software developed by the OpenSSL Project
 | 
	
		
			
				|  |  | + *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 | 
	
		
			
				|  |  | + * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
	
		
			
				|  |  | + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | 
	
		
			
				|  |  | + * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 | 
	
		
			
				|  |  | + * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
	
		
			
				|  |  | + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 | 
	
		
			
				|  |  | + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
	
		
			
				|  |  | + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
	
		
			
				|  |  | + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 | 
	
		
			
				|  |  | + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
	
		
			
				|  |  | + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 | 
	
		
			
				|  |  | + * OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
	
		
			
				|  |  | + * ====================================================================
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * This product includes cryptographic software written by Eric Young
 | 
	
		
			
				|  |  | + * (eay@cryptsoft.com).  This product includes software written by Tim
 | 
	
		
			
				|  |  | + * Hudson (tjh@cryptsoft.com).
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/*
 | 
	
		
			
				|  |  | + * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
 | 
	
		
			
				|  |  | + * and Adam Langley's public domain 64-bit C implementation of curve25519
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +#include <stdint.h>
 | 
	
		
			
				|  |  | +#include <string.h>
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +typedef uint8_t u8;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/******************************************************************************/
 | 
	
		
			
				|  |  | +/*		    INTERNAL REPRESENTATION OF FIELD ELEMENTS
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * Field elements are represented as sum_{i=0}^{6} 2^{24*i}*a_i
 | 
	
		
			
				|  |  | + * where each slice a_i is a 32-bit word, i.e., a field element is an fslice
 | 
	
		
			
				|  |  | + * array a with 7 elements, where a[i] = a_i.
 | 
	
		
			
				|  |  | + * Outputs from multiplications are represented as unreduced polynomials
 | 
	
		
			
				|  |  | + * sum_{i=0}^{12} 2^{24*i}*b_i
 | 
	
		
			
				|  |  | + * where each b_i is a 64-bit word. We ensure that inputs to each field
 | 
	
		
			
				|  |  | + * multiplication satisfy a_i < 2^30, so outputs satisfy b_i < 4*2^30*2^30,
 | 
	
		
			
				|  |  | + * and fit into a 128-bit word without overflow. The coefficients are then
 | 
	
		
			
				|  |  | + * again partially reduced to a_i < 2^25. We only reduce to the unique
 | 
	
		
			
				|  |  | + * minimal representation at the end of the computation.
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +typedef uint32_t fslice;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +typedef fslice coord[7];
 | 
	
		
			
				|  |  | +typedef coord point[3];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include <stdio.h>
 | 
	
		
			
				|  |  | +#include <stdlib.h>
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void dump_coord(const char *label, const coord c)
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    if (label) fprintf(stderr, "%s: ", label);
 | 
	
		
			
				|  |  | +    printf("%016lx %016lx %016lx %016lx %016lx %016lx %016lx\n",
 | 
	
		
			
				|  |  | +	c[6], c[5], c[4], c[3], c[2], c[1], c[0]);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void dump_point(const char *label, point p)
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    if (label) fprintf(stderr, "%s:\n", label);
 | 
	
		
			
				|  |  | +    dump_coord(" x", p[0]);
 | 
	
		
			
				|  |  | +    dump_coord(" y", p[1]);
 | 
	
		
			
				|  |  | +    dump_coord(" z", p[2]);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Field element represented as a byte arrary.
 | 
	
		
			
				|  |  | + * 21*8 = 168 bits is also the group order size for the elliptic curve.  */
 | 
	
		
			
				|  |  | +typedef u8 felem_bytearray[21];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static const felem_bytearray ptwist168_curve_params[5] = {
 | 
	
		
			
				|  |  | +	{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* p */
 | 
	
		
			
				|  |  | +	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
 | 
	
		
			
				|  |  | +	 0xFF},
 | 
	
		
			
				|  |  | +	{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* a */
 | 
	
		
			
				|  |  | +	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFE,
 | 
	
		
			
				|  |  | +	 0xFC},
 | 
	
		
			
				|  |  | +	{0x4E,0x35,0x5E,0x95,0xCA,0xFE,0xDD,0x48,0x6E,0xBC,    /* b */
 | 
	
		
			
				|  |  | +	 0x69,0xBA,0xD3,0x16,0x46,0xD3,0x20,0xE0,0x1D,0xC7,
 | 
	
		
			
				|  |  | +	 0xD6},
 | 
	
		
			
				|  |  | +	{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,    /* x */
 | 
	
		
			
				|  |  | +	 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 | 
	
		
			
				|  |  | +	 0x02},
 | 
	
		
			
				|  |  | +	{0xEA,0x67,0x47,0xB7,0x5A,0xF8,0xC7,0xF9,0x3C,0x1F,    /* y */
 | 
	
		
			
				|  |  | +	 0x5E,0x6D,0x32,0x0F,0x88,0xB9,0xBE,0x15,0x66,0xD2,
 | 
	
		
			
				|  |  | +	 0xF2}
 | 
	
		
			
				|  |  | +};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Helper functions to convert field elements to/from internal representation */
 | 
	
		
			
				|  |  | +static void bin21_to_felem(fslice out[7], const u8 in[21])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	out[0] = *((const uint32_t *)(in)) & 0x00ffffff;
 | 
	
		
			
				|  |  | +	out[1] = (*((const uint32_t *)(in+3))) & 0x00ffffff;
 | 
	
		
			
				|  |  | +	out[2] = (*((const uint32_t *)(in+6))) & 0x00ffffff;
 | 
	
		
			
				|  |  | +	out[3] = (*((const uint32_t *)(in+9))) & 0x00ffffff;
 | 
	
		
			
				|  |  | +	out[4] = (*((const uint32_t *)(in+12))) & 0x00ffffff;
 | 
	
		
			
				|  |  | +	out[5] = (*((const uint32_t *)(in+15))) & 0x00ffffff;
 | 
	
		
			
				|  |  | +	out[6] = (*((const uint32_t *)(in+18))) & 0x00ffffff;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void felem_to_bin21(u8 out[21], const fslice in[7])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	unsigned i;
 | 
	
		
			
				|  |  | +	for (i = 0; i < 3; ++i)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		out[i]	  = in[0]>>(8*i);
 | 
	
		
			
				|  |  | +		out[i+3]  = in[1]>>(8*i);
 | 
	
		
			
				|  |  | +		out[i+6] = in[2]>>(8*i);
 | 
	
		
			
				|  |  | +		out[i+9] = in[3]>>(8*i);
 | 
	
		
			
				|  |  | +		out[i+12] = in[4]>>(8*i);
 | 
	
		
			
				|  |  | +		out[i+15] = in[5]>>(8*i);
 | 
	
		
			
				|  |  | +		out[i+18] = in[6]>>(8*i);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#if 0
 | 
	
		
			
				|  |  | +/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
 | 
	
		
			
				|  |  | +static void flip_endian(u8 *out, const u8 *in, unsigned len)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	unsigned i;
 | 
	
		
			
				|  |  | +	for (i = 0; i < len; ++i)
 | 
	
		
			
				|  |  | +		out[i] = in[len-1-i];
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +#endif
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/******************************************************************************/
 | 
	
		
			
				|  |  | +/*				FIELD OPERATIONS
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * Field operations, using the internal representation of field elements.
 | 
	
		
			
				|  |  | + * NB! These operations are specific to our point multiplication and cannot be
 | 
	
		
			
				|  |  | + * expected to be correct in general - e.g., multiplication with a large scalar
 | 
	
		
			
				|  |  | + * will cause an overflow.
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Sum two field elements: out += in */
 | 
	
		
			
				|  |  | +static void felem_sum64(fslice out[7], const fslice in[7])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	out[0] += in[0];
 | 
	
		
			
				|  |  | +	out[1] += in[1];
 | 
	
		
			
				|  |  | +	out[2] += in[2];
 | 
	
		
			
				|  |  | +	out[3] += in[3];
 | 
	
		
			
				|  |  | +	out[4] += in[4];
 | 
	
		
			
				|  |  | +	out[5] += in[5];
 | 
	
		
			
				|  |  | +	out[6] += in[6];
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Subtract field elements: out -= in */
 | 
	
		
			
				|  |  | +/* Assumes in[i] < 2^25 */
 | 
	
		
			
				|  |  | +static void felem_diff64(fslice out[7], const fslice in[7])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	/* a = 3*2^24 - 3 */
 | 
	
		
			
				|  |  | +	/* b = 3*2^24 - 3*257 */
 | 
	
		
			
				|  |  | +	static const uint32_t a = (((uint32_t) 3) << 24) - ((uint32_t) 3);
 | 
	
		
			
				|  |  | +	static const uint32_t b = (((uint32_t) 3) << 24) - ((uint32_t) 771);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Add 0 mod 2^168-2^8-1 to ensure out > in at each element */
 | 
	
		
			
				|  |  | +	out[0] += b;
 | 
	
		
			
				|  |  | +	out[1] += a;
 | 
	
		
			
				|  |  | +	out[2] += a;
 | 
	
		
			
				|  |  | +	out[3] += a;
 | 
	
		
			
				|  |  | +	out[4] += a;
 | 
	
		
			
				|  |  | +	out[5] += a;
 | 
	
		
			
				|  |  | +	out[6] += a;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	out[0] -= in[0];
 | 
	
		
			
				|  |  | +	out[1] -= in[1];
 | 
	
		
			
				|  |  | +	out[2] -= in[2];
 | 
	
		
			
				|  |  | +	out[3] -= in[3];
 | 
	
		
			
				|  |  | +	out[4] -= in[4];
 | 
	
		
			
				|  |  | +	out[5] -= in[5];
 | 
	
		
			
				|  |  | +	out[6] -= in[6];
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Subtract in unreduced 64-bit mode: out64 -= in64 */
 | 
	
		
			
				|  |  | +/* Assumes in[i] < 2^55 */
 | 
	
		
			
				|  |  | +static void felem_diff128(uint64_t out[13], const uint64_t in[13])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	/* a = 3*2^54
 | 
	
		
			
				|  |  | +	   b = 3*2^54 - 49536
 | 
	
		
			
				|  |  | +	   c = 3*2^54 - 49344
 | 
	
		
			
				|  |  | +	   d = 3*2^54 - 12730752
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	   a*2^{288..168} + b*2^{144..48} + c*2^24 + d = 0 mod p
 | 
	
		
			
				|  |  | +	*/
 | 
	
		
			
				|  |  | +	static const uint64_t a = (((uint64_t)3) << 54);
 | 
	
		
			
				|  |  | +	static const uint64_t b = (((uint64_t)3) << 54) - ((uint64_t) 49536);
 | 
	
		
			
				|  |  | +	static const uint64_t c = (((uint64_t)3) << 54) - ((uint64_t) 49344);
 | 
	
		
			
				|  |  | +	static const uint64_t d = (((uint64_t)3) << 54) - ((uint64_t) 12730752);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Add 0 mod 2^168-2^8-1 to ensure out > in */
 | 
	
