| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651 | #include "ptwist.h"/* ptwist168.c by Ian Goldberg. Based on: *//* crypto/ec/ecp_nistp224.c *//* * Written by Emilia Kasper (Google) for the OpenSSL project. *//* ==================================================================== * Copyright (c) 2000-2010 The OpenSSL Project.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in *    the documentation and/or other materials provided with the *    distribution. * * 3. All advertising materials mentioning features or use of this *    software must display the following acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to *    endorse or promote products derived from this software without *    prior written permission. For written permission, please contact *    licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" *    nor may "OpenSSL" appear in their names without prior written *    permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following *    acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com).  This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * *//* * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication * * Inspired by Daniel J. Bernstein's public domain nistp224 implementation * and Adam Langley's public domain 64-bit C implementation of curve25519 */#include <stdint.h>#include <string.h>#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))  /* even with gcc, the typedef won't work for 32-bit platforms */  typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */#else  #error "Need GCC 3.1 or later to define type uint128_t"#endiftypedef uint8_t u8;/******************************************************************************//*		    INTERNAL REPRESENTATION OF FIELD ELEMENTS * * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 * where each slice a_i is a 64-bit word, i.e., a field element is an fslice * array a with 3 elements, where a[i] = a_i. * Outputs from multiplications are represented as unreduced polynomials * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 * where each b_i is a 128-bit word. We ensure that inputs to each field * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, * and fit into a 128-bit word without overflow. The coefficients are then * again partially reduced to a_i < 2^57. We only reduce to the unique minimal * representation at the end of the computation. * */typedef uint64_t fslice;typedef fslice coord[3];typedef coord point[3];#include <stdio.h>#include <stdlib.h>/*static void dump_coord(const char *label, const coord c){    if (label) fprintf(stderr, "%s: ", label);    printf("%016lx %016lx %016lx\n", c[2], c[1], c[0]);}*//*static void dump_point(const char *label, point p){    if (label) fprintf(stderr, "%s:\n", label);    dump_coord(" x", p[0]);    dump_coord(" y", p[1]);    dump_coord(" z", p[2]);}*//* Field element represented as a byte arrary. * 21*8 = 168 bits is also the group order size for the elliptic curve.  */typedef u8 felem_bytearray[21];static const felem_bytearray ptwist168_curve_params[5] = {	{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* p */	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,	 0xFF},	{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* a */	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFE,	 0xFC},	{0x4E,0x35,0x5E,0x95,0xCA,0xFE,0xDD,0x48,0x6E,0xBC,    /* b */	 0x69,0xBA,0xD3,0x16,0x46,0xD3,0x20,0xE0,0x1D,0xC7,	 0xD6},	{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,    /* x */	 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,	 0x02},	{0xEA,0x67,0x47,0xB7,0x5A,0xF8,0xC7,0xF9,0x3C,0x1F,    /* y */	 0x5E,0x6D,0x32,0x0F,0x88,0xB9,0xBE,0x15,0x66,0xD2,	 0xF2}};/* Helper functions to convert field elements to/from internal representation */static void bin21_to_felem(fslice out[3], const u8 in[21])	{	out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;	out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff;	out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff;	}static void felem_to_bin21(u8 out[21], const fslice in[3])	{	unsigned i;	for (i = 0; i < 7; ++i)		{		out[i]	  = in[0]>>(8*i);		out[i+7]  = in[1]>>(8*i);		out[i+14] = in[2]>>(8*i);		}	}#if 0/* To preserve endianness when using BN_bn2bin and BN_bin2bn */static void flip_endian(u8 *out, const u8 *in, unsigned len)	{	unsigned i;	for (i = 0; i < len; ++i)		out[i] = in[len-1-i];	}#endif/******************************************************************************//*				FIELD OPERATIONS * * Field operations, using the internal representation of field elements. * NB! These operations are specific to our point multiplication and cannot be * expected to be correct in general - e.g., multiplication with a large scalar * will cause an overflow. * *//* Sum two field elements: out += in */static void felem_sum64(fslice out[3], const fslice in[3])	{	out[0] += in[0];	out[1] += in[1];	out[2] += in[2];	}/* Subtract field elements: out -= in *//* Assumes in[i] < 2^57 */static void felem_diff64(fslice out[3], const fslice in[3])	{	/* a = 3*2^56 - 3 */	/* b = 3*2^56 - 3*257 */	static const uint64_t a = (((uint64_t) 3) << 56) - ((uint64_t) 3);	static const uint64_t b = (((uint64_t) 3) << 56) - ((uint64_t) 771);	/* Add 0 mod 2^168-2^8-1 to ensure out > in at each element */	/* a*2^112 + a*2^56 + b = 3*p */	out[0] += b;	out[1] += a;	out[2] += a;	out[0] -= in[0];	out[1] -= in[1];	out[2] -= in[2];	}/* Subtract in unreduced 128-bit mode: out128 -= in128 *//* Assumes in[i] < 2^119 */static void felem_diff128(uint128_t out[5], const uint128_t in[5])	{	/* a = 3*2^118 - 192	   b = 3*2^118 - 49536	   c = 3*2^118	   d = 3*2^118 - 12681408	   a*2^224 + a*2^168 + b*2^112 + c*2^56 + d	    = (3*2^174 + 3*2^118 + 49344)*p	*/	static const uint128_t a = (((uint128_t)3) << 118) - ((uint128_t) 192);	static const uint128_t b = (((uint128_t)3) << 118) - ((uint128_t) 49536);	static const