#include "ptwist.h" /* 32-bit version of ptwist168.c by Ian Goldberg. Based on: */ /* crypto/ec/ecp_nistp224.c */ /* * Written by Emilia Kasper (Google) for the OpenSSL project. */ /* ==================================================================== * Copyright (c) 2000-2010 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication * * Inspired by Daniel J. Bernstein's public domain nistp224 implementation * and Adam Langley's public domain 64-bit C implementation of curve25519 */ #include #include typedef uint8_t u8; /******************************************************************************/ /* INTERNAL REPRESENTATION OF FIELD ELEMENTS * * Field elements are represented as sum_{i=0}^{6} 2^{24*i}*a_i * where each slice a_i is a 32-bit word, i.e., a field element is an fslice * array a with 7 elements, where a[i] = a_i. * Outputs from multiplications are represented as unreduced polynomials * sum_{i=0}^{12} 2^{24*i}*b_i * where each b_i is a 64-bit word. We ensure that inputs to each field * multiplication satisfy a_i < 2^30, so outputs satisfy b_i < 4*2^30*2^30, * and fit into a 128-bit word without overflow. The coefficients are then * again partially reduced to a_i < 2^25. We only reduce to the unique * minimal representation at the end of the computation. * */ typedef uint32_t fslice; typedef fslice coord[7]; typedef coord point[3]; #include #include static void dump_coord(const char *label, const coord c) { if (label) fprintf(stderr, "%s: ", label); printf("%016lx %016lx %016lx %016lx %016lx %016lx %016lx\n", c[6], c[5], c[4], c[3], c[2], c[1], c[0]); } static void dump_point(const char *label, point p) { if (label) fprintf(stderr, "%s:\n", label); dump_coord(" x", p[0]); dump_coord(" y", p[1]); dump_coord(" z", p[2]); } /* Field element represented as a byte arrary. * 21*8 = 168 bits is also the group order size for the elliptic curve. */ typedef u8 felem_bytearray[21]; static const felem_bytearray ptwist168_curve_params[5] = { {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, 0xFF}, {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFE, 0xFC}, {0x4E,0x35,0x5E,0x95,0xCA,0xFE,0xDD,0x48,0x6E,0xBC, /* b */ 0x69,0xBA,0xD3,0x16,0x46,0xD3,0x20,0xE0,0x1D,0xC7, 0xD6}, {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x02}, {0xEA,0x67,0x47,0xB7,0x5A,0xF8,0xC7,0xF9,0x3C,0x1F, /* y */ 0x5E,0x6D,0x32,0x0F,0x88,0xB9,0xBE,0x15,0x66,0xD2, 0xF2} }; /* Helper functions to convert field elements to/from internal representation */ static void bin21_to_felem(fslice out[7], const u8 in[21]) { out[0] = *((const uint32_t *)(in)) & 0x00ffffff; out[1] = (*((const uint32_t *)(in+3))) & 0x00ffffff; out[2] = (*((const uint32_t *)(in+6))) & 0x00ffffff; out[3] = (*((const uint32_t *)(in+9))) & 0x00ffffff; out[4] = (*((const uint32_t *)(in+12))) & 0x00ffffff; out[5] = (*((const uint32_t *)(in+15))) & 0x00ffffff; out[6] = (*((const uint32_t *)(in+18))) & 0x00ffffff; } static void felem_to_bin21(u8 out[21], const fslice in[7]) { unsigned i; for (i = 0; i < 3; ++i) { out[i] = in[0]>>(8*i); out[i+3] = in[1]>>(8*i); out[i+6] = in[2]>>(8*i); out[i+9] = in[3]>>(8*i); out[i+12] = in[4]>>(8*i); out[i+15] = in[5]>>(8*i); out[i+18] = in[6]>>(8*i); } } #if 0 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ static void flip_endian(u8 *out, const u8 *in, unsigned len) { unsigned i; for (i = 0; i < len; ++i) out[i] = in[len-1-i]; } #endif /******************************************************************************/ /* FIELD OPERATIONS * * Field operations, using the internal representation of field elements. * NB! These operations are specific to our point multiplication and cannot be * expected to be correct in general - e.g., multiplication with a large scalar * will cause an overflow. * */ /* Sum two field elements: out += in */ static void felem_sum64(fslice out[7], const fslice in[7]) { out[0] += in[0]; out[1] += in[1]; out[2] += in[2]; out[3] += in[3]; out[4] += in[4]; out[5] += in[5]; out[6] += in[6]; } /* Subtract field elements: out -= in */ /* Assumes in[i] < 2^25 */ static void felem_diff64(fslice out[7], const fslice in[7]) { /* a = 3*2^24 - 3 */ /* b = 3*2^24 - 3*257 */ static const uint32_t a = (((uint32_t) 3) << 24) - ((uint32_t) 3); static const uint32_t b = (((uint32_t) 3) << 24) - ((uint32_t) 771); /* Add 0 mod 2^168-2^8-1 to ensure out > in at each element */ out[0] += b; out[1] += a; out[2] += a; out[3] += a; out[4] += a; out[5] += a; out[6] += a; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; out[4] -= in[4]; out[5] -= in[5]; out[6] -= in[6]; } /* Subtract in unreduced 64-bit mode: out64 -= in64 */ /* Assumes in[i] < 2^55 */ static void felem_diff128(uint64_t out[13], const uint64_t in[13]) { /* a = 3*2^54 b = 3*2^54 - 49536 c = 3*2^54 - 49344 d = 3*2^54 - 12730752 a*2^{288..168} + b*2^{144..48} + c*2^24 + d = 0 mod p */ static const uint64_t a = (((uint64_t)3) << 54); static const uint64_t b = (((uint64_t)3) << 54) - ((uint64_t) 49536); static const uint64_t c = (((uint64_t)3) << 54) - ((uint64_t) 49344); static const uint64_t d = (((uint64_t)3) << 54) - ((uint64_t) 12730752); /* Add 0 mod 2^168-2^8-1 to ensure out > in */ out[0] += d; out[1] += c; out[2] += b; out[3] += b; out[4] += b; out[5] += b; out[6] += b; out[7] += a; out[8] += a; out[9] += a; out[10] += a; out[11] += a; out[12] += a; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; out[4] -= in[4]; out[5] -= in[5]; out[6] -= in[6]; out[7] -= in[7]; out[8] -= in[8]; out[9] -= in[9]; out[10] -= in[10]; out[11] -= in[11]; out[12] -= in[12]; } /* Subtract