		
			
				|  |  | +	out[0] += d;
 | 
	
		
			
				|  |  | +	out[1] += c;
 | 
	
		
			
				|  |  | +	out[2] += b;
 | 
	
		
			
				|  |  | +	out[3] += b;
 | 
	
		
			
				|  |  | +	out[4] += b;
 | 
	
		
			
				|  |  | +	out[5] += b;
 | 
	
		
			
				|  |  | +	out[6] += b;
 | 
	
		
			
				|  |  | +	out[7] += a;
 | 
	
		
			
				|  |  | +	out[8] += a;
 | 
	
		
			
				|  |  | +	out[9] += a;
 | 
	
		
			
				|  |  | +	out[10] += a;
 | 
	
		
			
				|  |  | +	out[11] += a;
 | 
	
		
			
				|  |  | +	out[12] += a;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	out[0] -= in[0];
 | 
	
		
			
				|  |  | +	out[1] -= in[1];
 | 
	
		
			
				|  |  | +	out[2] -= in[2];
 | 
	
		
			
				|  |  | +	out[3] -= in[3];
 | 
	
		
			
				|  |  | +	out[4] -= in[4];
 | 
	
		
			
				|  |  | +	out[5] -= in[5];
 | 
	
		
			
				|  |  | +	out[6] -= in[6];
 | 
	
		
			
				|  |  | +	out[7] -= in[7];
 | 
	
		
			
				|  |  | +	out[8] -= in[8];
 | 
	
		
			
				|  |  | +	out[9] -= in[9];
 | 
	
		
			
				|  |  | +	out[10] -= in[10];
 | 
	
		
			
				|  |  | +	out[11] -= in[11];
 | 
	
		
			
				|  |  | +	out[12] -= in[12];
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Subtract in mixed mode: out64 -= in32 */
 | 
	
		
			
				|  |  | +/* in[i] < 2^31 */
 | 
	
		
			
				|  |  | +static void felem_diff_128_64(uint64_t out[13], const fslice in[7])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	/* a = 3*2^30 - 192
 | 
	
		
			
				|  |  | +	   b = 3*2^30 - 49344
 | 
	
		
			
				|  |  | +	   a*2^{144..24} + b = 0 mod p
 | 
	
		
			
				|  |  | +	*/
 | 
	
		
			
				|  |  | +	static const uint64_t a = (((uint64_t) 3) << 30) - ((uint64_t) 192);
 | 
	
		
			
				|  |  | +	static const uint64_t b = (((uint64_t) 3) << 30) - ((uint64_t) 49344);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Add 0 mod 2^168-2^8-1 to ensure out > in */
 | 
	
		
			
				|  |  | +	out[0] += b;
 | 
	
		
			
				|  |  | +	out[1] += a;
 | 
	
		
			
				|  |  | +	out[2] += a;
 | 
	
		
			
				|  |  | +	out[3] += a;
 | 
	
		
			
				|  |  | +	out[4] += a;
 | 
	
		
			
				|  |  | +	out[5] += a;
 | 
	
		
			
				|  |  | +	out[6] += a;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	out[0] -= in[0];
 | 
	
		
			
				|  |  | +	out[1] -= in[1];
 | 
	
		
			
				|  |  | +	out[2] -= in[2];
 | 
	
		
			
				|  |  | +	out[3] -= in[3];
 | 
	
		
			
				|  |  | +	out[4] -= in[4];
 | 
	
		
			
				|  |  | +	out[5] -= in[5];
 | 
	
		
			
				|  |  | +	out[6] -= in[6];
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Multiply a field element by a scalar: out64 = out64 * scalar
 | 
	
		
			
				|  |  | + * The scalars we actually use are small, so results fit without overflow */
 | 
	
		
			
				|  |  | +static void felem_scalar64(fslice out[7], const fslice scalar)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	out[0] *= scalar;
 | 
	
		
			
				|  |  | +	out[1] *= scalar;
 | 
	
		
			
				|  |  | +	out[2] *= scalar;
 | 
	
		
			
				|  |  | +	out[3] *= scalar;
 | 
	
		
			
				|  |  | +	out[4] *= scalar;
 | 
	
		
			
				|  |  | +	out[5] *= scalar;
 | 
	
		
			
				|  |  | +	out[6] *= scalar;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Multiply an unreduced field element by a scalar: out128 = out128 * scalar
 | 
	
		
			
				|  |  | + * The scalars we actually use are small, so results fit without overflow */
 | 
	
		
			
				|  |  | +static void felem_scalar128(uint64_t out[13], const uint128_t scalar)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	out[0] *= scalar;
 | 
	
		
			
				|  |  | +	out[1] *= scalar;
 | 
	
		
			
				|  |  | +	out[2] *= scalar;
 | 
	
		
			
				|  |  | +	out[3] *= scalar;
 | 
	
		
			
				|  |  | +	out[4] *= scalar;
 | 
	
		
			
				|  |  | +	out[5] *= scalar;
 | 
	
		
			
				|  |  | +	out[6] *= scalar;
 | 
	
		
			
				|  |  | +	out[7] *= scalar;
 | 
	
		
			
				|  |  | +	out[8] *= scalar;
 | 
	
		
			
				|  |  | +	out[9] *= scalar;
 | 
	
		
			
				|  |  | +	out[10] *= scalar;
 | 
	
		
			
				|  |  | +	out[11] *= scalar;
 | 
	
		
			
				|  |  | +	out[12] *= scalar;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Square a field element: out = in^2 */
 | 
	
		
			
				|  |  | +static void felem_square(uint64_t out[13], const fslice in[7])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	out[0] = ((uint64_t) in[0]) * in[0];
 | 
	
		
			
				|  |  | +	out[1] = ((uint64_t) in[0]) * in[1] * 2;
 | 
	
		
			
				|  |  | +	out[2] = ((uint64_t) in[0]) * in[2] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[1]) * in[1];
 | 
	
		
			
				|  |  | +	out[3] = ((uint64_t) in[1]) * in[2] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[3]) * in[0] * 2;
 | 
	
		
			
				|  |  | +	out[4] = ((uint64_t) in[2]) * in[2] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[3]) * in[1] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[4]) * in[0] * 2;
 | 
	
		
			
				|  |  | +	out[5] = ((uint64_t) in[3]) * in[2] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[4]) * in[1] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[5]) * in[0] * 2;
 | 
	
		
			
				|  |  | +	out[6] = ((uint64_t) in[3]) * in[3] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[4]) * in[2] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[5]) * in[1] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[6]) * in[0] * 2;
 | 
	
		
			
				|  |  | +	out[7] = ((uint64_t) in[4]) * in[3] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[5]) * in[2] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[6]) * in[1] * 2;
 | 
	
		
			
				|  |  | +	out[8] = ((uint64_t) in[4]) * in[4] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[5]) * in[3] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[6]) * in[2] * 2;
 | 
	
		
			
				|  |  | +	out[9] = ((uint64_t) in[5]) * in[4] * 2 +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[6]) * in[3] * 2;
 | 
	
		
			
				|  |  | +	out[10] = ((uint64_t) in[5]) * in[5] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in[6]) * in[4] * 2;
 | 
	
		
			
				|  |  | +	out[11] = ((uint64_t) in[6]) * in[5] * 2;
 | 
	
		
			
				|  |  | +	out[12] = ((uint64_t) in[6]) * in[6];
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Multiply two field elements: out = in1 * in2 */
 | 
	
		
			
				|  |  | +static void felem_mul(uint64 out[13], const fslice in1[7], const fslice in2[7])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	out[0] = ((uint64_t) in1[0]) * in2[0];
 | 
	
		
			
				|  |  | +	out[1] = ((uint64_t) in1[0]) * in2[1] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[1]) * in2[0];
 | 
	
		
			
				|  |  | +	out[2] = ((uint64_t) in1[0]) * in2[2] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[1]) * in2[1] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[2]) * in2[0];
 | 
	
		
			
				|  |  | +	out[3] = ((uint64_t) in1[0]) * in2[3] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[1]) * in2[2] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[2]) * in2[1] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[3]) * in2[0];
 | 
	
		
			
				|  |  | +	out[4] = ((uint64_t) in1[0]) * in2[4] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[1]) * in2[3] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[2]) * in2[2] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[3]) * in2[1] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[4]) * in2[0];
 | 
	
		
			
				|  |  | +	out[5] = ((uint64_t) in1[0]) * in2[5] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[1]) * in2[4] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[2]) * in2[3] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[3]) * in2[2] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[4]) * in2[1] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[5]) * in2[0];
 | 
	
		
			
				|  |  | +	out[6] = ((uint64_t) in1[0]) * in2[6] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[1]) * in2[5] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[2]) * in2[4] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[3]) * in2[3] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[4]) * in2[2] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[5]) * in2[1] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[6]) * in2[0];
 | 
	
		
			
				|  |  | +	out[7] = ((uint64_t) in1[1]) * in2[6] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[2]) * in2[5] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[3]) * in2[4] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[4]) * in2[3] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[5]) * in2[2] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[6]) * in2[1];
 | 
	
		
			
				|  |  | +	out[8] = ((uint64_t) in1[2]) * in2[6] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[3]) * in2[5] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[4]) * in2[4] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[5]) * in2[3] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[6]) * in2[2];
 | 
	
		
			
				|  |  | +	out[9] = ((uint64_t) in1[3]) * in2[6] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[4]) * in2[5] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[5]) * in2[4] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[6]) * in2[3];
 | 
	
		
			
				|  |  | +	out[10] = ((uint64_t) in1[4]) * in2[6] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[5]) * in2[5] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[6]) * in2[4];
 | 
	
		
			
				|  |  | +	out[11] = ((uint64_t) in1[5]) * in2[6] +
 | 
	
		
			
				|  |  | +		 ((uint64_t) in1[6]) * in2[5];
 | 
	
		
			
				|  |  | +	out[12] = ((uint64_t) in1[6]) * in2[6];
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#define M257(x) (((x)<<8)+(x))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* XXX: here */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Reduce 128-bit coefficients to 64-bit coefficients. Requires in[i] < 2^126,
 | 
	
		
			
				|  |  | + * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^57 */
 | 
	
		
			
				|  |  | +static void felem_reduce(fslice out[7], const uint64_t in[13])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	static const uint64_t two24m1 = (((uint64_t) 1)<<24) -
 | 
	
		
			
				|  |  | +		((uint64_t)1);
 | 
	
		
			
				|  |  | +	uint64_t output[7];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	output[0] = in[0];  /* < 2^126 */
 | 
	
		
			
				|  |  | +	output[1] = in[1];  /* < 2^126 */
 | 
	
		
			
				|  |  | +	output[2] = in[2];  /* < 2^126 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Eliminate in[3], in[4] */
 | 
	
		
			
				|  |  | +	output[2] += M257(in[4] >> 56);       /* < 2^126 + 2^79 */
 | 
	
		
			
				|  |  | +	output[1] += M257(in[4] & two56m1);   /* < 2^126 + 2^65 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	output[1] += M257(in[3] >> 56);       /* < 2^126 + 2^65 + 2^79 */
 | 
	
		
			
				|  |  | +	output[0] += M257(in[3] & two56m1);   /* < 2^126 + 2^65 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Eliminate the top part of output[2] */
 | 
	
		
			
				|  |  | +	output[0] += M257(output[2] >> 56);   /* < 2^126 + 2^65 + 2^79 */
 | 
	
		
			
				|  |  | +	output[2] &= two56m1;                 /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Carry 0 -> 1 -> 2 */
 | 
	
		
			
				|  |  | +	output[1] += output[0] >> 56;         /* < 2^126 + 2^71 */
 | 
	
		
			
				|  |  | +	output[0] &= two56m1;                 /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	output[2] += output[1] >> 56;         /* < 2^71 */
 | 
	
