/* Name: relay.c
*
* This file contains code that the relay station runs once the TLS handshake for
* a tagged flow has been completed.
*
* These functions will extract covert data from the header
* of HTTP GET requests and insert downstream data into leaf resources
*
* It is also responsible for keeping track of the HTTP state of the flow
*
* Slitheen - a decoy routing system for censorship resistance
* Copyright (C) 2017 Cecylia Bocovich (cbocovic@uwaterloo.ca)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* Additional permission under GNU GPL version 3 section 7
*
* If you modify this Program, or any covered work, by linking or combining
* it with the OpenSSL library (or a modified version of that library),
* containing parts covered by the terms of the OpenSSL Licence and the
* SSLeay license, the licensors of this Program grant you additional
* permission to convey the resulting work. Corresponding Source for a
* non-source form of such a combination shall include the source code
* for the parts of the OpenSSL library used as well as that of the covered
* work.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "relay.h"
#include "slitheen.h"
#include "flow.h"
#include "crypto.h"
#include "util.h"
/** Called when a TLS application record is received for a
* tagged flow. Upstream packets will be checked for covert
* requests to censored sites, downstream packets will be
* replaced with data from the censored queue or with garbage
*
* Inputs:
* f: the tagged flow
* info: the processed received application packet
*
* Output:
* 0 on success, 1 on failure
*/
int replace_packet(flow *f, struct packet_info *info){
if (info == NULL || info->tcp_hdr == NULL){
return 0;
}
#ifdef DEBUG
fprintf(stdout,"Flow: %x:%d > %x:%d (%s)\n", info->ip_hdr->src.s_addr, ntohs(info->tcp_hdr->src_port), info->ip_hdr->dst.s_addr, ntohs(info->tcp_hdr->dst_port), (info->ip_hdr->src.s_addr != f->src_ip.s_addr)? "incoming":"outgoing");
fprintf(stdout,"ID number: %u\n", htonl(info->ip_hdr->id));
fprintf(stdout,"Sequence number: %u\n", htonl(info->tcp_hdr->sequence_num));
fprintf(stdout,"Acknowledgement number: %u\n", htonl(info->tcp_hdr->ack_num));
fflush(stdout);
#endif
if(info->app_data_len <= 0){
return 0;
}
/* if outgoing, decrypt and look at header */
if(info->ip_hdr->src.s_addr == f->src_ip.s_addr){
read_header(f, info);
return 0;
} else {
#ifdef DEBUG
printf("Current sequence number: %d\n", f->downstream_seq_num);
printf("Received sequence number: %d\n", htonl(info->tcp_hdr->sequence_num));
#endif
uint32_t offset = htonl(info->tcp_hdr->sequence_num) - f->downstream_seq_num;
if(offset == 0)
f->downstream_seq_num += info->app_data_len;
/* if incoming, replace with data from queue */
process_downstream(f, offset, info);
#ifdef DEBUG2
uint8_t *p = (uint8_t *) info->tcp_hdr;
fprintf(stdout, "ip hdr length: %d\n", htons(info->ip_hdr->len));
fprintf(stdout, "Injecting the following packet:\n");
for(int i=0; i< htons(info->ip_hdr->len)-1; i++){
fprintf(stdout, "%02x ", p[i]);
}
fprintf(stdout, "\n");
fflush(stdout);
#endif
}
return 0;
}
/** Reads the HTTP header of upstream data and searches for
* a covert request in an x-slitheen header. Sends this
* request to the indicated site and saves the response to
* the censored queue
*
* Inputs:
* f: the tagged flow
* info: the processed received packet
*
* Ouput:
* 0 on success, 1 on failure
*/
int read_header(flow *f, struct packet_info *info){
uint8_t *p = info->app_data;
if (info->tcp_hdr == NULL){
return 0;
}
uint8_t *record_ptr = NULL;
struct record_header *record_hdr;
uint32_t record_length;
if(f->upstream_remaining > 0){
//check to see whether the previous record has finished
if(f->upstream_remaining > info->app_data_len){
//ignore entire packet for now
queue_block *new_block = emalloc(sizeof(queue_block));
uint8_t *block_data = emalloc(info->app_data_len);
memcpy(block_data, p, info->app_data_len);
new_block->len = info->app_data_len;
new_block->offset = 0;
new_block->data = block_data;
new_block->next = NULL;
//add block to upstream data chain
if(f->upstream_queue == NULL){
f->upstream_queue = new_block;
} else {
queue_block *last = f->upstream_queue;
while(last->next != NULL){
last = last->next;
}
last->next = new_block;
}
f->upstream_remaining -= info->app_data_len;
return 0;
} else {
//process what we have
record_hdr = (struct record_header*) f->upstream_queue->data;
record_length = RECORD_LEN(record_hdr);
record_ptr = emalloc(record_length+ RECORD_HEADER_LEN);
queue_block *current = f->upstream_queue;
int32_t offset =0;
while(f->upstream_queue != NULL){
memcpy(record_ptr+offset, current->data, current->len);
offset += current->len;
free(current->data);
f->upstream_queue = current->next;
free(current);
current = f->upstream_queue;
}
memcpy(record_ptr+offset, p, f->upstream_remaining);
p = record_ptr;
record_hdr = (struct record_header*) p;
f->upstream_remaining = 0;
}
} else {
//check to see if the new record is too long
record_hdr = (struct record_header*) p;