uint128_t c = (((uint128_t)3) << 118);	static const uint128_t d = (((uint128_t)3) << 118) - ((uint128_t) 12681408);;	/* Add 0 mod 2^168-2^8-1 to ensure out > in */	out[0] += d;	out[1] += c;	out[2] += b;	out[3] += a;	out[4] += a;	out[0] -= in[0];	out[1] -= in[1];	out[2] -= in[2];	out[3] -= in[3];	out[4] -= in[4];	}/* Subtract in mixed mode: out128 -= in64 *//* in[i] < 2^63 */static void felem_diff_128_64(uint128_t out[5], const fslice in[3])	{	/* a = 3*2^62 - 192	   b = 3*2^62 - 49344	   a*2^112 + a*2^56 + b = 192*p	*/	static const uint128_t a = (((uint128_t) 3) << 62) - ((uint128_t) 192);	static const uint128_t b = (((uint128_t) 3) << 62) - ((uint128_t) 49344);	/* Add 0 mod 2^168-2^8-1 to ensure out > in */	out[0] += b;	out[1] += a;	out[2] += a;	out[0] -= in[0];	out[1] -= in[1];	out[2] -= in[2];	}/* Multiply a field element by a scalar: out64 = out64 * scalar * The scalars we actually use are small, so results fit without overflow */static void felem_scalar64(fslice out[3], const fslice scalar)	{	out[0] *= scalar;	out[1] *= scalar;	out[2] *= scalar;	}/* Multiply an unreduced field element by a scalar: out128 = out128 * scalar * The scalars we actually use are small, so results fit without overflow */static void felem_scalar128(uint128_t out[5], const uint128_t scalar)	{	out[0] *= scalar;	out[1] *= scalar;	out[2] *= scalar;	out[3] *= scalar;	out[4] *= scalar;	}/* Square a field element: out = in^2 */static void felem_square(uint128_t out[5], const fslice in[3])	{	out[0] = ((uint128_t) in[0]) * in[0];	out[1] = ((uint128_t) in[0]) * in[1] * 2;	out[2] = ((uint128_t) in[0]) * in[2] * 2 + ((uint128_t) in[1]) * in[1];	out[3] = ((uint128_t) in[1]) * in[2] * 2;	out[4] = ((uint128_t) in[2]) * in[2];	}/* Multiply two field elements: out = in1 * in2 */static void felem_mul(uint128_t out[5], const fslice in1[3], const fslice in2[3])	{	out[0] = ((uint128_t) in1[0]) * in2[0];	out[1] = ((uint128_t) in1[0]) * in2[1] + ((uint128_t) in1[1]) * in2[0];	out[2] = ((uint128_t) in1[0]) * in2[2] + ((uint128_t) in1[1]) * in2[1] +		((uint128_t) in1[2]) * in2[0];	out[3] = ((uint128_t) in1[1]) * in2[2] +		((uint128_t) in1[2]) * in2[1];	out[4] = ((uint128_t) in1[2]) * in2[2];	}#define M257(x) (((x)<<8)+(x))/* Reduce 128-bit coefficients to 64-bit coefficients. Requires in[i] < 2^126, * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^57 */static void felem_reduce(fslice out[3], const uint128_t in[5])	{	static const uint128_t two56m1 = (((uint128_t) 1)<<56) -		((uint128_t)1);	uint128_t output[3];	output[0] = in[0];  /* < 2^126 */	output[1] = in[1];  /* < 2^126 */	output[2] = in[2];  /* < 2^126 */	/* Eliminate in[3], in[4] */	output[2] += M257(in[4] >> 56);       /* < 2^126 + 2^79 */	output[1] += M257(in[4] & two56m1);   /* < 2^126 + 2^65 */	output[1] += M257(in[3] >> 56);       /* < 2^126 + 2^65 + 2^79 */	output[0] += M257(in[3] & two56m1);   /* < 2^126 + 2^65 */	/* Eliminate the top part of output[2] */	output[0] += M257(output[2] >> 56);   /* < 2^126 + 2^65 + 2^79 */	output[2] &= two56m1;                 /* < 2^56 */	/* Carry 0 -> 1 -> 2 */	output[1] += output[0] >> 56;         /* < 2^126 + 2^71 */	output[0] &= two56m1;                 /* < 2^56 */	output[2] += output[1] >> 56;         /* < 2^71 */	output[1] &= two56m1;                 /* < 2^56 */	/* Eliminate the top part of output[2] */	output[0] += M257(output[2] >> 56);   /* < 2^57 */	output[2] &= two56m1;                 /* < 2^56 */	/* Carry 0 -> 1 -> 2 */	output[1] += output[0] >> 56;         /* <= 2^56 */	out[0] = output[0] & two56m1;         /* < 2^56 */	out[2] = output[2] + (output[1] >> 56);  /* <= 2^56 */	out[1] = output[1] & two56m1;         /* < 2^56 */	}/* Reduce to unique minimal representation */static void felem_contract(fslice out[3], const fslice in[3])	{	static const uint64_t two56m1 = (((uint64_t) 1)<<56) -		((uint64_t)1);	static const uint64_t two56m257 = (((uint64_t) 1)<<56) -		((uint64_t)257);	uint64_t a;	/* in[0] < 2^56, in[1] < 2^56, in[2] <= 2^56 */	/* so in < 2*p for sure */	/* Eliminate the top part of in[2] */	out[0] = in[0] + M257(in[2] >> 56);   /* < 2^57 */	out[2] = in[2] & two56m1;             /* < 2^56, but if out[0] >= 2^56	                                         then out[2] now = 0 */	/* Carry 0 -> 1 -> 2 */	out[1] = in[1] + (out[0] >> 56);      /* < 2^56 + 2, but if	                                         out[1] >= 2^56 then						 out[2] = 0 */	out[0] &= two56m1;                    /* < 2^56 */	out[2] += out[1] >> 56;               /* < 2^56 due to the above */	out[1] &= two56m1;                    /* < 2^56 */	/* Now out < 2^168, but it could still be > p */	a = ((out[2] == two56m1) & (out[1] == two56m1) & (out[0] >= two56m257));	out[2] -= two56m1*a;	out[1] -= two56m1*a;	out[0] -= two56m257*a;	}/* Negate a field element: out = -in *//* Assumes in[i] < 2^57 */static void felem_neg(fslice out[3], const fslice in[3])	{	/* a = 3*2^56 - 3 */	/* b = 3*2^56 - 3*257 */	static const uint64_t a = (((uint64_t) 3) << 56) - ((uint64_t) 3);	static const uint64_t b = (((uint64_t) 3) << 56) - ((uint64_t) 771);	static const uint64_t two56m1 = (((uint64_t) 1) << 56) - ((uint64_t) 1);	fslice tmp[3];	/* Add 0 mod 2^168-2^8-1 to ensure out > in at each element */	/* a*2^112 + a*2^56 + b = 3*p */	tmp[0] = b - in[0];	tmp[1] = a - in[1];	tmp[2] = a - in[2];	/* Carry 0 -> 1 -> 2 */	tmp[1] += tmp[0] >> 56;	tmp[0] &= two56m1;                 /* < 2^56 */	tmp[2] += tmp[1] >> 56;         /* < 2^71 */	tmp[1] &= two56m1;                 /* < 2^56 */	felem_contract(out, tmp);	}/* Zero-check: returns 1 if input is 0, and 0 otherwise. * We know that field elements are reduced to in < 2^169, * so we only need to check three cases: 0, 2^168 - 2^8 - 1, * and 2^169 - 2^9 - 2 */static fslice felem_is_zero(const fslice in[3])	{	fslice zero, two168m8m1, two169m9m2;	static const uint64_t two56m1 = (((uint64_t) 1)<<56) -		((uint64_t)1);	static const uint64_t