in mixed mode: out64 -= in32 */ /* in[i] < 2^31 */ static void felem_diff_128_64(uint64_t out[13], const fslice in[7]) { /* a = 3*2^30 - 192 b = 3*2^30 - 49344 a*2^{144..24} + b = 0 mod p */ static const uint64_t a = (((uint64_t) 3) << 30) - ((uint64_t) 192); static const uint64_t b = (((uint64_t) 3) << 30) - ((uint64_t) 49344); /* Add 0 mod 2^168-2^8-1 to ensure out > in */ out[0] += b; out[1] += a; out[2] += a; out[3] += a; out[4] += a; out[5] += a; out[6] += a; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; out[4] -= in[4]; out[5] -= in[5]; out[6] -= in[6]; } /* Multiply a field element by a scalar: out64 = out64 * scalar * The scalars we actually use are small, so results fit without overflow */ static void felem_scalar64(fslice out[7], const fslice scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; out[4] *= scalar; out[5] *= scalar; out[6] *= scalar; } /* Multiply an unreduced field element by a scalar: out128 = out128 * scalar * The scalars we actually use are small, so results fit without overflow */ static void felem_scalar128(uint64_t out[13], const uint128_t scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; out[4] *= scalar; out[5] *= scalar; out[6] *= scalar; out[7] *= scalar; out[8] *= scalar; out[9] *= scalar; out[10] *= scalar; out[11] *= scalar; out[12] *= scalar; } /* Square a field element: out = in^2 */ static void felem_square(uint64_t out[13], const fslice in[7]) { out[0] = ((uint64_t) in[0]) * in[0]; out[1] = ((uint64_t) in[0]) * in[1] * 2; out[2] = ((uint64_t) in[0]) * in[2] * 2 + ((uint64_t) in[1]) * in[1]; out[3] = ((uint64_t) in[1]) * in[2] * 2 + ((uint64_t) in[3]) * in[0] * 2; out[4] = ((uint64_t) in[2]) * in[2] + ((uint64_t) in[3]) * in[1] * 2 + ((uint64_t) in[4]) * in[0] * 2; out[5] = ((uint64_t) in[3]) * in[2] * 2 + ((uint64_t) in[4]) * in[1] * 2 + ((uint64_t) in[5]) * in[0] * 2; out[6] = ((uint64_t) in[3]) * in[3] + ((uint64_t) in[4]) * in[2] * 2 + ((uint64_t) in[5]) * in[1] * 2 + ((uint64_t) in[6]) * in[0] * 2; out[7] = ((uint64_t) in[4]) * in[3] * 2 + ((uint64_t) in[5]) * in[2] * 2 + ((uint64_t) in[6]) * in[1] * 2; out[8] = ((uint64_t) in[4]) * in[4] + ((uint64_t) in[5]) * in[3] * 2 + ((uint64_t) in[6]) * in[2] * 2; out[9] = ((uint64_t) in[5]) * in[4] * 2 + ((uint64_t) in[6]) * in[3] * 2; out[10] = ((uint64_t) in[5]) * in[5] + ((uint64_t) in[6]) * in[4] * 2; out[11] = ((uint64_t) in[6]) * in[5] * 2; out[12] = ((uint64_t) in[6]) * in[6]; } /* Multiply two field elements: out = in1 * in2 */ static void felem_mul(uint64 out[13], const fslice in1[7], const fslice in2[7]) { out[0] = ((uint64_t) in1[0]) * in2[0]; out[1] = ((uint64_t) in1[0]) * in2[1] + ((uint64_t) in1[1]) * in2[0]; out[2] = ((uint64_t) in1[0]) * in2[2] + ((uint64_t) in1[1]) * in2[1] + ((uint64_t) in1[2]) * in2[0]; out[3] = ((uint64_t) in1[0]) * in2[3] + ((uint64_t) in1[1]) * in2[2] + ((uint64_t) in1[2]) * in2[1] + ((uint64_t) in1[3]) * in2[0]; out[4] = ((uint64_t) in1[0]) * in2[4] + ((uint64_t) in1[1]) * in2[3] + ((uint64_t) in1[2]) * in2[2] + ((uint64_t) in1[3]) * in2[1] + ((uint64_t) in1[4]) * in2[0]; out[5] = ((uint64_t) in1[0]) * in2[5] + ((uint64_t) in1[1]) * in2[4] + ((uint64_t) in1[2]) * in2[3] + ((uint64_t) in1[3]) * in2[2] + ((uint64_t) in1[4]) * in2[1] + ((uint64_t) in1[5]) * in2[0]; out[6] = ((uint64_t) in1[0]) * in2[6] + ((uint64_t) in1[1]) * in2[5] + ((uint64_t) in1[2]) * in2[4] + ((uint64_t) in1[3]) * in2[3] + ((uint64_t) in1[4]) * in2[2] + ((uint64_t) in1[5]) * in2[1] + ((uint64_t) in1[6]) * in2[0]; out[7] = ((uint64_t) in1[1]) * in2[6] + ((uint64_t) in1[2]) * in2[5] + ((uint64_t) in1[3]) * in2[4] + ((uint64_t) in1[4]) * in2[3] + ((uint64_t) in1[5]) * in2[2] + ((uint64_t) in1[6]) * in2[1]; out[8] = ((uint64_t) in1[2]) * in2[6] + ((uint64_t) in1[3]) * in2[5] + ((uint64_t) in1[4]) * in2[4] + ((uint64_t) in1[5]) * in2[3] + ((uint64_t) in1[6]) * in2[2]; out[9] = ((uint64_t) in1[3]) * in2[6] + ((uint64_t) in1[4]) * in2[5] + ((uint64_t) in1[5]) * in2[4] + ((uint64_t) in1[6]) * in2[3]; out[10] = ((uint64_t) in1[4]) * in2[6] + ((uint64_t) in1[5]) * in2[5] + ((uint64_t) in1[6]) * in2[4]; out[11] = ((uint64_t) in1[5]) * in2[6] + ((uint64_t) in1[6]) * in2[5]; out[12] = ((uint64_t) in1[6]) * in2[6]; } #define M257(x) (((x)<<8)+(x)) /* XXX: here */ /* Reduce 128-bit coefficients to 64-bit coefficients. Requires in[i] < 2^126, * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^57 */ static void felem_reduce(fslice out[7], const uint64_t in[13]) { static const uint64_t two24m1 = (((uint64_t) 1)<<24) - ((uint64_t)1); uint64_t output[7]; output[0] = in[0]; /* < 2^126 */ output[1] = in[1]; /* < 2^126 */ output[2] = in[2]; /* < 2^126 */ /* Eliminate in[3], in[4] */ output[2] += M257(in[4] >> 56); /* < 2^126 + 2^79 */ output[1] += M257(in[4] & two56m1); /* < 2^126 + 2^65 */ output[1] += M257(in[3] >> 56); /* < 2^126 + 2^65 + 2^79 */ output[0] += M257(in[3] & two56m1); /* < 2^126 + 2^65 */ /* Eliminate the top part of output[2] */ output[0] += M257(output[2] >> 56); /* < 2^126 + 2^65 + 2^79 */ output[2] &= two56m1; /* < 2^56 */ /* Carry 0 -> 1 -> 2 */ output[1] += output[0] >> 56; /* < 2^126 + 2^71 */ output[0] &= two56m1; /* < 2^56 */ output[2] += output[1] >> 56; /* < 2^71 */ output[1] &= two56m1; /* < 2^56 */ /* Eliminate the top part of output[2] */ output[0] += M257(output[2] >> 56); /* < 2^57 */ output[2] &= two56m1; /* < 2^56 */ /* Carry 0 -> 1 -> 2 */ output[1] += output[0] >> 56; /* <= 2^56 */ out[0] = output[0] & two56m1; /* < 2^56 */ out[2] = output[2] + (output[1] >> 56); /* <= 2^56 */ out[1] = output[1] & two56m1; /* < 2^56 */ } /* Reduce to unique minimal representation */ static void felem_contract(fslice out[3], const fslice in[3]) { static const uint64_t two56m1 = (((uint64_t) 1)<<56) - ((uint64_t)1); static const uint64_t two56m257 = (((uint64_t) 1)<<56) - ((uint64_t)257); uint64_t a; /* in[0] < 2^56, in[1] < 2^56, in[2] <= 2^56 */ /* so in < 2*p for sure */ /* Eliminate the top part of in[2] */ out[0] = in[0] + M257(in[2] >> 56); /* < 2^57 */ out[2] = in[2] & two56m1; /* < 2^56, but if out[0] >= 2^56 then out[2] now = 0 */ /* Carry 0 -> 1 -> 2 */ out[1] = in[1] + (out[0] >> 56); /* < 2^56 + 2, but if out[1] >= 2^56 then out[2] = 0 */ out[0] &= two56m1; /* < 2^56 */ out[2] += out[1] >> 56; /* < 2^56 due to the above */ out[1] &= two56m1; /* < 2^56 */ /* Now out < 2^168, but it could still be > p */ a = ((out[2] == two56m1) & (out[1] == two56m1) & (out[0] >= two56m257)); out[2] -= two56m1*a; out[1] -= two56m1*a; out[0] -= two56m257*a; } /* Negate a field element: out = -in */ /* Assumes in[i] < 2^57 */ static void felem_neg(fslice out[3], const fslice in[3]) { /* a = 3*2^56 - 3 */ /* b = 3*2^56 - 3*257 */ static const uint64_t a = (((uint64_t) 3) << 56) - ((uint64_t) 3); static const uint64_t b = (((uint64_t) 3) << 56) - ((uint64_t) 771); static const uint64_t two56m1 = (((uint64_t) 1) << 56) - ((uint64_t) 1); fslice tmp[3]; /* Add 0 mod 2^168-2^8-1 to ensure out > in at each element */ /* a*2^112 + a*2^56 + b = 3*p */ tmp[0] = b - in[0]; tmp[1] = a - in[1]; tmp[2] = a - in[2]; /* Carry 0 -> 1 -> 2 */ tmp[1] += tmp[0] >> 56; tmp[0] &= two56m1; /* < 2^56 */ tmp[2] += tmp[1] >> 56; /* < 2^71 */ tmp[1] &= two56m1; /* < 2^56 */ felem_contract(out, tmp); } /* Zero-check: returns 1 if input is 0, and 0 otherwise. * We know that field elements are reduced to in < 2^169, * so we only need to check three cases: 0, 2^168 - 2^8 - 1, * and 2^169 - 2^9 - 2 */ static fslice felem_is_zero(const fslice in[3]) { fslice zero, two168m8m1, two169m9m2; static const uint64_t two56m1 = (((uint64_t) 1)<<56) - ((uint64_t)1); static const uint64_t two56m257 = (((uint64_t) 1)<<56) - ((uint64_t)257); static const uint64_t two57m1 = (((uint64_t) 1)<<57) - ((uint64_t)1); static const uint64_t two56m514 = (((uint64_t) 1)<<56) - ((uint64_t)514); zero = (in[0] == 0) & (in[1] == 0) & (in[2] == 0); two168m8m1 = (in[2] == two56m1) & (in[1] == two56m1) & (in[0] == two56m257); two169m9m2 = (in[2] == two57m1) & (in[1] == two56m1) & (in[0] == two56m514); return (zero | two168m8m1 | two169m9m2); } /* Invert a field element */ static void felem_inv(fslice out[3], const fslice in[3]) { fslice ftmp[3], ftmp2[3], ftmp3[3], ftmp4[3]; uint128_t tmp[5]; unsigned i; felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2 */ felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 1 */ /* = ftmp */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^3 - 2 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^4 - 2^2 */ felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* 2^4 - 1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^5 - 2 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^6 - 2^2 */ felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 1 */ /* = ftmp */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ for (i = 0; i < 5; ++i) /* 2^12 - 2^6 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^12 - 1 */ /* = ftmp3 */ felem_square(tmp, ftmp3); felem_reduce(ftmp2, tmp); /* 2^13 - 2 */ for (i = 0; i < 11; ++i) /* 2^24 - 2^12 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp2, ftmp3); felem_reduce(ftmp3, tmp); /* 2^24 - 1 */ /* = ftmp3 */ felem_square(tmp, ftmp3); felem_reduce(ftmp2, tmp); /* 2^25 - 2 */ for (i = 0; i < 23; ++i) /* 2^48 - 2^24 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp2, ftmp3); felem_reduce(ftmp4, tmp); /* 2^48 - 1 */ /* = ftmp4 */ felem_square(tmp, ftmp4); felem_reduce(ftmp2, tmp); /* 2^49 - 2 */ for (i = 0; i < 23; ++i) /* 2^72 - 2^24 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp2, ftmp3); felem_reduce(ftmp4, tmp); /* 2^72 - 1 */ /* = ftmp4 */ felem_square(tmp, ftmp4); felem_reduce(ftmp2, tmp); /* 2^73 - 2 */ for (i = 0; i < 5; ++i) /* 2^78 - 2^6 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^78 - 1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^79 - 2 */ felem_mul(tmp, in, ftmp2); felem_reduce(ftmp4, tmp); /* 2^79 - 1 */ /* = ftmp4 */ felem_square(tmp, ftmp4); felem_reduce(ftmp2, tmp); /* 2^80 - 2 */ for (i = 0; i < 78; ++i) /* 2^158 - 2^79 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp4, ftmp2); felem_reduce(ftmp2, tmp); /* 2^158 - 1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^159 - 2 */ felem_mul(tmp, in, ftmp2); felem_reduce(ftmp2, tmp); /* 2^159 - 1 */ for (i = 0; i < 7; ++i) /* 2^166 - 2^7 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^166 - 2^6 - 1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^167 - 2^7 - 2 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^168 - 2^8 - 4 */ felem_mul(tmp, in, ftmp2); felem_reduce(out, tmp); /* 2^168 - 2^8 - 3 */ /* = out */ } /* Take the square root of a field