record_length = RECORD_LEN(record_hdr);
if(record_length + RECORD_HEADER_LEN > info->app_data_len){
//add info to upstream queue
queue_block *new_block = emalloc(sizeof(queue_block));
uint8_t *block_data = emalloc(info->app_data_len);
memcpy(block_data, p, info->app_data_len);
new_block->len = info->app_data_len;
new_block->data = block_data;
new_block->next = NULL;
//add block to upstream queue
if(f->upstream_queue == NULL){
f->upstream_queue = new_block;
} else {
queue_block *last = f->upstream_queue;
while(last->next != NULL){
last = last->next;
}
last->next = new_block;
}
f->upstream_remaining = record_length - new_block->len;
return 0;
}
}
p+= RECORD_HEADER_LEN;
uint8_t *decrypted_data = emalloc(record_length);
memcpy(decrypted_data, p, record_length);
int32_t decrypted_len = encrypt(f, decrypted_data, decrypted_data, record_length, 0, record_hdr->type, 0, 0);
if(decrypted_len<0){
printf("US: decryption failed!\n");
if(record_ptr != NULL)
free(record_ptr);
free(decrypted_data);
return 0;
}
if(record_hdr->type == 0x15){
printf("received alert %x:%d > %x:%d (%s)\n", info->ip_hdr->src.s_addr, ntohs(info->tcp_hdr->src_port), info->ip_hdr->dst.s_addr, ntohs(info->tcp_hdr->dst_port), (info->ip_hdr->src.s_addr != f->src_ip.s_addr)? "incoming":"outgoing");
for(int i=0; i %x:%d )\n",info->ip_hdr->src.s_addr,ntohs(info->tcp_hdr->src_port), info->ip_hdr->dst.s_addr, ntohs(info->tcp_hdr->dst_port));
printf("%s\n", decrypted_data+EVP_GCM_TLS_EXPLICIT_IV_LEN);
#endif
/* search through decrypted data for x-ignore */
char *header_ptr = strstr((const char *) decrypted_data+EVP_GCM_TLS_EXPLICIT_IV_LEN, "X-Slitheen");
uint8_t *upstream_data;
if(header_ptr == NULL){
if(record_ptr != NULL)
free(record_ptr);
free(decrypted_data);
return 0;
}
#ifdef DEBUG_US
printf("UPSTREAM: Found x-slitheen header\n");
fflush(stdout);
fprintf(stdout,"UPSTREAM Flow: %x:%d > %x:%d (%s)\n", info->ip_hdr->src.s_addr,ntohs(info->tcp_hdr->src_port), info->ip_hdr->dst.s_addr, ntohs(info->tcp_hdr->dst_port) ,(info->ip_hdr->src.s_addr != f->src_ip.s_addr)? "incoming":"outgoing");
fprintf(stdout, "Sequence number: %d\n", ntohs(info->tcp_hdr->sequence_num));
#endif
header_ptr += strlen("X-Slitheen: ");
if(*header_ptr == '\r' || *header_ptr == '\0'){
#ifdef DEBUG_US
printf("No messages\n");
#endif
free(decrypted_data);
return 0;
}
int32_t num_messages = 1;
char *messages[50]; //TODO: grow this array
messages[0] = header_ptr;
char *c = header_ptr;
while(*c != '\r' && *c != '\0'){
if(*c == ' '){
*c = '\0';
messages[num_messages] = c+1;
num_messages ++;
}
c++;
}
c++;
*c = '\0';
#ifdef DEBUG_US
printf("UPSTREAM: Found %d messages\n", num_messages);
#endif
for(int i=0; i< num_messages; i++){
char *message = messages[i];
//b64 decode the data
int32_t decode_len = strlen(message);
if(message[decode_len-2] == '='){
decode_len = decode_len*3/4 - 2;
} else if(message[decode_len-1] == '='){
decode_len = decode_len*3/4 - 1;
} else {
decode_len = decode_len*3/4;
}
upstream_data = emalloc(decode_len + 1);
BIO *bio, *b64;
bio = BIO_new_mem_buf(message, -1);
b64 = BIO_new(BIO_f_base64());
bio = BIO_push(b64, bio);
BIO_set_flags(bio, BIO_FLAGS_BASE64_NO_NL);
int32_t output_len = BIO_read(bio, upstream_data, strlen(message));
BIO_free_all(bio);
#ifdef DEBUG_US
printf("Decoded to get %d bytes:\n", output_len);
for(int j=0; j< output_len; j++){
printf("%02x ", upstream_data[j]);
}
printf("\n");
fflush(stdout);
#endif
p = upstream_data;
if(i== 0){
//this is the Slitheen ID
#ifdef DEBUG_US
printf("Slitheen ID:");
for(int j=0; j< output_len; j++){
printf("%02x ", p[j]);
}
printf("\n");
#endif
//find stream table or create new one
client *last = clients->first;
while(last != NULL){
if(!memcmp(last->slitheen_id, p, output_len)){
f->streams = last->streams;
f->downstream_queue = last->downstream_queue;
f->client_ptr = last;
break;
#ifdef DEBUG_US
} else {
for(int j=0; j< output_len; j++){
printf("%02x ", last->slitheen_id[j]);
}
printf(" != ");
for(int j=0; j< output_len; j++){
printf("%02x ", p[j]);
}
printf("\n");
#endif
}
last = last->next;
}
if(f->streams == NULL){
//create new client
printf("Creating a new client\n");
client *new_client = emalloc(sizeof(client));
memcpy(new_client->slitheen_id, p, output_len);
new_client->streams = emalloc(sizeof(stream_table));
new_client->streams->first = NULL;
new_client->downstream_queue = emalloc(sizeof(data_queue));
sem_init(&(new_client->queue_lock), 0, 1);
new_client->downstream_queue->first_block = NULL;
new_client->encryption_counter = 0;
new_client->next = NULL;
/* Now generate super encryption keys */
generate_client_super_keys(new_client->slitheen_id, new_client);
//add to client table
if(clients->first == NULL){
clients->first = new_client;
} else {
client *last = clients->first;
while(last->next != NULL){
last = last->next;
}
last->next = new_client;
}
//set f's stream table
f->client_ptr = new_client;
f->streams = new_client->streams;
f->downstream_queue = new_client->downstream_queue;
}
free(upstream_data);
continue;
}
while(output_len > 0){