two56m257 = (((uint64_t) 1)<<56) -		((uint64_t)257);	static const uint64_t two57m1 = (((uint64_t) 1)<<57) -		((uint64_t)1);	static const uint64_t two56m514 = (((uint64_t) 1)<<56) -		((uint64_t)514);	zero = (in[0] == 0) & (in[1] == 0) & (in[2] == 0);	two168m8m1 = (in[2] == two56m1) & (in[1] == two56m1) &			(in[0] == two56m257);	two169m9m2 = (in[2] == two57m1) & (in[1] == two56m1) &			(in[0] == two56m514);	return (zero | two168m8m1 | two169m9m2);	}/* Invert a field element */static void felem_inv(fslice out[3], const fslice in[3])	{	fslice ftmp[3], ftmp2[3], ftmp3[3], ftmp4[3];	uint128_t tmp[5];	unsigned i;	felem_square(tmp, in); felem_reduce(ftmp, tmp);		/* 2 */	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^2 - 1 */								/* = ftmp */	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^3 - 2 */	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^4 - 2^2 */	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp);	/* 2^4 - 1 */	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^5 - 2 */	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^6 - 2^2 */	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^6 - 1 */								/* = ftmp */	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^7 - 2 */	for (i = 0; i < 5; ++i)					/* 2^12 - 2^6 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^12 - 1 */								/* = ftmp3 */	felem_square(tmp, ftmp3); felem_reduce(ftmp2, tmp);	/* 2^13 - 2 */	for (i = 0; i < 11; ++i)				/* 2^24 - 2^12 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp2, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^24 - 1 */								/* = ftmp3 */	felem_square(tmp, ftmp3); felem_reduce(ftmp2, tmp);	/* 2^25 - 2 */	for (i = 0; i < 23; ++i)				/* 2^48 - 2^24 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp2, ftmp3); felem_reduce(ftmp4, tmp);	/* 2^48 - 1 */								/* = ftmp4 */	felem_square(tmp, ftmp4); felem_reduce(ftmp2, tmp);	/* 2^49 - 2 */	for (i = 0; i < 23; ++i)				/* 2^72 - 2^24 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp2, ftmp3); felem_reduce(ftmp4, tmp);	/* 2^72 - 1 */								/* = ftmp4 */	felem_square(tmp, ftmp4); felem_reduce(ftmp2, tmp);	/* 2^73 - 2 */	for (i = 0; i < 5; ++i)					/* 2^78 - 2^6 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^78 - 1 */	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^79 - 2 */	felem_mul(tmp, in, ftmp2); felem_reduce(ftmp4, tmp);	/* 2^79 - 1 */								/* = ftmp4 */	felem_square(tmp, ftmp4); felem_reduce(ftmp2, tmp);	/* 2^80 - 2 */	for (i = 0; i < 78; ++i)				/* 2^158 - 2^79 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp4, ftmp2); felem_reduce(ftmp2, tmp); /* 2^158 - 1 */	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^159 - 2 */	felem_mul(tmp, in, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^159 - 1 */	for (i = 0; i < 7; ++i)					/* 2^166 - 2^7 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^166 - 2^6 - 1 */	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^167 - 2^7 - 2 */	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^168 - 2^8 - 4 */	felem_mul(tmp, in, ftmp2); felem_reduce(out, tmp);	/* 2^168 - 2^8 - 3 */								/* = out */	}/* Take the square root of a field element */static void felem_sqrt(fslice out[3], const fslice in[3])	{	fslice ftmp[3], ftmp2[3];	uint128_t tmp[5];	unsigned i;	felem_square(tmp, in); felem_reduce(ftmp, tmp);		/* 2 */	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^2 - 1 */								/* = ftmp */	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^3 - 2 */	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^4 - 2^2 */	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp);	/* 2^4 - 1 */	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^5 - 2 */	felem_mul(tmp, ftmp2, in); felem_reduce(ftmp, tmp);	/* 2^5 - 1 */								/* = ftmp */	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^6 - 2 */	for (i = 0; i < 4; ++i)					/* 2^10 - 2^5 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp, tmp);	/* 2^10 - 1 */								/* = ftmp */	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^11 - 2 */	for (i = 0; i < 9; ++i)					/* 2^20 - 2^10 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^20 - 1 */								/* = ftmp */	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^21 - 2 */	for (i = 0; i < 19; ++i)				/* 2^40 - 2^20 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^40 - 1 */								/* = ftmp */	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^41 - 2 */	for (i = 0; i < 39; ++i)				/* 2^80 - 2^40 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^80 - 1 */								/* = ftmp */	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^81 - 2 */	for (i = 0; i < 79; ++i)				/* 2^160 - 2^80 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_mul(tmp, ftmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^160 - 1 */	for (i = 0; i < 5; ++i)					/* 2^165 - 2^5 */		{		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		}	felem_square(tmp, ftmp2); felem_reduce(out, tmp);	/* 2^166 - 2^6 */								/* = out */	}/* Copy in constant time: * if icopy == 1, copy in to out, * if icopy == 0, copy out to itself. */static voidcopy_conditional(fslice *out, const fslice *in, unsigned len, fslice icopy)	{	unsigned i;	/* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */	const fslice copy = -icopy;	for (i = 0; i < len; ++i)		{		const fslice tmp = copy & (in[i] ^ out[i]);		out[i] ^= tmp;		}	}/* Copy in constant time: * if isel == 1, copy in2 to out, * if isel == 0, copy in1 to out. */static void select_conditional(fslice *out, const fslice *in1, const fslice *in2,	unsigned len, fslice isel)	{	unsigned i;	/* isel is a (64-bit) 0 or 1, so sel is either all-zero or all-one */	const fslice sel = -isel;	for (i = 0; i < len; ++i)		{		const fslice tmp = sel & (in1[i] ^ in2[i]);		out[i] = in1[i] ^ tmp;		}}/******************************************************************************//*			 ELLIPTIC CURVE POINT OPERATIONS * * Points are represented in Jacobian projective coordinates: * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), * or to the point at infinity if Z == 0. * *//* Double an elliptic curve point: * (X', Y', Z') = 2 * (X, Y, Z), where * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, * while x_out == y_in is not (maybe this works, but it's not tested). */static voidpoint_double(fslice x_out[3], fslice y_out[3], fslice z_out[3],	     const fslice x_in[3], const fslice y_in[3], const fslice z_in[3])	{	uint128_t tmp[5], tmp2[5];	fslice delta[3];	fslice gamma[3];	fslice beta[3];	fslice alpha[3];	fslice ftmp[3], ftmp2[3];	memcpy(ftmp, x_in, 3 * sizeof(fslice));	memcpy(ftmp2, x_in, 3 * sizeof(fslice));	/* delta = z^2 */	felem_square(tmp, z_in);	felem_reduce(delta, tmp);	/* gamma = y^2 */	felem_square(tmp, y_in);	felem_reduce(gamma, tmp);	/* beta = x*gamma */	felem_mul(tmp, x_in, gamma);	felem_reduce(beta, tmp);	/* alpha = 3*(x-delta)*(x+delta) */	felem_diff64(ftmp, delta);	/* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */	felem_sum64(ftmp2, delta);	/* ftmp2[i] < 2^57 + 2^57 = 2^58 */	felem_scalar64(ftmp2, 3);	/* ftmp2[i] < 3 * 2^58 < 2^60 */	felem_mul(tmp, ftmp, ftmp2);	/* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */	felem_reduce(alpha, tmp);	/* x' = alpha^2 - 8*beta */	felem_square(tmp, alpha);	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */	memcpy(ftmp, beta, 3 * sizeof(fslice));	felem_scalar64(ftmp, 8);	/* ftmp[i] < 8 * 2^57 = 2^60 */	felem_diff_128_64(tmp, ftmp);	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */	felem_reduce(x_out, tmp);	/* z' = (y + z)^2 - gamma - delta */	felem_sum64(delta, gamma);	/* delta[i] < 2^57 + 2^57 = 2^58 */	memcpy(ftmp, y_in, 3 * sizeof(fslice));	felem_sum64(ftmp, z_in);	/* ftmp[i] < 2^57 + 2^57 = 2^58 */	felem_square(tmp, ftmp);	/* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */	felem_diff_128_64(tmp, delta);	/* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */	felem_reduce(z_out, tmp);	/* y' = alpha*(4*beta - x') - 8*gamma^2 */	felem_scalar64(beta, 4);	/* beta[i] < 4 * 2^57 = 2^59 */	felem_diff64(beta, x_out);	/* beta[i] < 2^59 + 2^58 + 2 < 2^60 */	felem_mul(tmp, alpha, beta);	/* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */	felem_square(tmp2, gamma);	/* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */	felem_scalar128(tmp2, 8);	/* tmp2[i] < 8 * 2^116 = 2^119 */	felem_diff128(tmp, tmp2);	/* tmp[i] < 2^119 + 2^120 < 2^121 */	felem_reduce(y_out, tmp);	}/* Add two elliptic curve points: * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) *//* This function is not entirely constant-time: * it includes a branch for checking whether the two input points are equal, * (while not equal to the point at infinity). * This case never happens during single point multiplication, * so there is no timing leak for ECDH or ECDSA signing. */static void point_add(fslice x3[3], fslice y3[3], fslice z3[3],	const fslice x1[3], const fslice y1[3], const fslice z1[3],	const fslice x2[3], const fslice y2[3], const fslice z2[3])	{	fslice ftmp[3], ftmp2[3], ftmp3[3], ftmp4[3], ftmp5[3];	fslice xout[3], yout[3], zout[3];	uint128_t tmp[5], tmp2[5];	fslice z1_is_zero, z2_is_zero, x_equal, y_equal;	/* ftmp = z1^2 */	felem_square(tmp, z1);	felem_reduce(ftmp, tmp);	/* ftmp2 = z2^2 */	felem_square(tmp, z2);	felem_reduce(ftmp2, tmp);	/* ftmp3 = z1^3 */	felem_mul(tmp, ftmp, z1);	felem_reduce(ftmp3, tmp);	/* ftmp4 = z2^3 */	felem_mul(tmp, ftmp2, z2);	felem_reduce(ftmp4, tmp);	/* ftmp3 = z1^3*y2 */	felem_mul(tmp, ftmp3, y2);	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */	/* ftmp4 = z2^3*y1 */	felem_mul(tmp2, ftmp4, y1);	felem_reduce(ftmp4, tmp2);	/* ftmp3 = z1^3*y2 - z2^3*y1 */	felem_diff_128_64(tmp, ftmp4);	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */	felem_reduce(ftmp3, tmp);	/* ftmp = z1^2*x2 */	felem_mul(tmp, ftmp, x2);	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */	/* ftmp2 =z2^2*x1 */	felem_mul(tmp2, ftmp2, x1);	felem_reduce(ftmp2, tmp2);	/* ftmp = z1^2*x2 - z2^2*x1 */	felem_diff128(tmp, tmp2);	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */	felem_reduce(ftmp, tmp);	/* the formulae are incorrect if the points are equal	 * so we check for this and do doubling if this happens */	x_equal = felem_is_zero(ftmp);	y_equal = felem_is_zero(ftmp3);	z1_is_zero = felem_is_zero(z1);	z2_is_zero = felem_is_zero(z2);	/* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */	if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)		{		point_double(x3, y3, z3, x1, y1, z1);		return;		}	/* ftmp5 = z1*z2 */	felem_mul(tmp, z1, z2);	felem_reduce(ftmp5, tmp);	/* zout = (z1^2*x2 - z2^2*x1)*(z1*z2) */	felem_mul(tmp, ftmp, ftmp5);	felem_reduce(zout, tmp);	/* ftmp = (z1^2*x2 - z2^2*x1)^2 */	memcpy(ftmp5, ftmp, 3 * sizeof(fslice));	felem_square(tmp, ftmp);	felem_reduce(ftmp, tmp);	/* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */	felem_mul(tmp, ftmp, ftmp5);	felem_reduce(ftmp5, tmp);	/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */	felem_mul(tmp, ftmp2, ftmp);	felem_reduce(ftmp2, tmp);	/* ftmp4 = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */	felem_mul(tmp, ftmp4, ftmp5);	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */	/* tmp2 = (z1^3*y2 - z2^3*y1)^2 */	felem_square(tmp2, ftmp3);	/* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */	/* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */	felem_diff_128_64(tmp2, ftmp5);	/* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */	/* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */	memcpy(ftmp5, ftmp2, 3 * sizeof(fslice));	felem_scalar64(ftmp5, 2);	/* ftmp5[i] < 2 * 2^57 = 2^58 */	/* xout = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -	   2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */	felem_diff_128_64(tmp2, ftmp5);	/* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */	felem_reduce(xout, tmp2);	