element */ static void felem_sqrt(fslice out[3], const fslice in[3]) { fslice ftmp[3], ftmp2[3]; uint128_t tmp[5]; unsigned i; felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2 */ felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 1 */ /* = ftmp */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^3 - 2 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^4 - 2^2 */ felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* 2^4 - 1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^5 - 2 */ felem_mul(tmp, ftmp2, in); felem_reduce(ftmp, tmp); /* 2^5 - 1 */ /* = ftmp */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^6 - 2 */ for (i = 0; i < 4; ++i) /* 2^10 - 2^5 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp, tmp); /* 2^10 - 1 */ /* = ftmp */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^11 - 2 */ for (i = 0; i < 9; ++i) /* 2^20 - 2^10 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^20 - 1 */ /* = ftmp */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^21 - 2 */ for (i = 0; i < 19; ++i) /* 2^40 - 2^20 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^40 - 1 */ /* = ftmp */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^41 - 2 */ for (i = 0; i < 39; ++i) /* 2^80 - 2^40 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^80 - 1 */ /* = ftmp */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^81 - 2 */ for (i = 0; i < 79; ++i) /* 2^160 - 2^80 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^160 - 1 */ for (i = 0; i < 5; ++i) /* 2^165 - 2^5 */ { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_square(tmp, ftmp2); felem_reduce(out, tmp); /* 2^166 - 2^6 */ /* = out */ } /* Copy in constant time: * if icopy == 1, copy in to out, * if icopy == 0, copy out to itself. */ static void copy_conditional(fslice *out, const fslice *in, unsigned len, fslice icopy) { unsigned i; /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */ const fslice copy = -icopy; for (i = 0; i < len; ++i) { const fslice tmp = copy & (in[i] ^ out[i]); out[i] ^= tmp; } } /* Copy in constant time: * if isel == 1, copy in2 to out, * if isel == 0, copy in1 to out. */ static void select_conditional(fslice *out, const fslice *in1, const fslice *in2, unsigned len, fslice isel) { unsigned i; /* isel is a (64-bit) 0 or 1, so sel is either all-zero or all-one */ const fslice sel = -isel; for (i = 0; i < len; ++i) { const fslice tmp = sel & (in1[i] ^ in2[i]); out[i] = in1[i] ^ tmp; } } /******************************************************************************/ /* ELLIPTIC CURVE POINT OPERATIONS * * Points are represented in Jacobian projective coordinates: * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), * or to the point at infinity if Z == 0. * */ /* Double an elliptic curve point: * (X', Y', Z') = 2 * (X, Y, Z), where * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, * while x_out == y_in is not (maybe this works, but it's not tested). */ static void point_double(fslice x_out[3], fslice y_out[3], fslice z_out[3], const fslice x_in[3], const fslice y_in[3], const fslice z_in[3]) { uint128_t tmp[5], tmp2[5]; fslice delta[3]; fslice gamma[3]; fslice beta[3]; fslice alpha[3]; fslice ftmp[3], ftmp2[3]; memcpy(ftmp, x_in, 3 * sizeof(fslice)); memcpy(ftmp2, x_in, 3 * sizeof(fslice)); /* delta = z^2 */ felem_square(tmp, z_in); felem_reduce(delta, tmp); /* gamma = y^2 */ felem_square(tmp, y_in); felem_reduce(gamma, tmp); /* beta = x*gamma */ felem_mul(tmp, x_in, gamma); felem_reduce(beta, tmp); /* alpha = 3*(x-delta)*(x+delta) */ felem_diff64(ftmp, delta); /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ felem_sum64(ftmp2, delta); /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ felem_scalar64(ftmp2, 3); /* ftmp2[i] < 3 * 2^58 < 2^60 */ felem_mul(tmp, ftmp, ftmp2); /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ felem_reduce(alpha, tmp); /* x' = alpha^2 - 8*beta */ felem_square(tmp, alpha); /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ memcpy(ftmp, beta, 3 * sizeof(fslice)); felem_scalar64(ftmp, 8); /* ftmp[i] < 8 * 2^57 = 2^60 */ felem_diff_128_64(tmp, ftmp); /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ felem_reduce(x_out, tmp); /* z' = (y + z)^2 - gamma - delta */ felem_sum64(delta, gamma); /* delta[i] < 2^57 + 2^57 = 2^58 */ memcpy(ftmp, y_in, 3 * sizeof(fslice)); felem_sum64(ftmp, z_in); /* ftmp[i] < 2^57 + 2^57 = 2^58 */ felem_square(tmp, ftmp); /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ felem_diff_128_64(tmp, delta); /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ felem_reduce(z_out, tmp); /* y' = alpha*(4*beta - x') - 8*gamma^2 */ felem_scalar64(beta, 4); /* beta[i] < 4 * 2^57 = 2^59 */ felem_diff64(beta, x_out); /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ felem_mul(tmp, alpha, beta); /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ felem_square(tmp2, gamma); /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ felem_scalar128(tmp2, 8); /* tmp2[i] < 8 * 2^116 = 2^119 */ felem_diff128(tmp, tmp2); /* tmp[i] < 2^119 + 2^120 < 2^121 */ felem_reduce(y_out, tmp); } /* Add two elliptic curve points: * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) */ /* This function is not entirely constant-time: * it includes a branch for checking whether the two input points are equal, * (while not equal to the point at infinity). * This case never happens during single point