		
			
				|  |  | +	output[1] &= two56m1;                 /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Eliminate the top part of output[2] */
 | 
	
		
			
				|  |  | +	output[0] += M257(output[2] >> 56);   /* < 2^57 */
 | 
	
		
			
				|  |  | +	output[2] &= two56m1;                 /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Carry 0 -> 1 -> 2 */
 | 
	
		
			
				|  |  | +	output[1] += output[0] >> 56;         /* <= 2^56 */
 | 
	
		
			
				|  |  | +	out[0] = output[0] & two56m1;         /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	out[2] = output[2] + (output[1] >> 56);  /* <= 2^56 */
 | 
	
		
			
				|  |  | +	out[1] = output[1] & two56m1;         /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Reduce to unique minimal representation */
 | 
	
		
			
				|  |  | +static void felem_contract(fslice out[3], const fslice in[3])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	static const uint64_t two56m1 = (((uint64_t) 1)<<56) -
 | 
	
		
			
				|  |  | +		((uint64_t)1);
 | 
	
		
			
				|  |  | +	static const uint64_t two56m257 = (((uint64_t) 1)<<56) -
 | 
	
		
			
				|  |  | +		((uint64_t)257);
 | 
	
		
			
				|  |  | +	uint64_t a;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* in[0] < 2^56, in[1] < 2^56, in[2] <= 2^56 */
 | 
	
		
			
				|  |  | +	/* so in < 2*p for sure */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Eliminate the top part of in[2] */
 | 
	
		
			
				|  |  | +	out[0] = in[0] + M257(in[2] >> 56);   /* < 2^57 */
 | 
	
		
			
				|  |  | +	out[2] = in[2] & two56m1;             /* < 2^56, but if out[0] >= 2^56
 | 
	
		
			
				|  |  | +	                                         then out[2] now = 0 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Carry 0 -> 1 -> 2 */
 | 
	
		
			
				|  |  | +	out[1] = in[1] + (out[0] >> 56);      /* < 2^56 + 2, but if
 | 
	
		
			
				|  |  | +	                                         out[1] >= 2^56 then
 | 
	
		
			
				|  |  | +						 out[2] = 0 */
 | 
	
		
			
				|  |  | +	out[0] &= two56m1;                    /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	out[2] += out[1] >> 56;               /* < 2^56 due to the above */
 | 
	
		
			
				|  |  | +	out[1] &= two56m1;                    /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Now out < 2^168, but it could still be > p */
 | 
	
		
			
				|  |  | +	a = ((out[2] == two56m1) & (out[1] == two56m1) & (out[0] >= two56m257));
 | 
	
		
			
				|  |  | +	out[2] -= two56m1*a;
 | 
	
		
			
				|  |  | +	out[1] -= two56m1*a;
 | 
	
		
			
				|  |  | +	out[0] -= two56m257*a;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Negate a field element: out = -in */
 | 
	
		
			
				|  |  | +/* Assumes in[i] < 2^57 */
 | 
	
		
			
				|  |  | +static void felem_neg(fslice out[3], const fslice in[3])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	/* a = 3*2^56 - 3 */
 | 
	
		
			
				|  |  | +	/* b = 3*2^56 - 3*257 */
 | 
	
		
			
				|  |  | +	static const uint64_t a = (((uint64_t) 3) << 56) - ((uint64_t) 3);
 | 
	
		
			
				|  |  | +	static const uint64_t b = (((uint64_t) 3) << 56) - ((uint64_t) 771);
 | 
	
		
			
				|  |  | +	static const uint64_t two56m1 = (((uint64_t) 1) << 56) - ((uint64_t) 1);
 | 
	
		
			
				|  |  | +	fslice tmp[3];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Add 0 mod 2^168-2^8-1 to ensure out > in at each element */
 | 
	
		
			
				|  |  | +	/* a*2^112 + a*2^56 + b = 3*p */
 | 
	
		
			
				|  |  | +	tmp[0] = b - in[0];
 | 
	
		
			
				|  |  | +	tmp[1] = a - in[1];
 | 
	
		
			
				|  |  | +	tmp[2] = a - in[2];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Carry 0 -> 1 -> 2 */
 | 
	
		
			
				|  |  | +	tmp[1] += tmp[0] >> 56;
 | 
	
		
			
				|  |  | +	tmp[0] &= two56m1;                 /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	tmp[2] += tmp[1] >> 56;         /* < 2^71 */
 | 
	
		
			
				|  |  | +	tmp[1] &= two56m1;                 /* < 2^56 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_contract(out, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Zero-check: returns 1 if input is 0, and 0 otherwise.
 | 
	
		
			
				|  |  | + * We know that field elements are reduced to in < 2^169,
 | 
	
		
			
				|  |  | + * so we only need to check three cases: 0, 2^168 - 2^8 - 1,
 | 
	
		
			
				|  |  | + * and 2^169 - 2^9 - 2 */
 | 
	
		
			
				|  |  | +static fslice felem_is_zero(const fslice in[3])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	fslice zero, two168m8m1, two169m9m2;
 | 
	
		
			
				|  |  | +	static const uint64_t two56m1 = (((uint64_t) 1)<<56) -
 | 
	
		
			
				|  |  | +		((uint64_t)1);
 | 
	
		
			
				|  |  | +	static const uint64_t two56m257 = (((uint64_t) 1)<<56) -
 | 
	
		
			
				|  |  | +		((uint64_t)257);
 | 
	
		
			
				|  |  | +	static const uint64_t two57m1 = (((uint64_t) 1)<<57) -
 | 
	
		
			
				|  |  | +		((uint64_t)1);
 | 
	
		
			
				|  |  | +	static const uint64_t two56m514 = (((uint64_t) 1)<<56) -
 | 
	
		
			
				|  |  | +		((uint64_t)514);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	zero = (in[0] == 0) & (in[1] == 0) & (in[2] == 0);
 | 
	
		
			
				|  |  | +	two168m8m1 = (in[2] == two56m1) & (in[1] == two56m1) &
 | 
	
		
			
				|  |  | +			(in[0] == two56m257);
 | 
	
		
			
				|  |  | +	two169m9m2 = (in[2] == two57m1) & (in[1] == two56m1) &
 | 
	
		
			
				|  |  | +			(in[0] == two56m514);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	return (zero | two168m8m1 | two169m9m2);
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Invert a field element */
 | 
	
		
			
				|  |  | +static void felem_inv(fslice out[3], const fslice in[3])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	fslice ftmp[3], ftmp2[3], ftmp3[3], ftmp4[3];
 | 
	
		
			
				|  |  | +	uint128_t tmp[5];
 | 
	
		
			
				|  |  | +	unsigned i;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, in); felem_reduce(ftmp, tmp);		/* 2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^2 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^3 - 2 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^4 - 2^2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp);	/* 2^4 - 1 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^5 - 2 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^6 - 2^2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^6 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^7 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 5; ++i)					/* 2^12 - 2^6 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^12 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp3 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp3); felem_reduce(ftmp2, tmp);	/* 2^13 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 11; ++i)				/* 2^24 - 2^12 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^24 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp3 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp3); felem_reduce(ftmp2, tmp);	/* 2^25 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 23; ++i)				/* 2^48 - 2^24 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp3); felem_reduce(ftmp4, tmp);	/* 2^48 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp4 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp4); felem_reduce(ftmp2, tmp);	/* 2^49 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 23; ++i)				/* 2^72 - 2^24 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp3); felem_reduce(ftmp4, tmp);	/* 2^72 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp4 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp4); felem_reduce(ftmp2, tmp);	/* 2^73 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 5; ++i)					/* 2^78 - 2^6 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^78 - 1 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^79 - 2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, in, ftmp2); felem_reduce(ftmp4, tmp);	/* 2^79 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp4 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp4); felem_reduce(ftmp2, tmp);	/* 2^80 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 78; ++i)				/* 2^158 - 2^79 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp4, ftmp2); felem_reduce(ftmp2, tmp); /* 2^158 - 1 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^159 - 2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, in, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^159 - 1 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 7; ++i)					/* 2^166 - 2^7 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^166 - 2^6 - 1 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^167 - 2^7 - 2 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^168 - 2^8 - 4 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, in, ftmp2); felem_reduce(out, tmp);	/* 2^168 - 2^8 - 3 */
 | 
	
		
			
				|  |  | +								/* = out */
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Take the square root of a field element */
 | 
	
		
			
				|  |  | +static void felem_sqrt(fslice out[3], const fslice in[3])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	fslice ftmp[3], ftmp2[3];
 | 
	
		
			
				|  |  | +	uint128_t tmp[5];
 | 
	
		
			
				|  |  | +	unsigned i;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, in); felem_reduce(ftmp, tmp);		/* 2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^2 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^3 - 2 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^4 - 2^2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp);	/* 2^4 - 1 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^5 - 2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, in); felem_reduce(ftmp, tmp);	/* 2^5 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^6 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 4; ++i)					/* 2^10 - 2^5 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp, tmp);	/* 2^10 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^11 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 9; ++i)					/* 2^20 - 2^10 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^20 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^21 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 19; ++i)				/* 2^40 - 2^20 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^40 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^41 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 39; ++i)				/* 2^80 - 2^40 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^80 - 1 */
 | 
	
		
			
				|  |  | +								/* = ftmp */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^81 - 2 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 79; ++i)				/* 2^160 - 2^80 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^160 - 1 */
 | 
	
		
			
				|  |  | +	for (i = 0; i < 5; ++i)					/* 2^165 - 2^5 */
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp2); felem_reduce(out, tmp);	/* 2^166 - 2^6 */
 | 
	
		
			
				|  |  | +								/* = out */
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Copy in constant time:
 | 
	
		
			
				|  |  | + * if icopy == 1, copy in to out,
 | 
	
		
			
				|  |  | + * if icopy == 0, copy out to itself. */
 | 
	
		
			
				|  |  | +static void
 | 
	
		
			
				|  |  | +copy_conditional(fslice *out, const fslice *in, unsigned len, fslice icopy)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	unsigned i;
 | 
	
		
			
				|  |  | +	/* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
 | 
	
		
			
				|  |  | +	const fslice copy = -icopy;
 | 
	
		
			
				|  |  | +	for (i = 0; i < len; ++i)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		const fslice tmp = copy & (in[i] ^ out[i]);
 | 
	
		
			
				|  |  | +		out[i] ^= tmp;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Copy in constant time:
 | 
	
		
			
				|  |  | + * if isel == 1, copy in2 to out,
 | 
	
		
			
				|  |  | + * if isel == 0, copy in1 to out. */
 | 
	
		
			
				|  |  | +static void select_conditional(fslice *out, const fslice *in1, const fslice *in2,
 | 
	
		
			
				|  |  | +	unsigned len, fslice isel)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	unsigned i;
 | 
	
		
			
				|  |  | +	/* isel is a (64-bit) 0 or 1, so sel is either all-zero or all-one */
 | 
	
		
			
				|  |  | +	const fslice sel = -isel;
 | 
	
		
			
				|  |  | +	for (i = 0; i < len; ++i)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		const fslice tmp = sel & (in1[i] ^ in2[i]);
 | 
	
		
			
				|  |  | +		out[i] = in1[i] ^ tmp;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/******************************************************************************/
 | 
	
		
			
				|  |  | +/*			 ELLIPTIC CURVE POINT OPERATIONS
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + * Points are represented in Jacobian projective coordinates:
 | 
	
