shine.rs 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. use crate::lagrange::*;
  2. use curve25519_dalek::constants as dalek_constants;
  3. use curve25519_dalek::ristretto::RistrettoPoint;
  4. use curve25519_dalek::ristretto::VartimeRistrettoPrecomputation;
  5. use curve25519_dalek::scalar::Scalar;
  6. use curve25519_dalek::traits::Identity;
  7. use curve25519_dalek::traits::VartimePrecomputedMultiscalarMul;
  8. use itertools::Itertools;
  9. use rand::RngCore;
  10. use sha2::digest::FixedOutput;
  11. use sha2::Digest;
  12. use sha2::Sha256;
  13. // Compute (m choose k) when m^k < 2^64
  14. fn binom(m: u32, k: u32) -> u64 {
  15. let mut numer = 1u64;
  16. let mut denom = 1u64;
  17. for i in 0u64..(k as u64) {
  18. numer *= (m as u64) - i;
  19. denom *= i + 1;
  20. }
  21. numer / denom
  22. }
  23. // The hash function used to create the coefficients for the
  24. // pseudorandom secret sharing.
  25. fn hash1(phi: &[u8; 32], w: &[u8]) -> Scalar {
  26. let mut hash = Sha256::new();
  27. hash.update(phi);
  28. hash.update(w);
  29. let mut hashval = [0u8; 32];
  30. hash.finalize_into((&mut hashval).into());
  31. Scalar::from_bytes_mod_order(hashval)
  32. }
  33. // The key for player k will consist of a vector of (v, phi) tuples,
  34. // where the v values enumerate all lists of t-1 player numbers (from
  35. // 1 to n) that do _not_ include k
  36. #[derive(Debug)]
  37. pub struct Key {
  38. pub n: u32,
  39. pub t: u32,
  40. pub k: u32,
  41. pub secrets: Vec<(Vec<u32>, [u8; 32])>,
  42. }
  43. impl Key {
  44. pub fn keygen(n: u32, t: u32) -> Vec<Self> {
  45. let mut rng = rand::thread_rng();
  46. let mut res: Vec<Self> = Vec::new();
  47. for k in 1..=n {
  48. res.push(Self {
  49. n,
  50. t,
  51. k,
  52. secrets: Vec::new(),
  53. });
  54. }
  55. let si = (1..=n).combinations((t - 1) as usize);
  56. for v in si {
  57. // For each subset of size t-1, pick a random secret, and
  58. // give it to all players _not_ in that subset
  59. let mut phi: [u8; 32] = [0; 32];
  60. rng.fill_bytes(&mut phi);
  61. let mut vnextind = 0usize;
  62. let mut vnext = v[0];
  63. for i in 1..=n {
  64. if i < vnext {
  65. res[(i - 1) as usize].secrets.push((v.clone(), phi));
  66. } else {
  67. vnextind += 1;
  68. vnext = if vnextind < ((t - 1) as usize) {
  69. v[vnextind]
  70. } else {
  71. n + 1
  72. };
  73. }
  74. }
  75. }
  76. res
  77. }
  78. }
  79. #[test]
  80. pub fn test_keygen() {
  81. let keys = Key::keygen(7, 4);
  82. println!("key for player 3: {:?}", keys[2]);
  83. println!("key for player 7: {:?}", keys[6]);
  84. }
  85. #[derive(Debug)]
  86. pub struct PreprocKey {
  87. pub n: u32,
  88. pub t: u32,
  89. pub k: u32,
  90. pub secrets: Vec<([u8; 32], Scalar)>,
  91. }
  92. impl PreprocKey {
  93. pub fn preproc(key: &Key) -> Self {
  94. Self {
  95. n: key.n,
  96. t: key.t,
  97. k: key.k,
  98. secrets: key
  99. .secrets
  100. .iter()
  101. .map(|(v, phi)| (*phi, lagrange(v, 0, key.k)))
  102. .collect(),
  103. }
  104. }
  105. pub fn rand(n: u32, t: u32) -> Self {
  106. let delta = binom(n - 1, t - 1);
  107. let mut secrets: Vec<([u8; 32], Scalar)> = Vec::new();
  108. let mut rng = rand::thread_rng();
  109. for _ in 0u64..delta {
  110. let mut phi = [0u8; 32];
  111. rng.fill_bytes(&mut phi);
  112. let lagrange: Scalar = Scalar::random(&mut rng);
  113. secrets.push((phi, lagrange));
  114. }
  115. Self {
  116. n,
  117. t,
  118. k: 1,
  119. secrets,
  120. }
  121. }
  122. pub fn gen(&self, w: &[u8]) -> (Scalar, RistrettoPoint) {
  123. let d = self
  124. .secrets
  125. .iter()
  126. .map(|&(phi, lagrange)| hash1(&phi, w) * lagrange)
  127. .sum();
  128. (d, &d * &dalek_constants::RISTRETTO_BASEPOINT_TABLE)
  129. }
  130. pub fn delta(&self) -> usize {
  131. self.secrets.len()
  132. }
  133. }
  134. pub fn commit(evaluation: &Scalar) -> RistrettoPoint {
  135. evaluation * &dalek_constants::RISTRETTO_BASEPOINT_TABLE
  136. }
  137. // Verify that a set of commitments are consistent with a given t, using
  138. // precomputed Lagrange polynomials. Return false if the commitments
  139. // are not consistent with the given t, or true if they are. You must
  140. // pass at least 2t-1 commitments, and the same number of lag_polys.