struct sl_up_hdr *sl_hdr = (struct sl_up_hdr *) p;
uint16_t stream_id = sl_hdr->stream_id;
uint16_t stream_len = ntohs(sl_hdr->len);
p += sizeof(struct sl_up_hdr);
output_len -= sizeof(struct sl_up_hdr);
stream_table *streams = f->streams;
//If a thread for this stream id exists, get the thread info and pipe data
int32_t stream_pipe = -1;
stream *last = streams->first;
if(streams->first != NULL){
if(last->stream_id == stream_id){
stream_pipe = last->pipefd;
} else {
while(last->next != NULL){
last = last->next;
if(last->stream_id == stream_id){
stream_pipe = last->pipefd;
break;
}
}
}
}
if(stream_pipe != -1){
if(stream_len ==0){
printf("Client closed. We are here\n");
close(stream_pipe);
break;
}
#ifdef DEBUG_US
printf("Found stream id %d\n", last->stream_id);
printf("Writing %d bytes to pipe\n", stream_len);
#endif
int32_t bytes_sent = write(stream_pipe, p, stream_len);
if(bytes_sent < 0){
printf("Error sending bytes to stream pipe\n");
}
} else if(stream_len > 0){
/*Else, spawn a thread to handle the proxy to this site*/
pthread_t proxy_thread;
int32_t pipefd[2];
if(pipe(pipefd) < 0){
free(decrypted_data);
if(record_ptr != NULL)
free(record_ptr);
return 1;
}
uint8_t *initial_data = emalloc(stream_len);
memcpy(initial_data, p, stream_len);
struct proxy_thread_data *thread_data =
emalloc(sizeof(struct proxy_thread_data));
thread_data->initial_data = initial_data;
thread_data->initial_len = stream_len;
thread_data->stream_id = stream_id;
thread_data->pipefd = pipefd[0];
thread_data->streams = f->streams;
thread_data->downstream_queue = f->downstream_queue;
thread_data->client = f->client_ptr;
pthread_create(&proxy_thread, NULL, proxy_covert_site, (void *) thread_data);
pthread_detach(proxy_thread);
//add stream to table
stream *new_stream = emalloc(sizeof(stream));
new_stream->stream_id = stream_id;
new_stream->pipefd = pipefd[1];
new_stream->next = NULL;
if(streams->first == NULL){
streams->first = new_stream;
} else {
stream *last = streams->first;
while(last->next != NULL){
last = last->next;
}
last->next = new_stream;
}
} else{
printf("Error, stream len 0\n");
break;
}
output_len -= stream_len;
p += stream_len;
}
free(upstream_data);
}
//save a reference to the proxy threads in a global table
free(decrypted_data);
if(record_ptr != NULL)
free(record_ptr);
return 0;
}
/** Called by spawned pthreads in read_header to send upstream
* data to the censored site and receive responses. Downstream
* data is stored in the slitheen id's downstream_queue. Function and
* thread will terminate when the client closes the connection
* to the covert destination
*
* Input:
* A struct that contains the following information:
* - the tagged flow
* - the initial upstream data + len (including connect request)
* - the read end of the pipe
* - the downstream queue for the client
*
*/
void *proxy_covert_site(void *data){
struct proxy_thread_data *thread_data =
(struct proxy_thread_data *) data;
uint8_t *p = thread_data->initial_data;
uint16_t data_len = thread_data->initial_len;
uint16_t stream_id = thread_data->stream_id;
int32_t bytes_sent;
stream_table *streams = thread_data->streams;
data_queue *downstream_queue = thread_data->downstream_queue;
client *clnt = thread_data->client;
struct socks_req *clnt_req = (struct socks_req *) p;
p += 4;
data_len -= 4;
int32_t handle = -1;
//see if it's a connect request
if(clnt_req->cmd != 0x01){
goto err;
}
struct sockaddr_in dest;
dest.sin_family = AF_INET;
uint8_t domain_len;
switch(clnt_req->addr_type){
case 0x01:
//IPv4
dest.sin_addr.s_addr = *((uint32_t*) p);
p += 4;
data_len -= 4;
break;
case 0x03:
//domain name
domain_len = p[0];
p++;
data_len --;
uint8_t *domain_name = emalloc(domain_len+1);
memcpy(domain_name, p, domain_len);
domain_name[domain_len] = '\0';
struct hostent *host;
host = gethostbyname((const char *) domain_name);
dest.sin_addr = *((struct in_addr *) host->h_addr);
p += domain_len;
data_len -= domain_len;
free(domain_name);
break;
case 0x04:
//IPv6
goto err;//TODO: add IPv6 functionality
break;
}
//now set the port
dest.sin_port = *((uint16_t *) p);
p += 2;
data_len -= 2;
handle = socket(AF_INET, SOCK_STREAM, 0);
if(handle < 0){
goto err;
}
struct sockaddr_in my_addr;
socklen_t my_addr_len = sizeof(my_addr);
int32_t error = connect (handle, (struct sockaddr *) &dest, sizeof (struct sockaddr));
#ifdef DEBUG_PROXY
printf("Connected to covert site for stream %d\n", stream_id);
#endif
if(error <0){
goto err;
}
getsockname(handle, (struct sockaddr *) &my_addr, &my_addr_len);
//see if there were extra upstream bytes
if(data_len > 0){
#ifdef DEBUG_PROXY
printf("Data len is %d\n", data_len);
printf("Upstream bytes: ");
for(int i=0; i< data_len; i++){
printf("%02x ", p[i]);
}
printf("\n");
#endif
bytes_sent = send(handle, p,
data_len, 0);
if( bytes_sent <= 0){
goto err;
}
}
uint8_t *buffer = emalloc(BUFSIZ);
int32_t buffer_len = BUFSIZ;
//now select on reading from the pipe and from the socket
for(;;){
fd_set readfds;
fd_set writefds;
int32_t nfds = (handle > thread_data->pipefd) ?