		
			
				|  |  | + * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
 | 
	
		
			
				|  |  | + * or to the point at infinity if Z == 0.
 | 
	
		
			
				|  |  | + *
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Double an elliptic curve point:
 | 
	
		
			
				|  |  | + * (X', Y', Z') = 2 * (X, Y, Z), where
 | 
	
		
			
				|  |  | + * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
 | 
	
		
			
				|  |  | + * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
 | 
	
		
			
				|  |  | + * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
 | 
	
		
			
				|  |  | + * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
 | 
	
		
			
				|  |  | + * while x_out == y_in is not (maybe this works, but it's not tested). */
 | 
	
		
			
				|  |  | +static void
 | 
	
		
			
				|  |  | +point_double(fslice x_out[3], fslice y_out[3], fslice z_out[3],
 | 
	
		
			
				|  |  | +	     const fslice x_in[3], const fslice y_in[3], const fslice z_in[3])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	uint128_t tmp[5], tmp2[5];
 | 
	
		
			
				|  |  | +	fslice delta[3];
 | 
	
		
			
				|  |  | +	fslice gamma[3];
 | 
	
		
			
				|  |  | +	fslice beta[3];
 | 
	
		
			
				|  |  | +	fslice alpha[3];
 | 
	
		
			
				|  |  | +	fslice ftmp[3], ftmp2[3];
 | 
	
		
			
				|  |  | +	memcpy(ftmp, x_in, 3 * sizeof(fslice));
 | 
	
		
			
				|  |  | +	memcpy(ftmp2, x_in, 3 * sizeof(fslice));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* delta = z^2 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, z_in);
 | 
	
		
			
				|  |  | +	felem_reduce(delta, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* gamma = y^2 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, y_in);
 | 
	
		
			
				|  |  | +	felem_reduce(gamma, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* beta = x*gamma */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, x_in, gamma);
 | 
	
		
			
				|  |  | +	felem_reduce(beta, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* alpha = 3*(x-delta)*(x+delta) */
 | 
	
		
			
				|  |  | +	felem_diff64(ftmp, delta);
 | 
	
		
			
				|  |  | +	/* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
 | 
	
		
			
				|  |  | +	felem_sum64(ftmp2, delta);
 | 
	
		
			
				|  |  | +	/* ftmp2[i] < 2^57 + 2^57 = 2^58 */
 | 
	
		
			
				|  |  | +	felem_scalar64(ftmp2, 3);
 | 
	
		
			
				|  |  | +	/* ftmp2[i] < 3 * 2^58 < 2^60 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, ftmp2);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
 | 
	
		
			
				|  |  | +	felem_reduce(alpha, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* x' = alpha^2 - 8*beta */
 | 
	
		
			
				|  |  | +	felem_square(tmp, alpha);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
 | 
	
		
			
				|  |  | +	memcpy(ftmp, beta, 3 * sizeof(fslice));
 | 
	
		
			
				|  |  | +	felem_scalar64(ftmp, 8);
 | 
	
		
			
				|  |  | +	/* ftmp[i] < 8 * 2^57 = 2^60 */
 | 
	
		
			
				|  |  | +	felem_diff_128_64(tmp, ftmp);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
 | 
	
		
			
				|  |  | +	felem_reduce(x_out, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* z' = (y + z)^2 - gamma - delta */
 | 
	
		
			
				|  |  | +	felem_sum64(delta, gamma);
 | 
	
		
			
				|  |  | +	/* delta[i] < 2^57 + 2^57 = 2^58 */
 | 
	
		
			
				|  |  | +	memcpy(ftmp, y_in, 3 * sizeof(fslice));
 | 
	
		
			
				|  |  | +	felem_sum64(ftmp, z_in);
 | 
	
		
			
				|  |  | +	/* ftmp[i] < 2^57 + 2^57 = 2^58 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
 | 
	
		
			
				|  |  | +	felem_diff_128_64(tmp, delta);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
 | 
	
		
			
				|  |  | +	felem_reduce(z_out, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* y' = alpha*(4*beta - x') - 8*gamma^2 */
 | 
	
		
			
				|  |  | +	felem_scalar64(beta, 4);
 | 
	
		
			
				|  |  | +	/* beta[i] < 4 * 2^57 = 2^59 */
 | 
	
		
			
				|  |  | +	felem_diff64(beta, x_out);
 | 
	
		
			
				|  |  | +	/* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, alpha, beta);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
 | 
	
		
			
				|  |  | +	felem_square(tmp2, gamma);
 | 
	
		
			
				|  |  | +	/* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
 | 
	
		
			
				|  |  | +	felem_scalar128(tmp2, 8);
 | 
	
		
			
				|  |  | +	/* tmp2[i] < 8 * 2^116 = 2^119 */
 | 
	
		
			
				|  |  | +	felem_diff128(tmp, tmp2);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 2^119 + 2^120 < 2^121 */
 | 
	
		
			
				|  |  | +	felem_reduce(y_out, tmp);
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Add two elliptic curve points:
 | 
	
		
			
				|  |  | + * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
 | 
	
		
			
				|  |  | + * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
 | 
	
		
			
				|  |  | + * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
 | 
	
		
			
				|  |  | + * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
 | 
	
		
			
				|  |  | + *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
 | 
	
		
			
				|  |  | + * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* This function is not entirely constant-time:
 | 
	
		
			
				|  |  | + * it includes a branch for checking whether the two input points are equal,
 | 
	
		
			
				|  |  | + * (while not equal to the point at infinity).
 | 
	
		
			
				|  |  | + * This case never happens during single point multiplication,
 | 
	
		
			
				|  |  | + * so there is no timing leak for ECDH or ECDSA signing. */
 | 
	
		
			
				|  |  | +static void point_add(fslice x3[3], fslice y3[3], fslice z3[3],
 | 
	
		
			
				|  |  | +	const fslice x1[3], const fslice y1[3], const fslice z1[3],
 | 
	
		
			
				|  |  | +	const fslice x2[3], const fslice y2[3], const fslice z2[3])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	fslice ftmp[3], ftmp2[3], ftmp3[3], ftmp4[3], ftmp5[3];
 | 
	
		
			
				|  |  | +	fslice xout[3], yout[3], zout[3];
 | 
	
		
			
				|  |  | +	uint128_t tmp[5], tmp2[5];
 | 
	
		
			
				|  |  | +	fslice z1_is_zero, z2_is_zero, x_equal, y_equal;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp = z1^2 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, z1);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp2 = z2^2 */
 | 
	
		
			
				|  |  | +	felem_square(tmp, z2);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp3 = z1^3 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, z1);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp3, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp4 = z2^3 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, z2);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp4, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp3 = z1^3*y2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp3, y2);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp4 = z2^3*y1 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp2, ftmp4, y1);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp4, tmp2);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp3 = z1^3*y2 - z2^3*y1 */
 | 
	
		
			
				|  |  | +	felem_diff_128_64(tmp, ftmp4);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp3, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp = z1^2*x2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, x2);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp2 =z2^2*x1 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp2, ftmp2, x1);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp2, tmp2);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp = z1^2*x2 - z2^2*x1 */
 | 
	
		
			
				|  |  | +	felem_diff128(tmp, tmp2);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* the formulae are incorrect if the points are equal
 | 
	
		
			
				|  |  | +	 * so we check for this and do doubling if this happens */
 | 
	
		
			
				|  |  | +	x_equal = felem_is_zero(ftmp);
 | 
	
		
			
				|  |  | +	y_equal = felem_is_zero(ftmp3);
 | 
	
		
			
				|  |  | +	z1_is_zero = felem_is_zero(z1);
 | 
	
		
			
				|  |  | +	z2_is_zero = felem_is_zero(z2);
 | 
	
		
			
				|  |  | +	/* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
 | 
	
		
			
				|  |  | +	if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		point_double(x3, y3, z3, x1, y1, z1);
 | 
	
		
			
				|  |  | +		return;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp5 = z1*z2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, z1, z2);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp5, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* zout = (z1^2*x2 - z2^2*x1)*(z1*z2) */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, ftmp5);
 | 
	
		
			
				|  |  | +	felem_reduce(zout, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp = (z1^2*x2 - z2^2*x1)^2 */
 | 
	
		
			
				|  |  | +	memcpy(ftmp5, ftmp, 3 * sizeof(fslice));
 | 
	
		
			
				|  |  | +	felem_square(tmp, ftmp);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp, ftmp5);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp5, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp2, ftmp);
 | 
	
		
			
				|  |  | +	felem_reduce(ftmp2, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp4 = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
 | 
	
		
			
				|  |  | +	felem_mul(tmp, ftmp4, ftmp5);
 | 
	
		
			
				|  |  | +	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
 | 
	
		
			
				|  |  | +	felem_square(tmp2, ftmp3);
 | 
	
		
			
				|  |  | +	/* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
 | 
	
		
			
				|  |  | +	felem_diff_128_64(tmp2, ftmp5);
 | 
	
		
			
				|  |  | +	/* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
 | 
	
		
			
				|  |  | +	memcpy(ftmp5, ftmp2, 3 * sizeof(fslice));
 | 
	
		
			
				|  |  | +	felem_scalar64(ftmp5, 2);
 | 
	
		
			
				|  |  | +	/* ftmp5[i] < 2 * 2^57 = 2^58 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* xout = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
 | 
	
		
			
				|  |  | +	   2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
 | 
	
		
			
				|  |  | +	felem_diff_128_64(tmp2, ftmp5);
 | 
	
		
			
				|  |  | +	/* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
 | 
	
		
			
				|  |  | +	felem_reduce(xout, tmp2);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - xout */
 | 
	
		
			
				|  |  | +	felem_diff64(ftmp2, xout);
 | 
	
		
			
				|  |  | +	/* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - xout) */
 | 
	
		
			
				|  |  | +	felem_mul(tmp2, ftmp3, ftmp2);
 | 
	
		
			
				|  |  | +	/* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* yout = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - xout) -
 | 
	
		
			
				|  |  | +	   z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
 | 
	
		
			
				|  |  | +	felem_diff128(tmp2, tmp);
 | 
	
		
			
				|  |  | +	/* tmp2[i] < 2^118 + 2^120 < 2^121 */
 | 
	
		
			
				|  |  | +	felem_reduce(yout, tmp2);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* the result (xout, yout, zout) is incorrect if one of the
 | 
	
		
			
				|  |  | +	 * inputs is the point at infinity, so we need to check for this
 | 
	
		
			
				|  |  | +	 * separately */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* if point 1 is at infinity, copy point 2 to output, and vice versa */
 | 
	
		
			
				|  |  | +	copy_conditional(xout, x2, 3, z1_is_zero);
 | 
	
		
			
				|  |  | +	select_conditional(x3, xout, x1, 3, z2_is_zero);
 | 
	
		
			
				|  |  | +	copy_conditional(yout, y2, 3, z1_is_zero);
 | 
	
		
			
				|  |  | +	select_conditional(y3, yout, y1, 3, z2_is_zero);
 | 
	
		
			
				|  |  | +	copy_conditional(zout, z2, 3, z1_is_zero);
 | 
	
		
			
				|  |  | +	select_conditional(z3, zout, z1, 3, z2_is_zero);
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void affine(point P)
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    coord z1, z2, xin, yin;
 | 
	