multiplication, * so there is no timing leak for ECDH or ECDSA signing. */ static void point_add(fslice x3[3], fslice y3[3], fslice z3[3], const fslice x1[3], const fslice y1[3], const fslice z1[3], const fslice x2[3], const fslice y2[3], const fslice z2[3]) { fslice ftmp[3], ftmp2[3], ftmp3[3], ftmp4[3], ftmp5[3]; fslice xout[3], yout[3], zout[3]; uint128_t tmp[5], tmp2[5]; fslice z1_is_zero, z2_is_zero, x_equal, y_equal; /* ftmp = z1^2 */ felem_square(tmp, z1); felem_reduce(ftmp, tmp); /* ftmp2 = z2^2 */ felem_square(tmp, z2); felem_reduce(ftmp2, tmp); /* ftmp3 = z1^3 */ felem_mul(tmp, ftmp, z1); felem_reduce(ftmp3, tmp); /* ftmp4 = z2^3 */ felem_mul(tmp, ftmp2, z2); felem_reduce(ftmp4, tmp); /* ftmp3 = z1^3*y2 */ felem_mul(tmp, ftmp3, y2); /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ /* ftmp4 = z2^3*y1 */ felem_mul(tmp2, ftmp4, y1); felem_reduce(ftmp4, tmp2); /* ftmp3 = z1^3*y2 - z2^3*y1 */ felem_diff_128_64(tmp, ftmp4); /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ felem_reduce(ftmp3, tmp); /* ftmp = z1^2*x2 */ felem_mul(tmp, ftmp, x2); /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ /* ftmp2 =z2^2*x1 */ felem_mul(tmp2, ftmp2, x1); felem_reduce(ftmp2, tmp2); /* ftmp = z1^2*x2 - z2^2*x1 */ felem_diff128(tmp, tmp2); /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ felem_reduce(ftmp, tmp); /* the formulae are incorrect if the points are equal * so we check for this and do doubling if this happens */ x_equal = felem_is_zero(ftmp); y_equal = felem_is_zero(ftmp3); z1_is_zero = felem_is_zero(z1); z2_is_zero = felem_is_zero(z2); /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */ if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { point_double(x3, y3, z3, x1, y1, z1); return; } /* ftmp5 = z1*z2 */ felem_mul(tmp, z1, z2); felem_reduce(ftmp5, tmp); /* zout = (z1^2*x2 - z2^2*x1)*(z1*z2) */ felem_mul(tmp, ftmp, ftmp5); felem_reduce(zout, tmp); /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ memcpy(ftmp5, ftmp, 3 * sizeof(fslice)); felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ felem_mul(tmp, ftmp, ftmp5); felem_reduce(ftmp5, tmp); /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* ftmp4 = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ felem_mul(tmp, ftmp4, ftmp5); /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ felem_square(tmp2, ftmp3); /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ felem_diff_128_64(tmp2, ftmp5); /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ memcpy(ftmp5, ftmp2, 3 * sizeof(fslice)); felem_scalar64(ftmp5, 2); /* ftmp5[i] < 2 * 2^57 = 2^58 */ /* xout = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ felem_diff_128_64(tmp2, ftmp5); /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ felem_reduce(xout, tmp2); /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - xout */ felem_diff64(ftmp2, xout); /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - xout) */ felem_mul(tmp2, ftmp3, ftmp2); /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ /* yout = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - xout) - z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ felem_diff128(tmp2, tmp); /* tmp2[i] < 2^118 + 2^120 < 2^121 */ felem_reduce(yout, tmp2); /* the result (xout, yout, zout) is incorrect if one of the * inputs is the point at infinity, so we need to check for this * separately */ /* if point 1 is at infinity, copy point 2 to output, and vice versa */ copy_conditional(xout, x2, 3, z1_is_zero); select_conditional(x3, xout, x1, 3, z2_is_zero); copy_conditional(yout, y2, 3, z1_is_zero); select_conditional(y3, yout, y1, 3, z2_is_zero); copy_conditional(zout, z2, 3, z1_is_zero); select_conditional(z3, zout, z1, 3, z2_is_zero); } static void affine(point P) { coord z1, z2, xin, yin; uint128_t tmp[7]; if (felem_is_zero(P[2])) return; felem_inv(z2, P[2]); felem_square(tmp, z2); felem_reduce(z1, tmp); felem_mul(tmp, P[0], z1); felem_reduce(xin, tmp); felem_contract(P[0], xin); felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); felem_mul(tmp, P[1], z1); felem_reduce(yin, tmp); felem_contract(P[1], yin); memset(P[2], 0, sizeof(coord)); P[2][0] = 1; } static void affine_x(coord out, point P) { coord z1, z2, xin; uint128_t tmp[7]; if (felem_is_zero(P[2])) return; felem_inv(z2, P[2]); felem_square(tmp, z2); felem_reduce(z1, tmp); felem_mul(tmp, P[0], z1); felem_reduce(xin, tmp); felem_contract(out, xin); } /* Multiply the given point by s */ static void point_mul(point out, point in, const felem_bytearray s) { int i; point tmp; point table[16]; memset(table[0], 0, sizeof(point)); memmove(table[1], in, sizeof(point)); for(i=2; i<16; i+=2) { point_double(table[i][0], table[i][1], table[i][2], table[i/2][0], table[i/2][1], table[i/2][2]); point_add(table[i+1][0], table[i+1][1], table[i+1][2], table[i][0], table[i][1], table[i][2], in[0], in[1], in[2]); } /* for(i=0;i<16;++i) { fprintf(stderr, "table[%d]:\n", i); affine(table[i]); dump_point(NULL, table[i]); } */ memset(tmp, 0, sizeof(point)); for(i=0;i<21;i++) { u8 oh = s[20-i] >> 4; u8 ol = s[20-i] & 