handle +1 : thread_data->pipefd + 1;
FD_ZERO(&readfds);
FD_ZERO(&writefds);
FD_SET(thread_data->pipefd, &readfds);
FD_SET(handle, &readfds);
FD_SET(handle, &writefds);
if (select(nfds, &readfds, &writefds, NULL, NULL) < 0){
printf("select error\n");
break;
}
if(FD_ISSET(thread_data->pipefd, &readfds) && FD_ISSET(handle, &writefds)){
//we have upstream data ready for writing
int32_t bytes_read = read(thread_data->pipefd, buffer, buffer_len);
if(bytes_read > 0){
#ifdef DEBUG_PROXY
printf("PROXY (id %d): read %d bytes from pipe\n", stream_id, bytes_read);
for(int i=0; i< bytes_read; i++){
printf("%02x ", buffer[i]);
}
printf("\n");
printf("%s\n", buffer);
#endif
bytes_sent = send(handle, buffer,
bytes_read, 0);
if( bytes_sent <= 0){
printf("Error sending bytes to covert site (stream %d)\n", stream_id);
break;
} else if (bytes_sent < bytes_read){
printf("Sent less bytes than read to covert site (stream %d)\n", stream_id);
break;
}
} else {
//Client closed the connection, we can delete this stream from the downstream queue
printf("Deleting stream %d from the downstream queue\n", stream_id);
sem_wait(&clnt->queue_lock);
queue_block *last = downstream_queue->first_block;
queue_block *prev = last;
while(last != NULL){
if(last->stream_id == stream_id){
//remove block from queue
printf("removing a block!\n");
fflush(stdout);
if(last == downstream_queue->first_block){
downstream_queue->first_block = last->next;
free(last->data);
free(last);
last = downstream_queue->first_block;
prev = last;
} else {
prev->next = last->next;
free(last->data);
free(last);
last = prev->next;
}
} else {
prev = last;
last = last->next;
}
}
sem_post(&clnt->queue_lock);
printf("Finished deleting from downstream queue\n");
fflush(stdout);
break;
}
}
if (FD_ISSET(handle, &readfds)){
//we have downstream data read for saving
int32_t bytes_read;
bytes_read = recv(handle, buffer, buffer_len, 0);
if(bytes_read > 0){
uint8_t *new_data = emalloc(bytes_read);
memcpy(new_data, buffer, bytes_read);
#ifdef DEBUG_PROXY
printf("PROXY (id %d): read %d bytes from censored site\n",stream_id, bytes_read);
for(int i=0; i< bytes_read; i++){
printf("%02x ", buffer[i]);
}
printf("\n");
#endif
//make a new queue block
queue_block *new_block = emalloc(sizeof(queue_block));
new_block->len = bytes_read;
new_block->offset = 0;
new_block->data = new_data;
new_block->next = NULL;
new_block->stream_id = stream_id;
sem_wait(&clnt->queue_lock);
if(downstream_queue->first_block == NULL){
downstream_queue->first_block = new_block;
}
else{
queue_block *last = downstream_queue->first_block;
while(last->next != NULL)
last = last->next;
last->next = new_block;
}
sem_post(&clnt->queue_lock);
} else {
printf("PROXY (id %d): read %d bytes from censored site\n",stream_id, bytes_read);
break;
}
}
}
printf("Closing connection for stream %d\n", stream_id);
//remove self from list
stream *last = streams->first;
stream *prev = last;
if(streams->first != NULL){
if(last->stream_id == stream_id){
streams->first = last->next;
free(last);
} else {
while(last->next != NULL){
prev = last;
last = last->next;
if(last->stream_id == stream_id){
prev->next = last->next;
free(last);
break;
}
}
}
}
if(thread_data->initial_data != NULL){
free(thread_data->initial_data);
}
free(thread_data);
free(buffer);
close(handle);
pthread_detach(pthread_self());
pthread_exit(NULL);
return 0;
err:
//remove self from list
last = streams->first;
prev = last;
if(streams->first != NULL){
if(last->stream_id == stream_id){
streams->first = last->next;
free(last);
} else {
while(last->next != NULL){
prev = last;
last = last->next;
if(last->stream_id == stream_id){
prev->next = last->next;
free(last);
break;
}
}
}
}
if(thread_data->initial_data != NULL){
free(thread_data->initial_data);
}
free(thread_data);
if(handle > 0){
close(handle);
}
pthread_detach(pthread_self());
pthread_exit(NULL);
return 0;
}
/** Replaces downstream record contents with data from the
* censored queue, padding with garbage bytes if no more
* censored data exists.