		
			
				|  |  | +    uint128_t tmp[7];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if (felem_is_zero(P[2])) return;
 | 
	
		
			
				|  |  | +    felem_inv(z2, P[2]);
 | 
	
		
			
				|  |  | +    felem_square(tmp, z2); felem_reduce(z1, tmp);
 | 
	
		
			
				|  |  | +    felem_mul(tmp, P[0], z1); felem_reduce(xin, tmp);
 | 
	
		
			
				|  |  | +    felem_contract(P[0], xin);
 | 
	
		
			
				|  |  | +    felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
 | 
	
		
			
				|  |  | +    felem_mul(tmp, P[1], z1); felem_reduce(yin, tmp);
 | 
	
		
			
				|  |  | +    felem_contract(P[1], yin);
 | 
	
		
			
				|  |  | +    memset(P[2], 0, sizeof(coord));
 | 
	
		
			
				|  |  | +    P[2][0] = 1;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void affine_x(coord out, point P)
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    coord z1, z2, xin;
 | 
	
		
			
				|  |  | +    uint128_t tmp[7];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if (felem_is_zero(P[2])) return;
 | 
	
		
			
				|  |  | +    felem_inv(z2, P[2]);
 | 
	
		
			
				|  |  | +    felem_square(tmp, z2); felem_reduce(z1, tmp);
 | 
	
		
			
				|  |  | +    felem_mul(tmp, P[0], z1); felem_reduce(xin, tmp);
 | 
	
		
			
				|  |  | +    felem_contract(out, xin);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Multiply the given point by s */
 | 
	
		
			
				|  |  | +static void point_mul(point out, point in, const felem_bytearray s)
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    int i;
 | 
	
		
			
				|  |  | +    point tmp;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    point table[16];
 | 
	
		
			
				|  |  | +    memset(table[0], 0, sizeof(point));
 | 
	
		
			
				|  |  | +    memmove(table[1], in, sizeof(point));
 | 
	
		
			
				|  |  | +    for(i=2; i<16; i+=2) {
 | 
	
		
			
				|  |  | +	point_double(table[i][0], table[i][1], table[i][2],
 | 
	
		
			
				|  |  | +		     table[i/2][0], table[i/2][1], table[i/2][2]);
 | 
	
		
			
				|  |  | +	point_add(table[i+1][0], table[i+1][1], table[i+1][2],
 | 
	
		
			
				|  |  | +		  table[i][0], table[i][1], table[i][2],
 | 
	
		
			
				|  |  | +		  in[0], in[1], in[2]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    /*
 | 
	
		
			
				|  |  | +    for(i=0;i<16;++i) {
 | 
	
		
			
				|  |  | +	fprintf(stderr, "table[%d]:\n", i);
 | 
	
		
			
				|  |  | +	affine(table[i]);
 | 
	
		
			
				|  |  | +	dump_point(NULL, table[i]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    memset(tmp, 0, sizeof(point));
 | 
	
		
			
				|  |  | +    for(i=0;i<21;i++) {
 | 
	
		
			
				|  |  | +	u8 oh = s[20-i] >> 4;
 | 
	
		
			
				|  |  | +	u8 ol = s[20-i] & 0x0f;
 | 
	
		
			
				|  |  | +	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);
 | 
	
		
			
				|  |  | +	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);
 | 
	
		
			
				|  |  | +	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);
 | 
	
		
			
				|  |  | +	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);
 | 
	
		
			
				|  |  | +	point_add(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2],
 | 
	
		
			
				|  |  | +		  table[oh][0], table[oh][1], table[oh][2]);
 | 
	
		
			
				|  |  | +	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);
 | 
	
		
			
				|  |  | +	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);
 | 
	
		
			
				|  |  | +	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);
 | 
	
		
			
				|  |  | +	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);
 | 
	
		
			
				|  |  | +	point_add(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2],
 | 
	
		
			
				|  |  | +		  table[ol][0], table[ol][1], table[ol][2]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    memmove(out, tmp, sizeof(point));
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#if 0
 | 
	
		
			
				|  |  | +/* Select a point from an array of 16 precomputed point multiples,
 | 
	
		
			
				|  |  | + * in constant time: for bits = {b_0, b_1, b_2, b_3}, return the point
 | 
	
		
			
				|  |  | + * pre_comp[8*b_3 + 4*b_2 + 2*b_1 + b_0] */
 | 
	
		
			
				|  |  | +static void select_point(const fslice bits[4], const fslice pre_comp[16][3][4],
 | 
	
		
			
				|  |  | +	fslice out[12])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	fslice tmp[5][12];
 | 
	
		
			
				|  |  | +	select_conditional(tmp[0], pre_comp[7][0], pre_comp[15][0], 12, bits[3]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[1], pre_comp[3][0], pre_comp[11][0], 12, bits[3]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[2], tmp[1], tmp[0], 12, bits[2]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[0], pre_comp[5][0], pre_comp[13][0], 12, bits[3]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[1], pre_comp[1][0], pre_comp[9][0], 12, bits[3]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[3], tmp[1], tmp[0], 12, bits[2]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[4], tmp[3], tmp[2], 12, bits[1]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[0], pre_comp[6][0], pre_comp[14][0], 12, bits[3]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[1], pre_comp[2][0], pre_comp[10][0], 12, bits[3]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[2], tmp[1], tmp[0], 12, bits[2]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[0], pre_comp[4][0], pre_comp[12][0], 12, bits[3]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[1], pre_comp[0][0], pre_comp[8][0], 12, bits[3]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[3], tmp[1], tmp[0], 12, bits[2]);
 | 
	
		
			
				|  |  | +	select_conditional(tmp[1], tmp[3], tmp[2], 12, bits[1]);
 | 
	
		
			
				|  |  | +	select_conditional(out, tmp[1], tmp[4], 12, bits[0]);
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Interleaved point multiplication using precomputed point multiples:
 | 
	
		
			
				|  |  | + * The small point multiples 0*P, 1*P, ..., 15*P are in pre_comp[],
 | 
	
		
			
				|  |  | + * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
 | 
	
		
			
				|  |  | + * of the generator, using certain (large) precomputed multiples in g_pre_comp.
 | 
	
		
			
				|  |  | + * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
 | 
	
		
			
				|  |  | +static void batch_mul(fslice x_out[4], fslice y_out[4], fslice z_out[4],
 | 
	
		
			
				|  |  | +	const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
 | 
	
		
			
				|  |  | +	const fslice pre_comp[][16][3][4], const fslice g_pre_comp[16][3][4])
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	unsigned i, j, num;
 | 
	
		
			
				|  |  | +	unsigned gen_mul = (g_scalar != NULL);
 | 
	
		
			
				|  |  | +	fslice nq[12], nqt[12], tmp[12];
 | 
	
		
			
				|  |  | +	fslice bits[4];
 | 
	
		
			
				|  |  | +	u8 byte;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* set nq to the point at infinity */
 | 
	
		
			
				|  |  | +	memset(nq, 0, 12 * sizeof(fslice));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* Loop over all scalars msb-to-lsb, 4 bits at a time: for each nibble,
 | 
	
		
			
				|  |  | +	 * double 4 times, then add the precomputed point multiples.
 | 
	
		
			
				|  |  | +	 * If we are also adding multiples of the generator, then interleave
 | 
	
		
			
				|  |  | +	 * these additions with the last 56 doublings. */
 | 
	
		
			
				|  |  | +	for (i = (num_points ? 28 : 7); i > 0; --i)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		for (j = 0; j < 8; ++j)
 | 
	
		
			
				|  |  | +			{
 | 
	
		
			
				|  |  | +			/* double once */
 | 
	
		
			
				|  |  | +			point_double(nq, nq+4, nq+8, nq, nq+4, nq+8);
 | 
	
		
			
				|  |  | +			/* add multiples of the generator */
 | 
	
		
			
				|  |  | +			if ((gen_mul) && (i <= 7))
 | 
	
		
			
				|  |  | +				{
 | 
	
		
			
				|  |  | +				bits[3] = (g_scalar[i+20] >> (7-j)) & 1;
 | 
	
		
			
				|  |  | +				bits[2] = (g_scalar[i+13] >> (7-j)) & 1;
 | 
	
		
			
				|  |  | +				bits[1] = (g_scalar[i+6] >> (7-j)) & 1;
 | 
	
		
			
				|  |  | +				bits[0] = (g_scalar[i-1] >> (7-j)) & 1;
 | 
	
		
			
				|  |  | +				/* select the point to add, in constant time */
 | 
	
		
			
				|  |  | +				select_point(bits, g_pre_comp, tmp);
 | 
	
		
			
				|  |  | +				memcpy(nqt, nq, 12 * sizeof(fslice));
 | 
	
		
			
				|  |  | +				point_add(nq, nq+4, nq+8, nqt, nqt+4, nqt+8,
 | 
	
		
			
				|  |  | +					tmp, tmp+4, tmp+8);
 | 
	
		
			
				|  |  | +				}
 | 
	
		
			
				|  |  | +			/* do an addition after every 4 doublings */
 | 
	
		
			
				|  |  | +			if (j % 4 == 3)
 | 
	
		
			
				|  |  | +				{
 | 
	
		
			
				|  |  | +				/* loop over all scalars */
 | 
	
		
			
				|  |  | +				for (num = 0; num < num_points; ++num)
 | 
	
		
			
				|  |  | +					{
 | 
	
		
			
				|  |  | +					byte = scalars[num][i-1];
 | 
	
		
			
				|  |  | +					bits[3] = (byte >> (10-j)) & 1;
 | 
	
		
			
				|  |  | +					bits[2] = (byte >> (9-j)) & 1;
 | 
	
		
			
				|  |  | +					bits[1] = (byte >> (8-j)) & 1;
 | 
	
		
			
				|  |  | +					bits[0] = (byte >> (7-j)) & 1;
 | 
	
		
			
				|  |  | +					/* select the point to add */
 | 
	
		
			
				|  |  | +					select_point(bits,
 | 
	
		
			
				|  |  | +						pre_comp[num], tmp);
 | 
	
		
			
				|  |  | +					memcpy(nqt, nq, 12 * sizeof(fslice));
 | 
	
		
			
				|  |  | +					point_add(nq, nq+4, nq+8, nqt, nqt+4,
 | 
	
		
			
				|  |  | +						nqt+8, tmp, tmp+4, tmp+8);
 | 
	
		
			
				|  |  | +					}
 | 
	
		
			
				|  |  | +				}
 | 
	
		
			
				|  |  | +			}
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	memcpy(x_out, nq, 4 * sizeof(fslice));
 | 
	
		
			
				|  |  | +	memcpy(y_out, nq+4, 4 * sizeof(fslice));
 | 
	
		
			
				|  |  | +	memcpy(z_out, nq+8, 4 * sizeof(fslice));
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/******************************************************************************/
 | 
	
		
			
				|  |  | +/*		       FUNCTIONS TO MANAGE PRECOMPUTATION
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static NISTP224_PRE_COMP *nistp224_pre_comp_new()
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	NISTP224_PRE_COMP *ret = NULL;
 | 
	
		
			
				|  |  | +	ret = (NISTP224_PRE_COMP *)OPENSSL_malloc(sizeof(NISTP224_PRE_COMP));
 | 
	