0x0f; point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]); point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]); point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]); point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]); point_add(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2], table[oh][0], table[oh][1], table[oh][2]); point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]); point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]); point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]); point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]); point_add(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2], table[ol][0], table[ol][1], table[ol][2]); } memmove(out, tmp, sizeof(point)); } #if 0 /* Select a point from an array of 16 precomputed point multiples, * in constant time: for bits = {b_0, b_1, b_2, b_3}, return the point * pre_comp[8*b_3 + 4*b_2 + 2*b_1 + b_0] */ static void select_point(const fslice bits[4], const fslice pre_comp[16][3][4], fslice out[12]) { fslice tmp[5][12]; select_conditional(tmp[0], pre_comp[7][0], pre_comp[15][0], 12, bits[3]); select_conditional(tmp[1], pre_comp[3][0], pre_comp[11][0], 12, bits[3]); select_conditional(tmp[2], tmp[1], tmp[0], 12, bits[2]); select_conditional(tmp[0], pre_comp[5][0], pre_comp[13][0], 12, bits[3]); select_conditional(tmp[1], pre_comp[1][0], pre_comp[9][0], 12, bits[3]); select_conditional(tmp[3], tmp[1], tmp[0], 12, bits[2]); select_conditional(tmp[4], tmp[3], tmp[2], 12, bits[1]); select_conditional(tmp[0], pre_comp[6][0], pre_comp[14][0], 12, bits[3]); select_conditional(tmp[1], pre_comp[2][0], pre_comp[10][0], 12, bits[3]); select_conditional(tmp[2], tmp[1], tmp[0], 12, bits[2]); select_conditional(tmp[0], pre_comp[4][0], pre_comp[12][0], 12, bits[3]); select_conditional(tmp[1], pre_comp[0][0], pre_comp[8][0], 12, bits[3]); select_conditional(tmp[3], tmp[1], tmp[0], 12, bits[2]); select_conditional(tmp[1], tmp[3], tmp[2], 12, bits[1]); select_conditional(out, tmp[1], tmp[4], 12, bits[0]); } /* Interleaved point multiplication using precomputed point multiples: * The small point multiples 0*P, 1*P, ..., 15*P are in pre_comp[], * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple * of the generator, using certain (large) precomputed multiples in g_pre_comp. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ static void batch_mul(fslice x_out[4], fslice y_out[4], fslice z_out[4], const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, const fslice pre_comp[][16][3][4], const fslice g_pre_comp[16][3][4]) { unsigned i, j, num; unsigned gen_mul = (g_scalar != NULL); fslice nq[12], nqt[12], tmp[12]; fslice bits[4]; u8 byte; /* set nq to the point at infinity */ memset(nq, 0, 12 * sizeof(fslice)); /* Loop over all scalars msb-to-lsb, 4 bits at a time: for each nibble, * double 4 times, then add the precomputed point multiples. * If we are also adding multiples of the generator, then interleave * these additions with the last 56 doublings. */ for (i = (num_points ? 28 : 7); i > 0; --i) { for (j = 0; j < 8; ++j) { /* double once */ point_double(nq, nq+4, nq+8, nq, nq+4, nq+8); /* add multiples of the generator */ if ((gen_mul) && (i <= 7)) { bits[3] = (g_scalar[i+20] >> (7-j)) & 1; bits[2] = (g_scalar[i+13] >> (7-j)) & 1; bits[1] = (g_scalar[i+6] >> (7-j)) & 1; bits[0] = (g_scalar[i-1] >> (7-j)) & 1; /* select the point to add, in constant time */ select_point(bits, g_pre_comp, tmp); memcpy(nqt, nq, 12 * sizeof(fslice)); point_add(nq, nq+4, nq+8, nqt, nqt+4, nqt+8, tmp, tmp+4, tmp+8); } /* do an addition after every 4 doublings */ if (j % 4 == 3) { /* loop over all scalars */ for (num = 0; num < num_points; ++num) { byte = scalars[num][i-1]; bits[3] = (byte >> (10-j)) & 1; bits[2] = (byte >> (9-j)) & 1; bits[1] = (byte >> (8-j)) & 1; bits[0] = (byte >> (7-j)) & 1; /* select the point to add */ select_point(bits, pre_comp[num], tmp); memcpy(nqt, nq, 12 * sizeof(fslice)); point_add(nq, nq+4, nq+8, nqt, nqt+4, nqt+8, tmp, tmp+4, tmp+8); } } } } memcpy(x_out, nq, 4 * sizeof(fslice)); memcpy(y_out, nq+4, 4 * sizeof(fslice)); memcpy(z_out, nq+8, 4 * sizeof(fslice)); } /******************************************************************************/ /* FUNCTIONS TO MANAGE PRECOMPUTATION */ static NISTP224_PRE_COMP *nistp224_pre_comp_new() { NISTP224_PRE_COMP *ret = NULL; ret = (NISTP224_PRE_COMP *)OPENSSL_malloc(sizeof(NISTP224_PRE_COMP)); if (!ret) { ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); return ret; } memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); ret->references = 1; return ret; } static void *nistp224_pre_comp_dup(void *src_) { NISTP224_PRE_COMP *src = src_; /* no need to actually copy, these objects never change! */ CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); return src_; } static void nistp224_pre_comp_free(void *pre_) { int i; NISTP224_PRE_COMP *pre = pre_; if (!pre) return; i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); if (i > 0) return; OPENSSL_free(pre); } static void nistp224_pre_comp_clear_free(void *pre_) { int i; NISTP224_PRE_COMP *pre = pre_; if (!pre) return; i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); if (i > 0) return; OPENSSL_cleanse(pre, sizeof *pre); OPENSSL_free(pre); } /******************************************************************************/ /* OPENSSL EC_METHOD FUNCTIONS */ int ec_GFp_nistp224_group_init(EC_GROUP *group) { int ret; ret = ec_GFp_simple_group_init(group); group->a_is_minus3 = 1; return ret; } int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; BIGNUM *curve_p, *curve_a, *curve_b; if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); if (((curve_p = BN_CTX_get(ctx)) == NULL) || ((curve_a = BN_CTX_get(ctx)) == NULL) || ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err; BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, EC_R_WRONG_CURVE_PARAMETERS); goto err; } group->field_mod_func = BN_nist_mod_224; ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; } /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns * (X', Y') = (X/Z^2, Y/Z^3) */ int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { fslice z1[4], z2[4], x_in[4], y_in[4], x_out[4], y_out[4]; uint128_t tmp[7]; if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); return 0; } if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || (!BN_to_felem(z1, &point->Z))) return 0; felem_inv(z2, z1); felem_square(tmp, z2); felem_reduce(z1, tmp); felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); felem_contract(x_out, x_in); if (x != NULL) { if (!felem_to_BN(x, x_out)) { ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); return 0; } } felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); felem_contract(y_out, y_in); if (y != NULL) { if (!felem_to_BN(y, y_out)) { ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); return 0; } } return 1; } /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values * Result is stored in r (r can equal one of the inputs). */ int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { int ret = 0; int i, j; BN_CTX *new_ctx = NULL; BIGNUM *x, *y, *z, *tmp_scalar; felem_bytearray g_secret; felem_bytearray *secrets = NULL; fslice (*pre_comp)[16][3][4] = NULL; felem_bytearray tmp; unsigned num_bytes; int have_pre_comp = 0; size_t num_points = num; fslice x_in[4], y_in[4], z_in[4], x_out[4], y_out[4], z_out[4]; NISTP224_PRE_COMP *pre = NULL; fslice (*g_pre_comp)[3][4] = NULL; EC_POINT *generator = NULL; const EC_POINT *p = NULL; const BIGNUM *p_scalar = NULL; if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); if (((x = BN_CTX_get(ctx)) == NULL) || ((y = BN_CTX_get(ctx)) == NULL) || ((z = BN_CTX_get(ctx)) == NULL) || ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) goto err; if (scalar != NULL) { pre = EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup, nistp224_pre_comp_free, nistp224_pre_comp_clear_free); if (pre) /* we have precomputation, try to use it */ g_pre_comp = pre->g_pre_comp; else /* try to use the standard precomputation */ g_pre_comp = (fslice (*)[3][4]) gmul; generator = EC_POINT_new(group); if (generator == NULL) goto err; /* get the generator from precomputation */ if (!felem_to_BN(x, g_pre_comp[1][0]) || !felem_to_BN(y, g_pre_comp[1][1]) || !felem_to_BN(z, g_pre_comp[1][2])) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); goto err; } if (!EC_POINT_set_Jprojective_coordinates_GFp(group, generator, x, y, z, ctx)) goto err; if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) /* precomputation matches generator */ have_pre_comp = 1; else /* we don't have valid precomputation: * treat the generator as a random point */ num_points = num_points + 1; } secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray)); pre_comp = OPENSSL_malloc(num_points * 16 * 3 * 4 * sizeof(fslice)); if ((num_points) && ((secrets == NULL) || (pre_comp == NULL))) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE); goto err; } /* we treat NULL scalars as 0, and NULL points as points at infinity, * i.e., they contribute nothing to the linear combination */ memset(secrets, 0, num_points * sizeof(felem_bytearray)); memset(pre_comp, 0, num_points * 16 * 3 * 4 * sizeof(fslice)); for (i = 0; i < num_points; ++i) { if (i == num) /* the generator */ { p = EC_GROUP_get0_generator(group); p_scalar = scalar; } else /* the i^th point */ { p = points[i]; p_scalar = scalars[i]; } if ((p_scalar != NULL) && (p != NULL)) { num_bytes = BN_num_bytes(p_scalar); /* reduce scalar to 0 <= scalar < 2^224 */ if ((num_bytes > sizeof(felem_bytearray)) || (BN_is_negative(p_scalar))) { /* this is an unusual input, and we don't guarantee * constant-timeness */ if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); goto err; } num_bytes = BN_bn2bin(tmp_scalar, tmp); } else BN_bn2bin(p_scalar, tmp); flip_endian(secrets[i], tmp, num_bytes); /* precompute multiples */ if ((!BN_to_felem(x_out, &p->X)) || (!BN_to_felem(y_out, &p->Y)) || (!BN_to_felem(z_out, &p->Z))) goto err; memcpy(pre_comp[i][1][0], x_out, 4 * sizeof(fslice)); memcpy(pre_comp[i][1][1], y_out, 4 * sizeof(fslice)); memcpy(pre_comp[i][1][2], z_out, 4 * sizeof(fslice)); for (j = 1; j < 8; ++j) { point_double(pre_comp[i][2*j][0], pre_comp[i][2*j][1], pre_comp[i][2*j][2], pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2]); point_add(pre_comp[i][2*j+1][0], pre_comp[i][2*j+1][1], pre_comp[i][2*j+1][2], pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], pre_comp[i][2*j][0], pre_comp[i][2*j][1], pre_comp[i][2*j][2]); } } } /* the scalar for the generator */ if ((scalar != NULL) && (have_pre_comp)) { memset(g_secret, 0, sizeof g_secret); num_bytes = BN_num_bytes(scalar); /* reduce scalar to 0 <= scalar < 2^224 */ if ((num_bytes > sizeof(felem_bytearray)) || (BN_is_negative(scalar))) { /* this is an unusual input, and we don't guarantee * constant-timeness */ if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); goto err; } num_bytes = BN_bn2bin(tmp_scalar, tmp); } else BN_bn2bin(scalar, tmp); flip_endian(g_secret, tmp, num_bytes); /* do the multiplication