*
* Inputs:
* f: the tagged flow
* data: a pointer to the received packet's application
* data
* data_len: the length of the packet's application data
* offset: if the packet is misordered, the number of
* application-level bytes in missing packets
*
* Output:
* Returns 0 on sucess
*/
int process_downstream(flow *f, int32_t offset, struct packet_info *info){
uint8_t changed = 0;
uint8_t *p = info->app_data;
uint32_t remaining_packet_len = info->app_data_len;
if(f->remaining_record_len > 0){
//ignore bytes until the end of the record
if(f->remaining_record_len > remaining_packet_len){ //ignore entire packet
if(f->outbox_len > 0){
changed = 1;
memcpy(p, f->outbox + f->outbox_offset, remaining_packet_len);
f->outbox_len -= remaining_packet_len;
f->outbox_offset += remaining_packet_len;
}
f->remaining_record_len -= remaining_packet_len;
remaining_packet_len -= remaining_packet_len;
} else {
if(f->outbox_len > 0){
changed = 1;
memcpy(p, f->outbox + f->outbox_offset, f->remaining_record_len);
f->outbox_len = 0;
f->outbox_offset=0;
free(f->outbox);
}
p += f->remaining_record_len;
remaining_packet_len -= f->remaining_record_len;
f->remaining_record_len = 0;
}
}
while(remaining_packet_len > 0){ //while bytes remain in the packet
if(remaining_packet_len < RECORD_HEADER_LEN){
#ifdef DEBUG
printf("partial record header: \n");
for(int i= 0; i< remaining_packet_len; i++){
printf("%02x ", p[i]);
}
printf("\n");
fflush(stdout);
#endif
f->partial_record_header = emalloc(RECORD_HEADER_LEN);
memcpy(f->partial_record_header, p, remaining_packet_len);
f->partial_record_header_len = remaining_packet_len;
remaining_packet_len -= remaining_packet_len;
break;
}
struct record_header *record_hdr;
if(f->partial_record_header_len > 0){
memcpy(f->partial_record_header+ f->partial_record_header_len,
p, RECORD_HEADER_LEN - f->partial_record_header_len);
record_hdr = (struct record_header *) f->partial_record_header;
} else {
record_hdr = (struct record_header*) p;
}
uint32_t record_len = RECORD_LEN(record_hdr);
#ifdef DEBUG
fprintf(stdout,"Flow: %x > %x (%s)\n", info->ip_hdr->src.s_addr, info->ip_hdr->dst.s_addr, (info->ip_hdr->src.s_addr != f->src_ip.s_addr)? "incoming":"outgoing");
fprintf(stdout,"ID number: %u\n", htonl(info->ip_hdr->id));
fprintf(stdout,"Sequence number: %u\n", htonl(info->tcp_hdr->sequence_num));
fprintf(stdout,"Acknowledgement number: %u\n", htonl(info->tcp_hdr->ack_num));
fprintf(stdout, "Record:\n");
for(int i=0; i< RECORD_HEADER_LEN; i++){
printf("%02x ", ((uint8_t *) record_hdr)[i]);
}
printf("\n");
fflush(stdout);
#endif
p += (RECORD_HEADER_LEN - f->partial_record_header_len);
remaining_packet_len -= (RECORD_HEADER_LEN - f->partial_record_header_len);
uint8_t *record_ptr = p; //points to the beginning of record data
uint32_t remaining_record_len = record_len;
if(record_len > remaining_packet_len){
int8_t increment_ctr = 1;
f->remaining_record_len = record_len - remaining_packet_len;
if(f->httpstate == PARSE_HEADER || f->httpstate == BEGIN_CHUNK || f->httpstate == END_CHUNK){
#ifdef RESOURCE_DEBUG
printf("record exceeds packet length, FORFEIT\n");
#endif
f->httpstate = FORFEIT_REST;
} else if( f->httpstate == MID_CONTENT || f->httpstate == MID_CHUNK){
f->remaining_response_len -= record_len - 24; //len of IV and padding
if(f->remaining_response_len >= 0 && f->replace_response){
//make a huge record, encrypt it, and then place it in the outbox
f->outbox = emalloc(record_len+1);
f->outbox_len = record_len;
f->outbox_offset = 0;
if(!fill_with_downstream(f, f->outbox + EVP_GCM_TLS_EXPLICIT_IV_LEN , record_len - (EVP_GCM_TLS_EXPLICIT_IV_LEN+ 16))){
//encrypt (not a re-encryption)
int32_t n = encrypt(f, f->outbox, f->outbox,
record_len - 16, 1,
record_hdr->type, 1, 0);
if(n < 0){
fprintf(stdout,"outbox encryption failed\n");
} else {
memcpy(p, f->outbox, remaining_packet_len);
changed = 1;
increment_ctr = 0;