		
			
				|  |  | +	if (!ret)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
 | 
	
		
			
				|  |  | +		return ret;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
 | 
	
		
			
				|  |  | +	ret->references = 1;
 | 
	
		
			
				|  |  | +	return ret;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void *nistp224_pre_comp_dup(void *src_)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	NISTP224_PRE_COMP *src = src_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* no need to actually copy, these objects never change! */
 | 
	
		
			
				|  |  | +	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	return src_;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void nistp224_pre_comp_free(void *pre_)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	int i;
 | 
	
		
			
				|  |  | +	NISTP224_PRE_COMP *pre = pre_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	if (!pre)
 | 
	
		
			
				|  |  | +		return;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
 | 
	
		
			
				|  |  | +	if (i > 0)
 | 
	
		
			
				|  |  | +		return;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	OPENSSL_free(pre);
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void nistp224_pre_comp_clear_free(void *pre_)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	int i;
 | 
	
		
			
				|  |  | +	NISTP224_PRE_COMP *pre = pre_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	if (!pre)
 | 
	
		
			
				|  |  | +		return;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
 | 
	
		
			
				|  |  | +	if (i > 0)
 | 
	
		
			
				|  |  | +		return;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	OPENSSL_cleanse(pre, sizeof *pre);
 | 
	
		
			
				|  |  | +	OPENSSL_free(pre);
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/******************************************************************************/
 | 
	
		
			
				|  |  | +/*			   OPENSSL EC_METHOD FUNCTIONS
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int ec_GFp_nistp224_group_init(EC_GROUP *group)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	int ret;
 | 
	
		
			
				|  |  | +	ret = ec_GFp_simple_group_init(group);
 | 
	
		
			
				|  |  | +	group->a_is_minus3 = 1;
 | 
	
		
			
				|  |  | +	return ret;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
 | 
	
		
			
				|  |  | +	const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	int ret = 0;
 | 
	
		
			
				|  |  | +	BN_CTX *new_ctx = NULL;
 | 
	
		
			
				|  |  | +	BIGNUM *curve_p, *curve_a, *curve_b;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	if (ctx == NULL)
 | 
	
		
			
				|  |  | +		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
 | 
	
		
			
				|  |  | +	BN_CTX_start(ctx);
 | 
	
		
			
				|  |  | +	if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
 | 
	
		
			
				|  |  | +		((curve_a = BN_CTX_get(ctx)) == NULL) ||
 | 
	
		
			
				|  |  | +		((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
 | 
	
		
			
				|  |  | +	BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
 | 
	
		
			
				|  |  | +	BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
 | 
	
		
			
				|  |  | +	BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
 | 
	
		
			
				|  |  | +	if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
 | 
	
		
			
				|  |  | +		(BN_cmp(curve_b, b)))
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
 | 
	
		
			
				|  |  | +			EC_R_WRONG_CURVE_PARAMETERS);
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	group->field_mod_func = BN_nist_mod_224;
 | 
	
		
			
				|  |  | +	ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
 | 
	
		
			
				|  |  | +err:
 | 
	
		
			
				|  |  | +	BN_CTX_end(ctx);
 | 
	
		
			
				|  |  | +	if (new_ctx != NULL)
 | 
	
		
			
				|  |  | +		BN_CTX_free(new_ctx);
 | 
	
		
			
				|  |  | +	return ret;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
 | 
	
		
			
				|  |  | + * (X', Y') = (X/Z^2, Y/Z^3) */
 | 
	
		
			
				|  |  | +int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
 | 
	
		
			
				|  |  | +	const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	fslice z1[4], z2[4], x_in[4], y_in[4], x_out[4], y_out[4];
 | 
	
		
			
				|  |  | +	uint128_t tmp[7];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	if (EC_POINT_is_at_infinity(group, point))
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
 | 
	
		
			
				|  |  | +			EC_R_POINT_AT_INFINITY);
 | 
	
		
			
				|  |  | +		return 0;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
 | 
	
		
			
				|  |  | +		(!BN_to_felem(z1, &point->Z))) return 0;
 | 
	
		
			
				|  |  | +	felem_inv(z2, z1);
 | 
	
		
			
				|  |  | +	felem_square(tmp, z2); felem_reduce(z1, tmp);
 | 
	
		
			
				|  |  | +	felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
 | 
	
		
			
				|  |  | +	felem_contract(x_out, x_in);
 | 
	
		
			
				|  |  | +	if (x != NULL)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		if (!felem_to_BN(x, x_out)) {
 | 
	
		
			
				|  |  | +		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
 | 
	
		
			
				|  |  | +			ERR_R_BN_LIB);
 | 
	
		
			
				|  |  | +		return 0;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
 | 
	
		
			
				|  |  | +	felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
 | 
	
		
			
				|  |  | +	felem_contract(y_out, y_in);
 | 
	
		
			
				|  |  | +	if (y != NULL)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		if (!felem_to_BN(y, y_out)) {
 | 
	
		
			
				|  |  | +		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
 | 
	
		
			
				|  |  | +			ERR_R_BN_LIB);
 | 
	
		
			
				|  |  | +		return 0;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	return 1;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
 | 
	
		
			
				|  |  | + * Result is stored in r (r can equal one of the inputs). */
 | 
	
		
			
				|  |  | +int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
 | 
	
		
			
				|  |  | +	const BIGNUM *scalar, size_t num, const EC_POINT *points[],
 | 
	
		
			
				|  |  | +	const BIGNUM *scalars[], BN_CTX *ctx)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	int ret = 0;
 | 
	
		
			
				|  |  | +	int i, j;
 | 
	
		
			
				|  |  | +	BN_CTX *new_ctx = NULL;
 | 
	
		
			
				|  |  | +	BIGNUM *x, *y, *z, *tmp_scalar;
 | 
	
		
			
				|  |  | +	felem_bytearray g_secret;
 | 
	
		
			
				|  |  | +	felem_bytearray *secrets = NULL;
 | 
	
		
			
				|  |  | +	fslice (*pre_comp)[16][3][4] = NULL;
 | 
	
		
			
				|  |  | +	felem_bytearray tmp;
 | 
	
		
			
				|  |  | +	unsigned num_bytes;
 | 
	
		
			
				|  |  | +	int have_pre_comp = 0;
 | 
	
		
			
				|  |  | +	size_t num_points = num;
 | 
	
		
			
				|  |  | +	fslice x_in[4], y_in[4], z_in[4], x_out[4], y_out[4], z_out[4];
 | 
	
		
			
				|  |  | +	NISTP224_PRE_COMP *pre = NULL;
 | 
	
		
			
				|  |  | +	fslice (*g_pre_comp)[3][4] = NULL;
 | 
	
		
			
				|  |  | +	EC_POINT *generator = NULL;
 | 
	
		
			
				|  |  | +	const EC_POINT *p = NULL;
 | 
	
		
			
				|  |  | +	const BIGNUM *p_scalar = NULL;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	if (ctx == NULL)
 | 
	
		
			
				|  |  | +		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
 | 
	
		
			
				|  |  | +	BN_CTX_start(ctx);
 | 
	
		
			
				|  |  | +	if (((x = BN_CTX_get(ctx)) == NULL) ||
 | 
	
		
			
				|  |  | +		((y = BN_CTX_get(ctx)) == NULL) ||
 | 
	
		
			
				|  |  | +		((z = BN_CTX_get(ctx)) == NULL) ||
 | 
	
		
			
				|  |  | +		((tmp_scalar = BN_CTX_get(ctx)) == NULL))
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	if (scalar != NULL)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		pre = EC_EX_DATA_get_data(group->extra_data,
 | 
	
		
			
				|  |  | +			nistp224_pre_comp_dup, nistp224_pre_comp_free,
 | 
	
		
			
				|  |  | +			nistp224_pre_comp_clear_free);
 | 
	
		
			
				|  |  | +		if (pre)
 | 
	
		
			
				|  |  | +			/* we have precomputation, try to use it */
 | 
	
		
			
				|  |  | +			g_pre_comp = pre->g_pre_comp;
 | 
	
		
			
				|  |  | +		else
 | 
	
		
			
				|  |  | +			/* try to use the standard precomputation */
 | 
	
		
			
				|  |  | +			g_pre_comp = (fslice (*)[3][4]) gmul;
 | 
	
		
			
				|  |  | +		generator = EC_POINT_new(group);
 | 
	
		
			
				|  |  | +		if (generator == NULL)
 | 
	
		
			
				|  |  | +			goto err;
 | 
	
		
			
				|  |  | +		/* get the generator from precomputation */
 | 
	
		
			
				|  |  | +		if (!felem_to_BN(x, g_pre_comp[1][0]) ||
 | 
	
		
			
				|  |  | +			!felem_to_BN(y, g_pre_comp[1][1]) ||
 | 
	
		
			
				|  |  | +			!felem_to_BN(z, g_pre_comp[1][2]))
 | 
	
		
			
				|  |  | +			{
 | 
	
		
			
				|  |  | +			ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
 | 
	
		
			
				|  |  | +			goto err;
 | 
	
		
			
				|  |  | +			}
 | 
	
		
			
				|  |  | +		if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
 | 
	
		
			
				|  |  | +				generator, x, y, z, ctx))
 | 
	
		
			
				|  |  | +			goto err;
 | 
	
		
			
				|  |  | +		if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
 | 
	
		
			
				|  |  | +			/* precomputation matches generator */
 | 
	
		
			
				|  |  | +			have_pre_comp = 1;
 | 
	
		
			
				|  |  | +		else
 | 
	
		
			
				|  |  | +			/* we don't have valid precomputation:
 | 
	
		
			
				|  |  | +			 * treat the generator as a random point */
 | 
	
		
			
				|  |  | +			num_points = num_points + 1;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
 | 
	
		
			
				|  |  | +	pre_comp = OPENSSL_malloc(num_points * 16 * 3 * 4 * sizeof(fslice));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	if ((num_points) && ((secrets == NULL) || (pre_comp == NULL)))
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* we treat NULL scalars as 0, and NULL points as points at infinity,
 | 
	
		
			
				|  |  | +	 * i.e., they contribute nothing to the linear combination */
 | 
	
		
			
				|  |  | +	memset(secrets, 0, num_points * sizeof(felem_bytearray));
 | 
	
		
			
				|  |  | +	memset(pre_comp, 0, num_points * 16 * 3 * 4 * sizeof(fslice));
 | 
	
		
			
				|  |  | +	for (i = 0; i < num_points; ++i)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		if (i == num)
 | 
	
		
			
				|  |  | +			/* the generator */
 | 
	
		
			
				|  |  | +			{
 | 
	
		
			
				|  |  | +			p = EC_GROUP_get0_generator(group);
 | 
	
		
			
				|  |  | +			p_scalar = scalar;
 | 
	
		
			
				|  |  | +			}
 | 
	
		
			
				|  |  | +		else
 | 
	
		
			
				|  |  | +			/* the i^th point */
 | 
	
		
			
				|  |  | +			{
 | 
	
		
			
				|  |  | +			p = points[i];
 | 
	
		
			
				|  |  | +			p_scalar = scalars[i];
 | 
	
		
			
				|  |  | +			}
 | 
	
		
			
				|  |  | +		if ((p_scalar != NULL) && (p != NULL))
 | 
	
		
			
				|  |  | +			{
 | 
	
		
			
				|  |  | +			num_bytes = BN_num_bytes(p_scalar);
 | 
	
		
			
				|  |  | +			/* reduce scalar to 0 <= scalar < 2^224 */
 | 
	
		
			
				|  |  | +			if ((num_bytes > sizeof(felem_bytearray)) || (BN_is_negative(p_scalar)))
 | 
	