  141. pub fn verify_polys(t: u32, lag_polys: &[ScalarPoly], commitments: &[RistrettoPoint]) -> bool {
  142. // Check if the commitments are consistent: when interpolating the
  143. // polys in the exponent, the low t coefficients can be non-0 but
  144. // the ones above that must be 0
  145. let coalition_size = commitments.len();
  146. assert!(t >= 1);
  147. assert!(coalition_size >= 2 * (t as usize) - 1);
  148. assert!(coalition_size == lag_polys.len());
  149. assert!(coalition_size == lag_polys[0].coeffs.len());
  150. // Use this to compute the multiscalar multiplications
  151. let multiscalar = VartimeRistrettoPrecomputation::new(Vec::<RistrettoPoint>::new());
  152. // Compute the B_i for i from t to coalition_size-1. All of them
  153. // should be the identity; otherwise, the commitments are
  154. // inconsistent.
  155. ((t as usize)..coalition_size)
  156. .map(|i| {
  157. // B_i = \sum_j lag_polys[j].coeffs[i] * commitments[j]
  158. multiscalar.vartime_mixed_multiscalar_mul(
  159. &Vec::<Scalar>::new(),
  160. (0..coalition_size).map(|j| lag_polys[j].coeffs[i]),
  161. commitments,
  162. )
  163. })
  164. .all(|bi: RistrettoPoint| bi == RistrettoPoint::identity())
  165. }
  166. // Verify that a set of commitments are consistent with a given t.
  167. // Return false if the commitments are not consistent with the given t,
  168. // or true if they are. You must pass at least 2t-1 commitments, and the
  169. // same number of lag_polys.
  170. pub fn verify(t: u32, coalition: &[u32], commitments: &[RistrettoPoint]) -> bool {
  171. let polys = lagrange_polys(coalition);
  172. verify_polys(t, &polys, commitments)
  173. }
  174. // Combine already-verified commitments using precomputed Lagrange
  175. // polynomials. You must pass at least 2t-1 commitments, and the same
  176. // number of lag_polys.
  177. pub fn agg_polys(
  178. t: u32,
  179. lag_polys: &[ScalarPoly],
  180. commitments: &[RistrettoPoint],
  181. ) -> RistrettoPoint {
  182. let coalition_size = commitments.len();
  183. assert!(t >= 1);
  184. assert!(coalition_size >= 2 * (t as usize) - 1);
  185. assert!(coalition_size == lag_polys.len());
  186. assert!(coalition_size == lag_polys[0].coeffs.len());
  187. // Use this to compute the multiscalar multiplications
  188. let multiscalar = VartimeRistrettoPrecomputation::new(Vec::<RistrettoPoint>::new());
  189. // Compute B_0 (which is the combined commitment) and return it
  190. multiscalar.vartime_mixed_multiscalar_mul(
  191. &Vec::<Scalar>::new(),
  192. (0..coalition_size).map(|j| lag_polys[j].coeffs[0]),
  193. commitments,
  194. )
  195. }
  196. // Combine already-verified commitments. You must pass at least 2t-1
  197. // commitments, and the same number of lag_polys.