/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - xout */	felem_diff64(ftmp2, xout);	/* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */	/* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - xout) */	felem_mul(tmp2, ftmp3, ftmp2);	/* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */	/* yout = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - xout) -	   z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */	felem_diff128(tmp2, tmp);	/* tmp2[i] < 2^118 + 2^120 < 2^121 */	felem_reduce(yout, tmp2);	/* the result (xout, yout, zout) is incorrect if one of the	 * inputs is the point at infinity, so we need to check for this	 * separately */	/* if point 1 is at infinity, copy point 2 to output, and vice versa */	copy_conditional(xout, x2, 3, z1_is_zero);	select_conditional(x3, xout, x1, 3, z2_is_zero);	copy_conditional(yout, y2, 3, z1_is_zero);	select_conditional(y3, yout, y1, 3, z2_is_zero);	copy_conditional(zout, z2, 3, z1_is_zero);	select_conditional(z3, zout, z1, 3, z2_is_zero);	}/*static void affine(point P){    coord z1, z2, xin, yin;    uint128_t tmp[7];    if (felem_is_zero(P[2])) return;    felem_inv(z2, P[2]);    felem_square(tmp, z2); felem_reduce(z1, tmp);    felem_mul(tmp, P[0], z1); felem_reduce(xin, tmp);    felem_contract(P[0], xin);    felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);    felem_mul(tmp, P[1], z1); felem_reduce(yin, tmp);    felem_contract(P[1], yin);    memset(P[2], 0, sizeof(coord));    P[2][0] = 1;}*/static void affine_x(coord out, point P){    coord z1, z2, xin;    uint128_t tmp[7];    if (felem_is_zero(P[2])) return;    felem_inv(z2, P[2]);    felem_square(tmp, z2); felem_reduce(z1, tmp);    felem_mul(tmp, P[0], z1); felem_reduce(xin, tmp);    felem_contract(out, xin);}/* Multiply the given point by s */static void point_mul(point out, point in, const felem_bytearray s){    int i;    point tmp;    point table[16];    memset(table[0], 0, sizeof(point));    memmove(table[1], in, sizeof(point));    for(i=2; i<16; i+=2) {	point_double(table[i][0], table[i][1], table[i][2],		     table[i/2][0], table[i/2][1], table[i/2][2]);	point_add(table[i+1][0], table[i+1][1], table[i+1][2],		  table[i][0], table[i][1], table[i][2],		  in[0], in[1], in[2]);    }    /*    for(i=0;i<16;++i) {	fprintf(stderr, "table[%d]:\n", i);	affine(table[i]);	dump_point(NULL, table[i]);    }    */    memset(tmp, 0, sizeof(point));    for(i=0;i<21;i++) {	u8 oh = s[20-i] >> 4;	u8 ol = s[20-i] & 0x0f;	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);	point_add(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2],		  table[oh][0], table[oh][1], table[oh][2]);	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);	point_double(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2]);	point_add(tmp[0], tmp[1], tmp[2], tmp[0], tmp[1], tmp[2],		  table[ol][0], table[ol][1], table[ol][2]);    }    memmove(out, tmp, sizeof(point));}#if 0/* Select a point from an array of 16 precomputed point multiples, * in constant time: for bits = {b_0, b_1, b_2, b_3}, return the point * pre_comp[8*b_3 + 4*b_2 + 2*b_1 + b_0] */static void select_point(const fslice bits[4], const fslice pre_comp[16][3][4],	fslice out[12])	{	fslice tmp[5][12];	select_conditional(tmp[0], pre_comp[7][0], pre_comp[15][0], 12, bits[3]);	select_conditional(tmp[1], pre_comp[3][0], pre_comp[11][0], 12, bits[3]);	select_conditional(tmp[2], tmp[1], tmp[0], 12, bits[2]);	select_conditional(tmp[0], pre_comp[5][0], pre_comp[13][0], 12, bits[3]);	select_conditional(tmp[1], pre_comp[1][0], pre_comp[9][0], 12, bits[3]);	select_conditional(tmp[3], tmp[1], tmp[0], 12, bits[2]);	select_conditional(tmp[4], tmp[3], tmp[2], 12, bits[1]);	select_conditional(tmp[0], pre_comp[6][0], pre_comp[14][0], 12, bits[3]);	select_conditional(tmp[1], pre_comp[2][0], pre_comp[10][0], 12, bits[3]);	select_conditional(tmp[2], tmp[1], tmp[0], 12, bits[2]);	select_conditional(tmp[0], pre_comp[4][0], pre_comp[12][0], 12, bits[3]);	select_conditional(tmp[1], pre_comp[0][0], pre_comp[8][0], 12, bits[3]);	select_conditional(tmp[3], tmp[1], tmp[0], 12, bits[2]);	select_conditional(tmp[1], tmp[3], tmp[2], 12, bits[1]);	select_conditional(out, tmp[1], tmp[4], 12, bits[0]);	}/* Interleaved point multiplication using precomputed point multiples: * The small point multiples 0*P, 1*P, ..., 15*P are in pre_comp[], * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple * of the generator, using certain (large) precomputed multiples in g_pre_comp. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */static void batch_mul(fslice x_out[4], fslice y_out[4], fslice z_out[4],	const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,	const fslice pre_comp[][16][3][4], const fslice g_pre_comp[16][3][4])	{	unsigned i, j, num;	unsigned gen_mul = (g_scalar != NULL);	fslice nq[12], nqt[12], tmp[12];	fslice bits[4];	u8 byte;	/* set nq to the point at infinity */	memset(nq, 0, 12 * sizeof(fslice));	/* Loop over all scalars msb-to-lsb, 4 bits at a time: for each nibble,	 * double 4 times, then add the precomputed point multiples.	 * If we are also adding multiples of the generator, then interleave	 * these additions with the last 56 doublings. */	for (i = (num_points ? 