		
			
				|  |  | +				{
 | 
	
		
			
				|  |  | +				/* this is an unusual input, and we don't guarantee
 | 
	
		
			
				|  |  | +				 * constant-timeness */
 | 
	
		
			
				|  |  | +				if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
 | 
	
		
			
				|  |  | +					{
 | 
	
		
			
				|  |  | +					ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
 | 
	
		
			
				|  |  | +					goto err;
 | 
	
		
			
				|  |  | +					}
 | 
	
		
			
				|  |  | +				num_bytes = BN_bn2bin(tmp_scalar, tmp);
 | 
	
		
			
				|  |  | +				}
 | 
	
		
			
				|  |  | +			else
 | 
	
		
			
				|  |  | +				BN_bn2bin(p_scalar, tmp);
 | 
	
		
			
				|  |  | +			flip_endian(secrets[i], tmp, num_bytes);
 | 
	
		
			
				|  |  | +			/* precompute multiples */
 | 
	
		
			
				|  |  | +			if ((!BN_to_felem(x_out, &p->X)) ||
 | 
	
		
			
				|  |  | +				(!BN_to_felem(y_out, &p->Y)) ||
 | 
	
		
			
				|  |  | +				(!BN_to_felem(z_out, &p->Z))) goto err;
 | 
	
		
			
				|  |  | +			memcpy(pre_comp[i][1][0], x_out, 4 * sizeof(fslice));
 | 
	
		
			
				|  |  | +			memcpy(pre_comp[i][1][1], y_out, 4 * sizeof(fslice));
 | 
	
		
			
				|  |  | +			memcpy(pre_comp[i][1][2], z_out, 4 * sizeof(fslice));
 | 
	
		
			
				|  |  | +			for (j = 1; j < 8; ++j)
 | 
	
		
			
				|  |  | +				{
 | 
	
		
			
				|  |  | +				point_double(pre_comp[i][2*j][0],
 | 
	
		
			
				|  |  | +					pre_comp[i][2*j][1],
 | 
	
		
			
				|  |  | +					pre_comp[i][2*j][2],
 | 
	
		
			
				|  |  | +					pre_comp[i][j][0],
 | 
	
		
			
				|  |  | +					pre_comp[i][j][1],
 | 
	
		
			
				|  |  | +					pre_comp[i][j][2]);
 | 
	
		
			
				|  |  | +				point_add(pre_comp[i][2*j+1][0],
 | 
	
		
			
				|  |  | +					pre_comp[i][2*j+1][1],
 | 
	
		
			
				|  |  | +					pre_comp[i][2*j+1][2],
 | 
	
		
			
				|  |  | +					pre_comp[i][1][0],
 | 
	
		
			
				|  |  | +					pre_comp[i][1][1],
 | 
	
		
			
				|  |  | +					pre_comp[i][1][2],
 | 
	
		
			
				|  |  | +					pre_comp[i][2*j][0],
 | 
	
		
			
				|  |  | +					pre_comp[i][2*j][1],
 | 
	
		
			
				|  |  | +					pre_comp[i][2*j][2]);
 | 
	
		
			
				|  |  | +				}
 | 
	
		
			
				|  |  | +			}
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* the scalar for the generator */
 | 
	
		
			
				|  |  | +	if ((scalar != NULL) && (have_pre_comp))
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		memset(g_secret, 0, sizeof g_secret);
 | 
	
		
			
				|  |  | +		num_bytes = BN_num_bytes(scalar);
 | 
	
		
			
				|  |  | +		/* reduce scalar to 0 <= scalar < 2^224 */
 | 
	
		
			
				|  |  | +		if ((num_bytes > sizeof(felem_bytearray)) || (BN_is_negative(scalar)))
 | 
	
		
			
				|  |  | +			{
 | 
	
		
			
				|  |  | +			/* this is an unusual input, and we don't guarantee
 | 
	
		
			
				|  |  | +			 * constant-timeness */
 | 
	
		
			
				|  |  | +			if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
 | 
	
		
			
				|  |  | +				{
 | 
	
		
			
				|  |  | +				ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
 | 
	
		
			
				|  |  | +				goto err;
 | 
	
		
			
				|  |  | +				}
 | 
	
		
			
				|  |  | +			num_bytes = BN_bn2bin(tmp_scalar, tmp);
 | 
	
		
			
				|  |  | +			}
 | 
	
		
			
				|  |  | +		else
 | 
	
		
			
				|  |  | +			BN_bn2bin(scalar, tmp);
 | 
	
		
			
				|  |  | +		flip_endian(g_secret, tmp, num_bytes);
 | 
	
		
			
				|  |  | +		/* do the multiplication with generator precomputation*/
 | 
	
		
			
				|  |  | +		batch_mul(x_out, y_out, z_out,
 | 
	
		
			
				|  |  | +			(const felem_bytearray (*)) secrets, num_points,
 | 
	
		
			
				|  |  | +			g_secret, (const fslice (*)[16][3][4]) pre_comp,
 | 
	
		
			
				|  |  | +			(const fslice (*)[3][4]) g_pre_comp);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	else
 | 
	
		
			
				|  |  | +		/* do the multiplication without generator precomputation */
 | 
	
		
			
				|  |  | +		batch_mul(x_out, y_out, z_out,
 | 
	
		
			
				|  |  | +			(const felem_bytearray (*)) secrets, num_points,
 | 
	
		
			
				|  |  | +			NULL, (const fslice (*)[16][3][4]) pre_comp, NULL);
 | 
	
		
			
				|  |  | +	/* reduce the output to its unique minimal representation */
 | 
	
		
			
				|  |  | +	felem_contract(x_in, x_out);
 | 
	
		
			
				|  |  | +	felem_contract(y_in, y_out);
 | 
	
		
			
				|  |  | +	felem_contract(z_in, z_out);
 | 
	
		
			
				|  |  | +	if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
 | 
	
		
			
				|  |  | +		(!felem_to_BN(z, z_in)))
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +err:
 | 
	
		
			
				|  |  | +	BN_CTX_end(ctx);
 | 
	
		
			
				|  |  | +	if (generator != NULL)
 | 
	
		
			
				|  |  | +		EC_POINT_free(generator);
 | 
	
		
			
				|  |  | +	if (new_ctx != NULL)
 | 
	
		
			
				|  |  | +		BN_CTX_free(new_ctx);
 | 
	
		
			
				|  |  | +	if (secrets != NULL)
 | 
	
		
			
				|  |  | +		OPENSSL_free(secrets);
 | 
	
		
			
				|  |  | +	if (pre_comp != NULL)
 | 
	
		
			
				|  |  | +		OPENSSL_free(pre_comp);
 | 
	
		
			
				|  |  | +	return ret;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	int ret = 0;
 | 
	
		
			
				|  |  | +	NISTP224_PRE_COMP *pre = NULL;
 | 
	
		
			
				|  |  | +	int i, j;
 | 
	
		
			
				|  |  | +	BN_CTX *new_ctx = NULL;
 | 
	
		
			
				|  |  | +	BIGNUM *x, *y;
 | 
	
		
			
				|  |  | +	EC_POINT *generator = NULL;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	/* throw away old precomputation */
 | 
	
		
			
				|  |  | +	EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,
 | 
	
		
			
				|  |  | +		nistp224_pre_comp_free, nistp224_pre_comp_clear_free);
 | 
	
		
			
				|  |  | +	if (ctx == NULL)
 | 
	
		
			
				|  |  | +		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
 | 
	
		
			
				|  |  | +	BN_CTX_start(ctx);
 | 
	
		
			
				|  |  | +	if (((x = BN_CTX_get(ctx)) == NULL) ||
 | 
	
		
			
				|  |  | +		((y = BN_CTX_get(ctx)) == NULL))
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +	/* get the generator */
 | 
	
		
			
				|  |  | +	if (group->generator == NULL) goto err;
 | 
	
		
			
				|  |  | +	generator = EC_POINT_new(group);
 | 
	
		
			
				|  |  | +	if (generator == NULL)
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +	BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);
 | 
	
		
			
				|  |  | +	BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);
 | 
	
		
			
				|  |  | +	if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +	if ((pre = nistp224_pre_comp_new()) == NULL)
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +	/* if the generator is the standard one, use built-in precomputation */
 | 
	
		
			
				|  |  | +	if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
 | 
	
		
			
				|  |  | +		ret = 1;
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) ||
 | 
	
		
			
				|  |  | +		(!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) ||
 | 
	
		
			
				|  |  | +		(!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z)))
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +	/* compute 2^56*G, 2^112*G, 2^168*G */
 | 
	
		
			
				|  |  | +	for (i = 1; i < 5; ++i)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		point_double(pre->g_pre_comp[2*i][0], pre->g_pre_comp[2*i][1],
 | 
	
		
			
				|  |  | +			pre->g_pre_comp[2*i][2], pre->g_pre_comp[i][0],
 | 
	
		
			
				|  |  | +			pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
 | 
	
		
			
				|  |  | +		for (j = 0; j < 55; ++j)
 | 
	
		
			
				|  |  | +			{
 | 
	
		
			
				|  |  | +			point_double(pre->g_pre_comp[2*i][0],
 | 
	
		
			
				|  |  | +				pre->g_pre_comp[2*i][1],
 | 
	
		
			
				|  |  | +				pre->g_pre_comp[2*i][2],
 | 
	
		
			
				|  |  | +				pre->g_pre_comp[2*i][0],
 | 
	
		
			
				|  |  | +				pre->g_pre_comp[2*i][1],
 | 
	
		
			
				|  |  | +				pre->g_pre_comp[2*i][2]);
 | 
	
		
			
				|  |  | +			}
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +	/* g_pre_comp[0] is the point at infinity */
 | 
	
		
			
				|  |  | +	memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
 | 
	
		
			
				|  |  | +	/* the remaining multiples */
 | 
	
		
			
				|  |  | +	/* 2^56*G + 2^112*G */
 | 
	
		
			
				|  |  | +	point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[2][2]);
 | 
	
		
			
				|  |  | +	/* 2^56*G + 2^168*G */
 | 
	
		
			
				|  |  | +	point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[2][2]);
 | 
	
		
			
				|  |  | +	/* 2^112*G + 2^168*G */
 | 
	
		
			
				|  |  | +	point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[4][2]);
 | 
	
		
			
				|  |  | +	/* 2^56*G + 2^112*G + 2^168*G */
 | 
	
		
			
				|  |  | +	point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
 | 
	
		
			
				|  |  | +		pre->g_pre_comp[2][2]);
 | 
	
		
			
				|  |  | +	for (i = 1; i < 8; ++i)
 | 
	
		
			
				|  |  | +		{
 | 
	
		
			
				|  |  | +		/* odd multiples: add G */
 | 
	
		
			
				|  |  | +		point_add(pre->g_pre_comp[2*i+1][0], pre->g_pre_comp[2*i+1][1],
 | 
	
		
			
				|  |  | +			pre->g_pre_comp[2*i+1][2], pre->g_pre_comp[2*i][0],
 | 
	
		
			
				|  |  | +			pre->g_pre_comp[2*i][1], pre->g_pre_comp[2*i][2],
 | 
	
		
			
				|  |  | +			pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
 | 
	
		
			
				|  |  | +			pre->g_pre_comp[1][2]);
 | 
	
		
			
				|  |  | +		}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +	if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,
 | 
	