with generator precomputation*/ batch_mul(x_out, y_out, z_out, (const felem_bytearray (*)) secrets, num_points, g_secret, (const fslice (*)[16][3][4]) pre_comp, (const fslice (*)[3][4]) g_pre_comp); } else /* do the multiplication without generator precomputation */ batch_mul(x_out, y_out, z_out, (const felem_bytearray (*)) secrets, num_points, NULL, (const fslice (*)[16][3][4]) pre_comp, NULL); /* reduce the output to its unique minimal representation */ felem_contract(x_in, x_out); felem_contract(y_in, y_out); felem_contract(z_in, z_out); if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); goto err; } ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); err: BN_CTX_end(ctx); if (generator != NULL) EC_POINT_free(generator); if (new_ctx != NULL) BN_CTX_free(new_ctx); if (secrets != NULL) OPENSSL_free(secrets); if (pre_comp != NULL) OPENSSL_free(pre_comp); return ret; } int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) { int ret = 0; NISTP224_PRE_COMP *pre = NULL; int i, j; BN_CTX *new_ctx = NULL; BIGNUM *x, *y; EC_POINT *generator = NULL; /* throw away old precomputation */ EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup, nistp224_pre_comp_free, nistp224_pre_comp_clear_free); if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); if (((x = BN_CTX_get(ctx)) == NULL) || ((y = BN_CTX_get(ctx)) == NULL)) goto err; /* get the generator */ if (group->generator == NULL) goto err; generator = EC_POINT_new(group); if (generator == NULL) goto err; BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x); BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y); if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) goto err; if ((pre = nistp224_pre_comp_new()) == NULL) goto err; /* if the generator is the standard one, use built-in precomputation */ if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); ret = 1; goto err; } if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z))) goto err; /* compute 2^56*G, 2^112*G, 2^168*G */ for (i = 1; i < 5; ++i) { point_double(pre->g_pre_comp[2*i][0], pre->g_pre_comp[2*i][1], pre->g_pre_comp[2*i][2], pre->g_pre_comp[i][0], pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); for (j = 0; j < 55; ++j) { point_double(pre->g_pre_comp[2*i][0], pre->g_pre_comp[2*i][1], pre->g_pre_comp[2*i][2], pre->g_pre_comp[2*i][0], pre->g_pre_comp[2*i][1], pre->g_pre_comp[2*i][2]); } } /* g_pre_comp[0] is the point at infinity */ memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); /* the remaining multiples */ /* 2^56*G + 2^112*G */ point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]); /* 2^56*G + 2^168*G */ point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]); /* 2^112*G + 2^168*G */ point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2]); /* 2^56*G + 2^112*G + 2^168*G */ point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]); for (i = 1; i < 8; ++i) { /* odd multiples: add G */ point_add(pre->g_pre_comp[2*i+1][0], pre->g_pre_comp[2*i+1][1], pre->g_pre_comp[2*i+1][2], pre->g_pre_comp[2*i][0], pre->g_pre_comp[2*i][1], pre->g_pre_comp[2*i][2], pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], pre->g_pre_comp[1][2]); } if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup, nistp224_pre_comp_free, nistp224_pre_comp_clear_free)) goto err; ret = 1; pre = NULL; err: BN_CTX_end(ctx); if (generator != NULL) EC_POINT_free(generator); if (new_ctx != NULL) BN_CTX_free(new_ctx); if (pre) nistp224_pre_comp_free(pre); return ret; } int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) { if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup, nistp224_pre_comp_free, nistp224_pre_comp_clear_free) != NULL) return 1; else return 0; } #endif #ifdef TESTING #include static u8 ctoh(char c) { if (c >= '0' && c <= '9') return c-'0'; if (c >= 'a' && c <= 'f') return c-'a'+10; if (c >= 'A' && c <= 'F') return c-'A'+10; return 0; } static void arg_to_bytearray(felem_bytearray ba, const char *arg) { /* Convert the arg, which is a string like "1a2637c8" to a byte * array like 0xc8 0x37 0x26 0x1a. */ int size = sizeof(felem_bytearray); int arglen = strlen(arg); int argsize = (arglen+1)/2; const char *argp = arg + arglen; u8 *bap = ba; memset(ba, 0, size); if (size < argsize) { fprintf(stderr, "Arg too long: %s\n", arg); exit(1); } while (argp > arg+1) { argp -= 2; *bap = (ctoh(argp[0])<<4)|(ctoh(argp[1])); ++bap; } if (arglen & 1) { /* Handle the stray top nybble */ argp -= 1; *bap = ctoh(argp[0]); } } static void arg_to_coord(coord c, const char *arg) { felem_bytearray ba; arg_to_bytearray(ba, arg); /* Now convert it to a coord */ bin21_to_felem(c, ba); } int main(int argc, char **argv) { point infinity, P, Q, P2, PQ; felem_bytearray s; int i; struct timeval st, et; unsigned long el; int niter = 1000; memset(infinity, 0, sizeof(infinity)); memset(P, 0, sizeof(P)); memset(Q, 0, sizeof(Q)); if (argc != 6) { fprintf(stderr, "Usage: %s Px Py Qx Qy s\n", argv[0]); exit(1); } arg_to_coord(P[0], argv[1]); arg_to_coord(P[1], argv[2]); P[2][0] = 1; dump_point("P", P); arg_to_coord(Q[0], argv[3]); arg_to_coord(Q[1], argv[4]); Q[2][0] = 1; dump_point("Q", Q); arg_to_bytearray(s, argv[5]); point_double(P2[0], P2[1], P2[2], P[0], P[1], P[2]); affine(P2); point_add(PQ[0], PQ[1], PQ[2], P[0], P[1], P[2], Q[0], Q[1], Q[2]); affine(PQ); dump_point("P2", P2); dump_point("PQ", PQ); gettimeofday(&st, NULL); for (i=0;i