28 : 7); i > 0; --i)		{		for (j = 0; j < 8; ++j)			{			/* double once */			point_double(nq, nq+4, nq+8, nq, nq+4, nq+8);			/* add multiples of the generator */			if ((gen_mul) && (i <= 7))				{				bits[3] = (g_scalar[i+20] >> (7-j)) & 1;				bits[2] = (g_scalar[i+13] >> (7-j)) & 1;				bits[1] = (g_scalar[i+6] >> (7-j)) & 1;				bits[0] = (g_scalar[i-1] >> (7-j)) & 1;				/* select the point to add, in constant time */				select_point(bits, g_pre_comp, tmp);				memcpy(nqt, nq, 12 * sizeof(fslice));				point_add(nq, nq+4, nq+8, nqt, nqt+4, nqt+8,					tmp, tmp+4, tmp+8);				}			/* do an addition after every 4 doublings */			if (j % 4 == 3)				{				/* loop over all scalars */				for (num = 0; num < num_points; ++num)					{					byte = scalars[num][i-1];					bits[3] = (byte >> (10-j)) & 1;					bits[2] = (byte >> (9-j)) & 1;					bits[1] = (byte >> (8-j)) & 1;					bits[0] = (byte >> (7-j)) & 1;					/* select the point to add */					select_point(bits,						pre_comp[num], tmp);					memcpy(nqt, nq, 12 * sizeof(fslice));					point_add(nq, nq+4, nq+8, nqt, nqt+4,						nqt+8, tmp, tmp+4, tmp+8);					}				}			}		}	memcpy(x_out, nq, 4 * sizeof(fslice));	memcpy(y_out, nq+4, 4 * sizeof(fslice));	memcpy(z_out, nq+8, 4 * sizeof(fslice));	}/******************************************************************************//*		       FUNCTIONS TO MANAGE PRECOMPUTATION */static NISTP224_PRE_COMP *nistp224_pre_comp_new()	{	NISTP224_PRE_COMP *ret = NULL;	ret = (NISTP224_PRE_COMP *)OPENSSL_malloc(sizeof(NISTP224_PRE_COMP));	if (!ret)		{		ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);		return ret;		}	memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));	ret->references = 1;	return ret;	}static void *nistp224_pre_comp_dup(void *src_)	{	NISTP224_PRE_COMP *src = src_;	/* no need to actually copy, these objects never change! */	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);	return src_;	}static void nistp224_pre_comp_free(void *pre_)	{	int i;	NISTP224_PRE_COMP *pre = pre_;	if (!pre)		return;	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);	if (i > 0)		return;	OPENSSL_free(pre);	}static void nistp224_pre_comp_clear_free(void *pre_)	{	int i;	NISTP224_PRE_COMP *pre = pre_;	if (!pre)		return;	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);	if (i > 0)		return;	OPENSSL_cleanse(pre, sizeof *pre);	OPENSSL_free(pre);	}/******************************************************************************//*			   OPENSSL EC_METHOD FUNCTIONS */int ec_GFp_nistp224_group_init(EC_GROUP *group)	{	int ret;	ret = ec_GFp_simple_group_init(group);	group->a_is_minus3 = 1;	return ret;	}int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,	const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)	{	int ret = 0;	BN_CTX *new_ctx = NULL;	BIGNUM *curve_p, *curve_a, *curve_b;	if (ctx == NULL)		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;	BN_CTX_start(ctx);	if (((curve_p = BN_CTX_get(ctx)) == NULL) ||		((curve_a = BN_CTX_get(ctx)) == NULL) ||		((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;	BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);	BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);	BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);	if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||		(BN_cmp(curve_b, b)))		{		ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,			EC_R_WRONG_CURVE_PARAMETERS);		goto err;		}	group->field_mod_func = BN_nist_mod_224;	ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);err:	BN_CTX_end(ctx);	if (new_ctx != NULL)		BN_CTX_free(new_ctx);	return ret;	}/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns * (X', Y') = (X/Z^2, Y/Z^3) */int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,	const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)	{	fslice z1[4], z2[4], x_in[4], y_in[4], x_out[4], y_out[4];	uint128_t tmp[7];	if (EC_POINT_is_at_infinity(group, point))		{		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,			EC_R_POINT_AT_INFINITY);		return 0;		}	if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||		(!BN_to_felem(z1, &point->Z))) return 0;	felem_inv(z2, z1);	felem_square(tmp, z2); felem_reduce(z1, tmp);	felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);	felem_contract(x_out, x_in);	if (x != NULL)		{		if (!felem_to_BN(x, x_out)) {		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,			ERR_R_BN_LIB);		return 0;		}		}	felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);	felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);	felem_contract(y_out, y_in);	if (y != NULL)		{		if (!felem_to_BN(y, y_out)) {		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,			ERR_R_BN_LIB);		return 0;		}		}	return 1;	}/* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values * Result is stored in r (r can equal one of the inputs). */int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,	const BIGNUM *scalar, size_t num, const EC_POINT *points[],	const BIGNUM *scalars[], BN_CTX *ctx)	{	int ret = 0;	int i, j;	BN_CTX *new_ctx = NULL;	BIGNUM *x, *y, *z, *tmp_scalar;	felem_bytearray g_secret;	felem_bytearray *secrets = NULL;	fslice (*pre_comp)[16][3][4] = NULL;	felem_bytearray tmp;	unsigned num_bytes;	int have_pre_comp = 0;	size_t num_points = num;	fslice x_in[4], y_in[4], z_in[4], x_out[4], y_out[4], z_out[4];	NISTP224_PRE_COMP *pre = NULL;	fslice (*g_pre_comp)[3][4] = NULL;	EC_POINT *generator = NULL;	const EC_POINT *p = NULL;	const BIGNUM *p_scalar = NULL;	if (ctx == NULL)		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;	BN_CTX_start(ctx);	if (((x = BN_CTX_get(ctx)) == NULL) ||		((y = BN_CTX_get(ctx)) == NULL) ||		((z = BN_CTX_get(ctx)) == NULL) ||		((tmp_scalar = BN_CTX_get(ctx)) == NULL))		goto err;	if (scalar != NULL)		{		pre = EC_EX_DATA_get_data(group->extra_data,			nistp224_pre_comp_dup, nistp224_pre_comp_free,			nistp224_pre_comp_clear_free);		if (pre)			/* we have precomputation, try to use it */			g_pre_comp = pre->g_pre_comp;		else			/* try to use the standard precomputation */			g_pre_comp = (fslice (*)[3][4]) gmul;		generator = EC_POINT_new(group);		if (generator == NULL)			goto err;		/* get the generator from precomputation */		if (!felem_to_BN(x, g_pre_comp[1][0]) ||			!felem_to_BN(y, g_pre_comp[1][1]) ||			!felem_to_BN(z, g_pre_comp[1][2]))			{			ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);			goto err;			}		if (!EC_POINT_set_Jprojective_coordinates_GFp(group,				generator, x, y, z, ctx))			goto err;		if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))			/* precomputation matches generator */			have_pre_comp = 1;		else			/* we don't have