f->outbox_len -= remaining_packet_len;
f->outbox_offset += remaining_packet_len;
}
} else { //failed to fill with downstream data, client unknown
free(f->outbox);
f->outbox = NULL;
f->outbox_len = 0;
f->replace_response = 0;
}
}
if(f->remaining_response_len == 0){
if(f->httpstate == MID_CHUNK)
f->httpstate = END_CHUNK;
else {
f->httpstate = PARSE_HEADER;
}
}
if(f->remaining_response_len < 0){
f->remaining_response_len = 0;
#ifdef RESOURCE_DEBUG
printf("Resource is mid-content and super long record exceeds remaining resource len, FORFEIT\n");
#endif
f->httpstate = FORFEIT_REST;
}
}
if(increment_ctr){//not decrypting record, must increment GCM ctr
fake_encrypt(f, 1);
}
remaining_packet_len -= remaining_packet_len;
if(f->partial_record_header_len > 0){
f->partial_record_header_len = 0;
free(f->partial_record_header);
}
break;
}
//now decrypt the record
int32_t n = encrypt(f, record_ptr, record_ptr, record_len, 1,
record_hdr->type, 0, 0);
if(n < 0){
//do something smarter here
printf("Decryption failed\n");
if(f->partial_record_header_len > 0){
f->partial_record_header_len = 0;
free(f->partial_record_header);
}
return 0;
}
changed = 1;
#ifdef DEBUG_DOWN
printf("Decrypted new record\n");
//printf("Bytes:\n");
//for(int i=0; i< n; i++){
// printf("%02x ", record_ptr[EVP_GCM_TLS_EXPLICIT_IV_LEN+i]);
//}
//printf("\n");
printf("Text:\n");
printf("%s\n", record_ptr+EVP_GCM_TLS_EXPLICIT_IV_LEN);
fflush(stdout);
#endif
p += EVP_GCM_TLS_EXPLICIT_IV_LEN;
char *len_ptr, *needle;
remaining_record_len = n;
while(remaining_record_len > 0){
#ifdef RESOURCE_DEBUG
printf("Current state: %d\n", f->httpstate);
#endif
switch(f->httpstate){
case PARSE_HEADER:
//determine whether it's transfer encoded or otherwise
//figure out what the content-type is
len_ptr = strstr((const char *) p, "Content-Type: image");
if(len_ptr != NULL){
f->replace_response = 1;
memcpy(len_ptr + 14, "sli/theen", 9);
char *c = len_ptr + 14+9;
while(c[0] != '\r'){
c[0] = ' ';
c++;
}
#ifdef RESOURCE_DEBUG
printf("Found and replaced leaf header\n");
#endif
} else {
f->replace_response = 0;
}
//check for 200 OK message
len_ptr = strstr((const char *) p, "200 OK");
if(len_ptr == NULL){
f->replace_response = 0;
}
len_ptr = strstr((const char *) p, "Transfer-Encoding");
if(len_ptr != NULL){
if(!memcmp(len_ptr + 19, "chunked", 7)){
//now find end of header
len_ptr = strstr((const char *) p, "\r\n\r\n");
if(len_ptr != NULL){
f->httpstate = BEGIN_CHUNK;
remaining_record_len -= (((uint8_t *)len_ptr - p) + 4);
p = (uint8_t *) len_ptr + 4;
}
}
} else {
len_ptr = strstr((const char *) p, "Content-Length");
if(len_ptr != NULL){
len_ptr += 15;
f->remaining_response_len = strtol((const char *) len_ptr, NULL, 10);
#ifdef RESOURCE_DEBUG
printf("content-length: %d\n", f->remaining_response_len);
#endif
len_ptr = strstr((const char *) p, "\r\n\r\n");
if(len_ptr != NULL){
f->httpstate = MID_CONTENT;
remaining_record_len -= (((uint8_t *)len_ptr - p) + 4);
p = (uint8_t *) len_ptr + 4;
#ifdef RESOURCE_DEBUG
printf("Remaining record len: %d\n", remaining_record_len);
#endif
} else {
remaining_record_len = 0;
#ifdef RESOURCE_DEBUG
printf("Missing end of header. Sending to FORFEIT_REST\n");
#endif
f->httpstate = FORFEIT_REST;
}
} else {
#ifdef RESOURCE_DEBUG
printf("No content length of transfer encoding field, sending to FORFEIT_REST\n");
#endif
f->httpstate = FORFEIT_REST;
remaining_record_len = 0;
}
}
break;
case MID_CONTENT:
//check if content is replaceable
if(f->remaining_response_len > remaining_record_len){
if(f->replace_response){
fill_with_downstream(f, p, remaining_record_len);
#ifdef DEBUG_DOWN
printf("Replaced with:\n");
for(int i=0; i< remaining_record_len; i++){
printf("%02x ", p[i]);
}
printf("\n");
#endif
}
f->remaining_response_len -= remaining_record_len;
p += remaining_record_len;
remaining_record_len = 0;
} else {
if(f->replace_response){