  198. pub fn agg(t: u32, coalition: &[u32], commitments: &[RistrettoPoint]) -> RistrettoPoint {
  199. let polys = lagrange_polys(coalition);
  200. agg_polys(t, &polys, commitments)
  201. }
  202. // Combine commitments using precomputed Lagrange polynomials. Return
  203. // None if the commitments are not consistent with the given t. You
  204. // must pass at least 2t-1 commitments, and the same number of
  205. // lag_polys. This function combines verify_polys and agg_polys into a
  206. // single call that returns Option<RistrettoPoint>.
  207. pub fn combinecomm_polys(
  208. t: u32,
  209. lag_polys: &[ScalarPoly],
  210. commitments: &[RistrettoPoint],
  211. ) -> Option<RistrettoPoint> {
  212. let coalition_size = commitments.len();
  213. assert!(t >= 1);
  214. assert!(coalition_size >= 2 * (t as usize) - 1);
  215. assert!(coalition_size == lag_polys.len());
  216. assert!(coalition_size == lag_polys[0].coeffs.len());
  217. // Check if the commitments are consistent: when interpolating the
  218. // polys in the exponent, the low t coefficients can be non-0 but
  219. // the ones above that must be 0
  220. if !verify_polys(t, lag_polys, commitments) {
  221. return None;
  222. }
  223. Some(agg_polys(t, lag_polys, commitments))
  224. }
  225. // Combine commitments. Return None if the commitments are not
  226. // consistent with the given t. You must pass at least 2t-1
  227. // commitments, and the same size of coalition. This function combines
  228. // verify and agg into a single call that returns
  229. // Option<RistrettoPoint>.
  230. pub fn combinecomm(
  231. t: u32,
  232. coalition: &[u32],
  233. commitments: &[RistrettoPoint],
  234. ) -> Option<RistrettoPoint> {
  235. let polys = lagrange_polys(coalition);
  236. combinecomm_polys(t, &polys, commitments)
  237. }
  238. #[test]
  239. pub fn test_preproc() {
  240. let keys = Key::keygen(7, 4);
  241. let ppkey3 = PreprocKey::preproc(&keys[2]);
  242. let ppkey7 = PreprocKey::preproc(&keys[6]);
  243. println!("preproc key for player 3: {:?}", ppkey3);
  244. println!("preproc key for player 7: {:?}", ppkey7);
  245. }
  246. #[test]
  247. pub fn test_gen() {
  248. let keys = Key::keygen(7, 3);
  249. let ppkeys: Vec<PreprocKey> = keys.iter().map(|x| PreprocKey::preproc(x)).collect();
  250. let mut rng = rand::thread_rng();
  251. let mut w = [0u8; 32];
  252. rng.fill_bytes(&mut w);
  253. let evals: Vec<Scalar> = ppkeys.iter().map(|k| k.gen(&w).0).collect();
  254. // Try interpolating different subsets and check that the answer is
  255. // the same
  256. let interp1 = interpolate(&vec![1, 2, 3, 4, 5], &evals[0..=4], 0);
  257. let interp2 = interpolate(&vec![3, 4, 5, 6, 7], &evals[2..=6], 0);
  258. println!("interp1 = {:?}", interp1);
  259. println!("interp2 = {:?}", interp2);
  260. assert!(interp1 == interp2);
  261. }
  262. #[test]
  263. pub fn test_combinecomm() {
  264. let keys = Key::keygen(7, 3);
  265. let ppkeys: Vec<PreprocKey> = keys.iter().map(|x| PreprocKey::preproc(x)).collect();
  266. let mut rng = rand::thread_rng();
  267. let mut w = [0u8; 32];
  268. rng.fill_bytes(&mut w);
  269. let commitments: Vec<RistrettoPoint> = ppkeys.iter().map(|k| k.gen(&w).1).collect();
  270. let comm1 = combinecomm(3, &vec![1, 2, 3, 4, 5], &commitments[0..=4]);
  271. let comm2 = combinecomm(3, &vec![3, 4, 5, 6, 7], &commitments[2..=6]);
  272. assert_ne!(comm1, None);
  273. assert_ne!(comm2, None);
  274. // Test a failure case
  275. let comm3 = combinecomm(3, &vec![1, 2, 3, 4, 6], &commitments[0..=4]);
  276. assert_eq!(comm3, None);
  277. }