		
			
				|  |  | +			nistp224_pre_comp_free, nistp224_pre_comp_clear_free))
 | 
	
		
			
				|  |  | +		goto err;
 | 
	
		
			
				|  |  | +	ret = 1;
 | 
	
		
			
				|  |  | +	pre = NULL;
 | 
	
		
			
				|  |  | + err:
 | 
	
		
			
				|  |  | +	BN_CTX_end(ctx);
 | 
	
		
			
				|  |  | +	if (generator != NULL)
 | 
	
		
			
				|  |  | +		EC_POINT_free(generator);
 | 
	
		
			
				|  |  | +	if (new_ctx != NULL)
 | 
	
		
			
				|  |  | +		BN_CTX_free(new_ctx);
 | 
	
		
			
				|  |  | +	if (pre)
 | 
	
		
			
				|  |  | +		nistp224_pre_comp_free(pre);
 | 
	
		
			
				|  |  | +	return ret;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
 | 
	
		
			
				|  |  | +	{
 | 
	
		
			
				|  |  | +	if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,
 | 
	
		
			
				|  |  | +			nistp224_pre_comp_free, nistp224_pre_comp_clear_free)
 | 
	
		
			
				|  |  | +		!= NULL)
 | 
	
		
			
				|  |  | +		return 1;
 | 
	
		
			
				|  |  | +	else
 | 
	
		
			
				|  |  | +		return 0;
 | 
	
		
			
				|  |  | +	}
 | 
	
		
			
				|  |  | +#endif
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#ifdef TESTING
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include <sys/time.h>
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static u8 ctoh(char c)
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    if (c >= '0' && c <= '9') return c-'0';
 | 
	
		
			
				|  |  | +    if (c >= 'a' && c <= 'f') return c-'a'+10;
 | 
	
		
			
				|  |  | +    if (c >= 'A' && c <= 'F') return c-'A'+10;
 | 
	
		
			
				|  |  | +    return 0;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void arg_to_bytearray(felem_bytearray ba, const char *arg)
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    /* Convert the arg, which is a string like "1a2637c8" to a byte
 | 
	
		
			
				|  |  | +     * array like 0xc8 0x37 0x26 0x1a. */
 | 
	
		
			
				|  |  | +    int size = sizeof(felem_bytearray);
 | 
	
		
			
				|  |  | +    int arglen = strlen(arg);
 | 
	
		
			
				|  |  | +    int argsize = (arglen+1)/2;
 | 
	
		
			
				|  |  | +    const char *argp = arg + arglen;
 | 
	
		
			
				|  |  | +    u8 *bap = ba;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    memset(ba, 0, size);
 | 
	
		
			
				|  |  | +    if (size < argsize) {
 | 
	
		
			
				|  |  | +	fprintf(stderr, "Arg too long: %s\n", arg);
 | 
	
		
			
				|  |  | +	exit(1);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    while (argp > arg+1) {
 | 
	
		
			
				|  |  | +	argp -= 2;
 | 
	
		
			
				|  |  | +	*bap = (ctoh(argp[0])<<4)|(ctoh(argp[1]));
 | 
	
		
			
				|  |  | +	++bap;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    if (arglen & 1) {
 | 
	
		
			
				|  |  | +	/* Handle the stray top nybble */
 | 
	
		
			
				|  |  | +	argp -= 1;
 | 
	
		
			
				|  |  | +	*bap = ctoh(argp[0]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void arg_to_coord(coord c, const char *arg)
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    felem_bytearray ba;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    arg_to_bytearray(ba, arg);
 | 
	
		
			
				|  |  | +    /* Now convert it to a coord */
 | 
	
		
			
				|  |  | +    bin21_to_felem(c, ba);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int main(int argc, char **argv)
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    point infinity, P, Q, P2, PQ;
 | 
	
		
			
				|  |  | +    felem_bytearray s;
 | 
	
		
			
				|  |  | +    int i;
 | 
	
		
			
				|  |  | +    struct timeval st, et;
 | 
	
		
			
				|  |  | +    unsigned long el;
 | 
	
		
			
				|  |  | +    int niter = 1000;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    memset(infinity, 0, sizeof(infinity));
 | 
	
		
			
				|  |  | +    memset(P, 0, sizeof(P));
 | 
	
		
			
				|  |  | +    memset(Q, 0, sizeof(Q));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if (argc != 6) {
 | 
	
		
			
				|  |  | +	fprintf(stderr, "Usage: %s Px Py Qx Qy s\n", argv[0]);
 | 
	
		
			
				|  |  | +	exit(1);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    arg_to_coord(P[0], argv[1]);
 | 
	
		
			
				|  |  | +    arg_to_coord(P[1], argv[2]);
 | 
	
		
			
				|  |  | +    P[2][0] = 1;
 | 
	
		
			
				|  |  | +    dump_point("P", P);
 | 
	
		
			
				|  |  | +    arg_to_coord(Q[0], argv[3]);
 | 
	
		
			
				|  |  | +    arg_to_coord(Q[1], argv[4]);
 | 
	
		
			
				|  |  | +    Q[2][0] = 1;
 | 
	
		
			
				|  |  | +    dump_point("Q", Q);
 | 
	
		
			
				|  |  | +    arg_to_bytearray(s, argv[5]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    point_double(P2[0], P2[1], P2[2], P[0], P[1], P[2]);
 | 
	
		
			
				|  |  | +    affine(P2);
 | 
	
		
			
				|  |  | +    point_add(PQ[0], PQ[1], PQ[2], P[0], P[1], P[2], Q[0], Q[1], Q[2]);
 | 
	
		
			
				|  |  | +    affine(PQ);
 | 
	
		
			
				|  |  | +    dump_point("P2", P2);
 | 
	
		
			
				|  |  | +    dump_point("PQ", PQ);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    gettimeofday(&st, NULL);
 | 
	
		
			
				|  |  | +    for (i=0;i<niter;++i) {
 | 
	
		
			
				|  |  | +	point_mul(P, P, s);
 | 
	
		
			
				|  |  | +	affine(P);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    gettimeofday(&et, NULL);
 | 
	
		
			
				|  |  | +    el = (et.tv_sec-st.tv_sec)*1000000 + (et.tv_usec-st.tv_usec);
 | 
	
		
			
				|  |  | +    fprintf(stderr, "%lu / %d = %lu us\n", el, niter, el/niter);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    dump_point("Ps", P);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    return 0;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +#endif
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/* Figure out whether there's a point with x-coordinate x on the main
 | 
	
		
			
				|  |  | + * curve.  If not, then there's one on the twist curve.  (There are
 | 
	
		
			
				|  |  | + * actually two, which are negatives of each other; that doesn't
 | 
	
		
			
				|  |  | + * matter.)  Multiply that point by seckey and set out to the
 | 
	
		
			
				|  |  | + * x-coordinate of the result. */
 | 
	
		
			
				|  |  | +void ptwist_pointmul(byte out[PTWIST_BYTES], const byte x[PTWIST_BYTES],
 | 
	
		
			
				|  |  | +	const byte seckey[PTWIST_BYTES])
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    /* Compute z = x^3 + a*x + b */
 | 
	
		
			
				|  |  | +    point P, Q;
 | 
	
		
			
				|  |  | +    coord z, r2, Qx;
 | 
	
		
			
				|  |  | +    uint128_t tmp[5];
 | 
	
		
			
				|  |  | +    int ontwist;
 | 
	
		
			
				|  |  | +    static const coord three = { 3, 0, 0 };
 | 
	
		
			
				|  |  | +    static const coord b =
 | 
	
		
			
				|  |  | +	    { 0x46d320e01dc7d6, 0x486ebc69bad316, 0x4e355e95cafedd };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /* Convert the byte array to a coord */
 | 
	
		
			
				|  |  | +    bin21_to_felem(P[0], x);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /* Compute z = x^3 - 3*x + b */
 | 
	
		
			
				|  |  | +    felem_square(tmp, P[0]); felem_reduce(z, tmp);
 | 
	
		
			
				|  |  | +    felem_diff64(z, three);
 | 
	
		
			
				|  |  | +    felem_mul(tmp, z, P[0]); felem_reduce(z, tmp);
 | 
	
		
			
				|  |  | +    felem_sum64(z, b);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /*
 | 
	
		
			
				|  |  | +    dump_coord("z", z);
 | 
	
		
			
				|  |  | +    */
 | 
	
		
			
				|  |  | +    /* Compute r = P[1] = z ^ ((p+1)/4).  This will be a square root of
 | 
	
		
			
				|  |  | +     * z, if one exists. */
 | 
	
		
			
				|  |  | +    felem_sqrt(P[1], z);
 | 
	
		
			
				|  |  | +    /*
 | 
	
		
			
				|  |  | +    dump_coord("r", P[1]);
 | 
	
		
			
				|  |  | +    */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /* Is P[1] a square root of z? */
 | 
	
		
			
				|  |  | +    felem_square(tmp, P[1]); felem_diff_128_64(tmp, z); felem_reduce(r2, tmp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if (felem_is_zero(r2)) {
 | 
	
		
			
				|  |  | +	/* P(x,r) is on the curve */
 | 
	
		
			
				|  |  | +	ontwist = 0;
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +	/* (-x, r) is on the twist */
 | 
	
		
			
				|  |  | +	ontwist = 1;
 | 
	
		
			
				|  |  | +	felem_neg(P[0], P[0]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    /*
 | 
	
		
			
				|  |  | +    fprintf(stderr, "ontwist = %d\n", ontwist);
 | 
	
		
			
				|  |  | +    */
 | 
	
		
			
				|  |  | +    memset(P[2], 0, sizeof(coord));
 | 
	
		
			
				|  |  | +    P[2][0] = 1;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /* All set.  Now do the point multiplication. */
 | 
	
		
			
				|  |  | +    /*
 | 
	
		
			
				|  |  | +    dump_point("P", P);
 | 
	
		
			
				|  |  | +    for(i=0;i<21;++i) {
 | 
	
		
			
				|  |  | +	fprintf(stderr, "%02x", seckey[20-i]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    fprintf(stderr, "\n");
 | 
	
		
			
				|  |  | +    */
 | 
	
		
			
				|  |  | +    point_mul(Q, P, seckey);
 | 
	
		
			
				|  |  | +    affine_x(Qx, Q);
 | 
	
		
			
				|  |  | +    /*
 | 
	
		
			
				|  |  | +    dump_point("Q", Q);
 | 
	
		
			
				|  |  | +    */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /* Get the x-coordinate of the result, and negate it if we're on the
 | 
	
		
			
				|  |  | +     * twist. */
 | 
	
		
			
				|  |  | +    if (ontwist) {
 | 
	
		
			
				|  |  | +	felem_neg(Qx, Qx);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /* Convert back to bytes */
 | 
	
		
			
				|  |  | +    felem_to_bin21(out, Qx);
 | 
	
		
			
				|  |  | +    /*
 | 
	
		
			
				|  |  | +    fprintf(stderr, "out: ");
 | 
	
		
			
				|  |  | +    for(i=0;i<21;++i) {
 | 
	
		
			
				|  |  | +	fprintf(stderr, "%02x", out[i]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    fprintf(stderr, "\n");
 | 
	
		
			
				|  |  | +    */
 | 
	
		
			
				|  |  | +}
 |