fill_with_downstream(f, p, remaining_record_len);
#ifdef DEBUG_DOWN
printf("Replaced with:\n");
for(int i=0; i< remaining_record_len; i++){
printf("%02x ", p[i]);
}
printf("\n");
#endif
}
remaining_record_len -= f->remaining_response_len;
p += f->remaining_response_len;
f->httpstate = PARSE_HEADER;
f->remaining_response_len = 0;
}
break;
case BEGIN_CHUNK:
{
int32_t chunk_size = strtol((const char *) p, NULL, 16);
if(chunk_size == 0){
f->httpstate = END_BODY;
} else {
f->httpstate = MID_CHUNK;
}
f->remaining_response_len = chunk_size;
needle = strstr((const char *) p, "\r\n");
if(needle != NULL){
remaining_record_len -= ((uint8_t *) needle - p + 2);
p = (uint8_t *) needle + 2;
} else {
remaining_record_len = 0;
#ifdef RESOURCE_DEBUG
printf("Error parsing in BEGIN_CHUNK, FORFEIT\n");
#endif
f->httpstate = FORFEIT_REST;
}
}
break;
case MID_CHUNK:
if(f->remaining_response_len > remaining_record_len){
if(f->replace_response){
fill_with_downstream(f, p, remaining_record_len);
#ifdef DEBUG_DOWN
printf("Replaced with:\n");
for(int i=0; i< remaining_record_len; i++){
printf("%02x ", p[i]);
}
printf("\n");
#endif
}
f->remaining_response_len -= remaining_record_len;
p += remaining_record_len;
remaining_record_len = 0;
} else {
if(f->replace_response){
fill_with_downstream(f, p, f->remaining_response_len);
#ifdef DEBUG_DOWN
printf("Replaced with:\n");
for(int i=0; i< f->remaining_response_len; i++){
printf("%02x ", p[i]);
}
printf("\n");
#endif
}
remaining_record_len -= f->remaining_response_len;
p += f->remaining_response_len;
f->remaining_response_len = 0;
f->httpstate = END_CHUNK;
}
break;
case END_CHUNK:
needle = strstr((const char *) p, "\r\n");
if(needle != NULL){
f->httpstate = BEGIN_CHUNK;
p += 2;
remaining_record_len -= 2;
} else {
remaining_record_len = 0;
printf("Couldn't find end of chunk, sending to FORFEIT_REST\n");
f->httpstate = FORFEIT_REST;
}
break;
case END_BODY:
needle = strstr((const char *) p, "\r\n");
if(needle != NULL){
f->httpstate = PARSE_HEADER;
p += 2;
remaining_record_len -= 2;
} else {
remaining_record_len = 0;
printf("Couldn't find end of body, sending to FORFEIT_REST\n");
f->httpstate = FORFEIT_REST;
}
break;
case FORFEIT_REST:
case USE_REST:
remaining_record_len = 0;
break;
default:
break;
}
}
#ifdef DEBUG_DOWN
if(changed && f->replace_response){
printf("Resource is now\n");
printf("Bytes:\n");
for(int i=0; i< n; i++){
printf("%02x ", record_ptr[EVP_GCM_TLS_EXPLICIT_IV_LEN+i]);
}
printf("\n");
printf("Text:\n");
printf("%s\n", record_ptr+EVP_GCM_TLS_EXPLICIT_IV_LEN);
fflush(stdout);
}
#endif
if((n = encrypt(f, record_ptr, record_ptr,
n + EVP_GCM_TLS_EXPLICIT_IV_LEN, 1, record_hdr->type,
1, 1)) < 0){
printf("UH OH, failed to re-encrypt record\n");
if(f->partial_record_header_len > 0){
f->partial_record_header_len = 0;
free(f->partial_record_header);
}
return 0;
}
p = record_ptr + record_len;
remaining_packet_len -= record_len;
if(f->partial_record_header_len > 0){
f->partial_record_header_len = 0;
free(f->partial_record_header);
}
}
if(changed){
tcp_checksum(info);
}
return 0;
}
/** Fills a given pointer with downstream data of the specified length. If no downstream data
* exists, pads it with garbage bytes. All downstream data is accompanied by a stream id and
* lengths of both the downstream data and garbage data
*
* Inputs:
* data: a pointer to where the downstream data should be entered
* length: The length of the downstream data required
*
*/
int fill_with_downstream(flow *f, uint8_t *data, int32_t length){
uint8_t *p = data;
int32_t remaining = length;
struct slitheen_header *sl_hdr;
data_queue *downstream_queue = f->downstream_queue;
client *client_ptr = f->client_ptr;
if(client_ptr == NULL){
printf("ERROR: no client\n");
return 1;
}
//Fill as much as we can from the censored_queue
//Note: need enough for the header and one block of data (16 byte IV, 16 byte
// block, 16 byte MAC) = header_len + 48.