valid precomputation:			 * treat the generator as a random point */			num_points = num_points + 1;		}	secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));	pre_comp = OPENSSL_malloc(num_points * 16 * 3 * 4 * sizeof(fslice));	if ((num_points) && ((secrets == NULL) || (pre_comp == NULL)))		{		ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);		goto err;		}	/* we treat NULL scalars as 0, and NULL points as points at infinity,	 * i.e., they contribute nothing to the linear combination */	memset(secrets, 0, num_points * sizeof(felem_bytearray));	memset(pre_comp, 0, num_points * 16 * 3 * 4 * sizeof(fslice));	for (i = 0; i < num_points; ++i)		{		if (i == num)			/* the generator */			{			p = EC_GROUP_get0_generator(group);			p_scalar = scalar;			}		else			/* the i^th point */			{			p = points[i];			p_scalar = scalars[i];			}		if ((p_scalar != NULL) && (p != NULL))			{			num_bytes = BN_num_bytes(p_scalar);			/* reduce scalar to 0 <= scalar < 2^224 */			if ((num_bytes > sizeof(felem_bytearray)) || (BN_is_negative(p_scalar)))				{				/* this is an unusual input, and we don't guarantee				 * constant-timeness */				if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))					{					ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);					goto err;					}				num_bytes = BN_bn2bin(tmp_scalar, tmp);				}			else				BN_bn2bin(p_scalar, tmp);			flip_endian(secrets[i], tmp, num_bytes);			/* precompute multiples */			if ((!BN_to_felem(x_out, &p->X)) ||				(!BN_to_felem(y_out, &p->Y)) ||				(!BN_to_felem(z_out, &p->Z))) goto err;			memcpy(pre_comp[i][1][0], x_out, 4 * sizeof(fslice));			memcpy(pre_comp[i][1][1], y_out, 4 * sizeof(fslice));			memcpy(pre_comp[i][1][2], z_out, 4 * sizeof(fslice));			for (j = 1; j < 8; ++j)				{				point_double(pre_comp[i][2*j][0],					pre_comp[i][2*j][1],					pre_comp[i][2*j][2],					pre_comp[i][j][0],					pre_comp[i][j][1],					pre_comp[i][j][2]);				point_add(pre_comp[i][2*j+1][0],					pre_comp[i][2*j+1][1],					pre_comp[i][2*j+1][2],					pre_comp[i][1][0],					pre_comp[i][1][1],					pre_comp[i][1][2],					pre_comp[i][2*j][0],					pre_comp[i][2*j][1],					pre_comp[i][2*j][2]);				}			}		}	/* the scalar for the generator */	if ((scalar != NULL) && (have_pre_comp))		{		memset(g_secret, 0, sizeof g_secret);		num_bytes = BN_num_bytes(scalar);		/* reduce scalar to 0 <= scalar < 2^224 */		if ((num_bytes > sizeof(felem_bytearray)) || (BN_is_negative(scalar)))			{			/* this is an unusual input, and we don't guarantee			 * constant-timeness */			if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))				{				ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);				goto err;				}			num_bytes = BN_bn2bin(tmp_scalar, tmp);			}		else			BN_bn2bin(scalar, tmp);		flip_endian(g_secret, tmp, num_bytes);		/* do the multiplication with generator precomputation*/		batch_mul(x_out, y_out, z_out,			(const felem_bytearray (*)) secrets, num_points,			g_secret, (const fslice (*)[16][3][4]) pre_comp,			(const fslice (*)[3][4]) g_pre_comp);		}	else		/* do the multiplication without generator precomputation */		batch_mul(x_out, y_out, z_out,			(const felem_bytearray (*)) secrets, num_points,			NULL, (const fslice (*)[16][3][4]) pre_comp, NULL);	/* reduce the output to its unique minimal representation */	felem_contract(x_in, x_out);	felem_contract(y_in, y_out);	felem_contract(z_in, z_out);	if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||		(!felem_to_BN(z, z_in)))		{		ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);		goto err;		}	ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);err:	BN_CTX_end(ctx);	if (generator != NULL)		EC_POINT_free(generator);	if (new_ctx != NULL)		BN_CTX_free(new_ctx);	if (secrets != NULL)		OPENSSL_free(secrets);	if (pre_comp != NULL)		OPENSSL_free(pre_comp);	return ret;	}int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)	{	int ret = 0;	NISTP224_PRE_COMP *pre = NULL;	int i, j;	BN_CTX *new_ctx = NULL;	BIGNUM *x, *y;	EC_POINT *generator = NULL;	/* throw away old precomputation */	EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,		nistp224_pre_comp_free, nistp224_pre_comp_clear_free);	if (ctx == NULL)		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;	BN_CTX_start(ctx);	if (((x = BN_CTX_get(ctx)) == NULL) ||		((y = BN_CTX_get(ctx)) == NULL))		goto err;	/* get the generator */	if (group->generator == NULL) goto err;	generator = EC_POINT_new(group);	if (generator == NULL)		goto err;	BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);	BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);	if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))		goto err;	if ((pre = nistp224_pre_comp_new()) == NULL)		goto err;	/* if the generator is the standard one, use built-in precomputation */	if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))		{		memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));		ret = 1;		goto err;		}	if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) ||		(!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) ||		(!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z)))		goto err;	/* compute 2^56*G, 2^112*G, 2^168*G */	for (i = 1; i < 5; ++i)		{		point_double(pre->g_pre_comp[2*i][0], pre->g_pre_comp[2*i][1],			pre->g_pre_comp[2*i][2], pre->g_pre_comp[i][0],			pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);		for (j = 0; j < 55; ++j)			{			point_double(pre->g_pre_comp[2*i][0],				pre->g_pre_comp[2*i][1],				pre->g_pre_comp[2*i][2],				pre->g_pre_comp[2*i][0],				pre->g_pre_comp[2*i][1],				pre->g_pre_comp[2*i][2]);			}		}	/* g_pre_comp[0] is the point at infinity */	memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));	/* the remaining multiples */	/* 2^56*G + 2^112*G */	point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],		pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],		pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],		pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],		pre->g_pre_comp[2][2]);	/* 2^56*G + 2^168*G */	point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],		pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],		pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],		pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],		pre->g_pre_comp[2][2]);	/* 2^112*G + 2^168*G */	point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],		pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],		pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],		pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],		pre->g_pre_comp[4][2]);	/* 2^56*G + 2^112*G + 2^168*G */	point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],		pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],		pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],		pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],		pre->g_pre_comp[2][2]);	for (i = 1; i < 8; ++i)		{		/* odd multiples: add G */		point_add(pre->g_pre_comp[2*i+1][0], pre->g_pre_comp[2*i+1][1],			pre->g_pre_comp[2*i+1][2], pre->g_pre_comp[2*i][0],			pre->g_pre_comp[2*i][1], pre->g_pre_comp[2*i][2],			pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],			pre->g_pre_comp[1][2]);		}	if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,			nistp224_pre_comp_free, nistp224_pre_comp_clear_free))		goto err;	ret = 1;	pre = NULL; err:	BN_CTX_end(ctx);	if (generator != NULL)		EC_POINT_free(generator);	if (new_ctx != NULL)		BN_CTX_free(new_ctx);	if (pre)		nistp224_pre_comp_free(pre);	return ret;	}int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)	{	if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,			nistp224_pre_comp_free, nistp224_pre_comp_clear_free)		!= NULL)		return 1;	else		return 0;	}#endif#ifdef TESTING#include <sys/time.h>static u8 ctoh(char c){    if (c >= '0' && c <= '9') return c-'0';    if (c >= 'a' && c <= 'f') return c-'a'+10;    if (c >= 'A' && c <= 'F') return c-'A'+10;    return 0;}static void arg_to_bytearray(felem_bytearray ba, const char *arg){    /* Convert the arg, which is a string like "1a2637c8" to a byte     * array like 0xc8 0x37 0x26 0x1a. */    int size = sizeof(felem_bytearray);    int arglen = strlen(arg);    int argsize = (arglen+1)/2;    const char *argp = arg + arglen;    u8 *bap = ba;    memset(ba, 0, size);    if (size < argsize) {	fprintf(stderr, "Arg too long: %s\n", arg);	exit(1);    }    while (argp > arg+1) {	argp -= 2;	*bap = (ctoh(argp[0])<<4)|(ctoh(argp[1]));	++bap;    }    if (arglen & 1) {	/* Handle the stray top nybble */	argp -= 1;	*bap = ctoh(argp[0]);    }}static void arg_to_coord(coord c, const char *arg){    felem_bytearray ba;    arg_to_bytearray(ba, arg);    /* Now convert it to a coord */    bin21_to_felem(c, ba);}int main(int argc, char **argv){    point infinity, P, Q, P2, PQ;    felem_bytearray s;    int i;    struct timeval st, et;    unsigned long el;    int niter = 1000;    memset(infinity, 0, sizeof(infinity));    memset(P, 0, sizeof(P));    memset(Q, 0, sizeof(Q));    if (argc != 6) {	fprintf(stderr, "Usage: %s Px Py Qx Qy s\n", argv[0]);	exit(1);    }    arg_to_coord(P[0], argv[1]);    arg_to_coord(P[1], argv[2]);    P[2][0] = 1;    dump_point("P", P);    arg_to_coord(Q[0], argv[3]);    arg_to_coord(Q[1], argv[4]);    Q[2][0] = 1;    dump_point("Q", Q);    arg_to_bytearray(s, argv[5]);    point_double(P2[0], P2[1], P2[2], P[0], P[1], P[2]);    affine(P2);    point_add(PQ[0], PQ[1], PQ[2], P[0], P[1], P[2], Q[0], Q[1], Q[2]);    affine(PQ);    dump_point("P2", P2);    dump_point("PQ", PQ);    gettimeofday(&st, NULL);    for (i=0;i<niter;++i) {	point_mul(P, P, s);	affine(P);    }    gettimeofday(&et, NULL);    el = (et.tv_sec-st.tv_sec)*1000000 + (et.tv_usec-st.tv_usec);    fprintf(stderr, "%lu / %d = %lu us\n", el, niter, el/niter);    dump_point("Ps", P);    return 0;}#endif/* Figure out whether there's a point with x-coordinate x on the main * curve.  If not, then there's one on the twist curve.  (There are * actually two, which are negatives of each other; that doesn't * matter.)  Multiply that point by seckey and set out to the * x-coordinate of the result. */void ptwist_pointmul(byte out[PTWIST_BYTES], const byte x[PTWIST_BYTES],	const byte seckey[PTWIST_BYTES]){    /* Compute z = x^3 + a*x + b */    point P, Q;    coord z, r2, Qx;    uint128_t tmp[5];    int ontwist;    static const coord three = { 3, 0, 0 };    static const coord b =	    { 0x46d320e01dc7d6, 0x486ebc69bad316, 0x4e355e95cafedd };    /* Convert the byte array to a coord */    bin21_to_felem(P[0], x);    /* Compute z = x^3 - 3*x + b */    felem_square(tmp, P[0]); felem_reduce(z, tmp);    felem_diff64(z, three);    felem_mul(tmp, z, P[0]); felem_reduce(z, tmp);    felem_sum64(z, b);    /*    dump_coord("z", z);    */    /* Compute r = P[1] = z ^ ((p+1)/4).  This will be a square root of     * z, if one exists. */    felem_sqrt(P[1], z);    /*    dump_coord("r", P[1]);    */    /* Is P[1] a square root of z? */    felem_square(tmp, P[1]); felem_diff_128_64(tmp, z); felem_reduce(r2, tmp);    if (felem_is_zero(r2)) {	/* P(x,r) is on the curve */	ontwist = 0;    } else {	/* (-x, r) is on the twist */	ontwist = 1;	felem_neg(P[0], P[0]);    }    /*    fprintf(stderr, "ontwist = %d\n", ontwist);    */    memset(P[2], 0, sizeof(coord));    P[2][0] = 1;    /* All set.  Now do the point multiplication. */    /*    dump_point("P", P);    for(i=0;i<21;++i) {	fprintf(stderr, "%02x", seckey[20-i]);    }    fprintf(stderr, "\n");    */    point_mul(Q, P, seckey);    affine_x(Qx, Q);    /*    dump_point("Q", Q);    */    /* Get the x-coordinate of the result, and negate it if we're on the     * twist. */    if (ontwist) {	felem_neg(Qx, Qx);    }    /* Convert back to bytes */    felem_to_bin21(out, Qx);    /*    fprintf(stderr, "out: ");    for(i=0;i<21;++i) {	fprintf(stderr, "%02x", out[i]);    }    fprintf(stderr, "\n");    */}
 |