while((remaining > (SLITHEEN_HEADER_LEN + 48)) && downstream_queue != NULL && downstream_queue->first_block != NULL){
//amount of data we'll actualy fill with (16 byte IV and 16 byte MAC)
int32_t fill_amount = remaining - SLITHEEN_HEADER_LEN - 32;
fill_amount -= fill_amount % 16; //rounded down to nearest block size
sem_wait(&client_ptr->queue_lock);
queue_block *first_block = downstream_queue->first_block;
int32_t block_length = first_block->len;
int32_t offset = first_block->offset;
#ifdef DEBUG
printf("Censored queue is at %p.\n", first_block);
printf("This block has %d bytes left\n", block_length - offset);
printf("We need %d bytes\n", remaining - SLITHEEN_HEADER_LEN);
#endif
uint8_t *encrypted_data = p;
sl_hdr = (struct slitheen_header *) p;
sl_hdr->counter = ++(client_ptr->encryption_counter);
sl_hdr->stream_id = first_block->stream_id;
sl_hdr->len = 0x0000;
sl_hdr->garbage = 0x0000;
sl_hdr->zeros = 0x0000;
p += SLITHEEN_HEADER_LEN;
remaining -= SLITHEEN_HEADER_LEN;
p += 16; //iv length
remaining -= 16;
if(block_length > offset + fill_amount){
//use part of the block, update offset
memcpy(p, first_block->data+offset, fill_amount);
first_block->offset += fill_amount;
p += fill_amount;
sl_hdr->len = fill_amount;
remaining -= fill_amount;
} else {
//use all of the block and free it
memcpy(p, first_block->data+offset, block_length - offset);
free(first_block->data);
downstream_queue->first_block = first_block->next;
free(first_block);
p += (block_length - offset);
sl_hdr->len = (block_length - offset);
remaining -= (block_length - offset);
}
sem_post(&client_ptr->queue_lock);
//pad to 16 bytes if necessary
uint8_t padding = 0;
if(sl_hdr->len %16){
padding = 16 - (sl_hdr->len)%16;
memset(p, padding, padding);
remaining -= padding;
p += padding;
}
p += 16;
remaining -= 16;
//fill rest of packet with padding, if needed
if(remaining < SLITHEEN_HEADER_LEN){
RAND_bytes(p, remaining);
sl_hdr->garbage = htons(remaining);
p += remaining;
remaining -= remaining;
}
int16_t data_len = sl_hdr->len;
sl_hdr->len = htons(sl_hdr->len);
//now encrypt
super_encrypt(client_ptr, encrypted_data, data_len + padding);
#ifdef DEBUG_DOWN
printf("DWNSTRM: slitheen header: ");
for(int i=0; i< SLITHEEN_HEADER_LEN; i++){
printf("%02x ",((uint8_t *) sl_hdr)[i]);
}
printf("\n");
printf("Sending %d downstream bytes:", data_len);
for(int i=0; i< data_len+16+16; i++){
printf("%02x ", ((uint8_t *) sl_hdr)[i+SLITHEEN_HEADER_LEN]);
}
printf("\n");
#endif
}
//now, if we need more data, fill with garbage
if(remaining >= SLITHEEN_HEADER_LEN ){
sl_hdr = (struct slitheen_header *) p;
sl_hdr->counter = 0x00;
sl_hdr->stream_id = 0x00;
remaining -= SLITHEEN_HEADER_LEN;
sl_hdr->len = 0x00;
sl_hdr->garbage = htons(remaining);
sl_hdr->zeros = 0x0000;
#ifdef DEBUG_DOWN
printf("DWNSTRM: slitheen header: ");
for(int i=0; i< SLITHEEN_HEADER_LEN; i++){
printf("%02x ", p[i]);
}
printf("\n");
#endif
//encrypt slitheen header
super_encrypt(client_ptr, p, 0);
p += SLITHEEN_HEADER_LEN;
RAND_bytes(p, remaining);
} else if(remaining > 0){
//fill with random data
RAND_bytes(p, remaining);
}
return 0;
}
/** Computes the TCP checksum of the data according to RFC 793
* sum all 16-bit words in the segment, pad the last word if
* needed
*
* there is a pseudo-header prefixed to the segment and
* included in the checksum:
*
* +--------+--------+--------+--------+
* | Source Address |
* +--------+--------+--------+--------+
* | Destination Address |
* +--------+--------+--------+--------+
* | zero | PTCL | TCP Length |
* +--------+--------+--------+--------+
*/
uint16_t tcp_checksum(struct packet_info *info){
uint16_t tcp_length = info->app_data_len + info->size_tcp_hdr;
struct in_addr src = info->ip_hdr->src;
struct in_addr dst = info->ip_hdr->dst;
uint8_t proto = IPPROTO_TCP;
//set the checksum to zero
info->tcp_hdr->chksum = 0;
//sum pseudoheader
uint32_t sum = (ntohl(src.s_addr)) >> 16;
sum += (ntohl(src.s_addr)) &0xFFFF;
sum += (ntohl(dst.s_addr)) >> 16;
sum += (ntohl(dst.s_addr)) & 0xFFFF;
sum += proto;
sum += tcp_length;
//sum tcp header (with zero-d checksum)
uint8_t *p = (uint8_t *) info->tcp_hdr;
for(int i=0; i < info->size_tcp_hdr; i+=2){
sum += (uint16_t) ((p[i] << 8) + p[i+1]);
}
//now sum the application data
p = info->app_data;
for(int i=0; i< info->app_data_len-1; i+=2){
sum += (uint16_t) ((p[i] << 8) + p[i+1]);
}
if(info->app_data_len %2 != 0){
sum += (uint16_t) (p[info->app_data_len - 1]) << 8;
}
//now add most significant to last significant bits
sum = (sum >> 16) + (sum & 0xFFFF);
sum += sum >>16;
//now subtract from 0xFF
sum = 0xFFFF - sum;
//set chksum to calculated value
info->tcp_hdr->chksum = ntohs(sum);
return (uint16_t) sum;
}