package com.oblivm.backend.circuits.arithmetic; import com.oblivm.backend.flexsc.CompEnv; public class DenseMatrixLib { public ArithmeticLib lib; VectorLib veclib; CompEnv env; IntegerLib integerlib; public DenseMatrixLib(CompEnv e, ArithmeticLib lib) { env = e; this.lib = lib; integerlib = new IntegerLib(e); veclib = new VectorLib(e, lib); } public T[][][] xor(T[][][] a, T[][][] b) { T[][][] res = env.newTArray(a.length, a[0].length, 1); for (int i = 0; i < a.length; ++i) res[i] = veclib.xor(a[i], b[i]); return res; } public T[][][] add(T[][][] a, T[][][] b) { T[][][] res = env.newTArray(a.length, a[0].length, 1); for (int i = 0; i < a.length; ++i) res[i] = veclib.add(a[i], b[i]); return res; } public T[][][] sub(T[][][] a, T[][][] b) { T[][][] res = env.newTArray(a.length, a[0].length, 1); for (int i = 0; i < a.length; ++i) res[i] = veclib.sub(a[i], b[i]); return res; } public T[][][] multiply(T[][][] a, T[][][] b) { T[][][] res = env.newTArray(a.length, b[0].length, 1); for (int i = 0; i < a.length; ++i) for (int j = 0; j < b[0].length; ++j) { res[i][j] = lib.multiply(a[i][0], b[0][j]); for (int k = 1; k < a[0].length; ++k) res[i][j] = lib.add(res[i][j], lib.multiply(a[i][k], b[k][j])); } return res; } public T[][][] transpose(T[][][] a) { T[][][] res = env.newTArray(a[0].length, a.length, 1); for (int i = 0; i < a.length; ++i) for (int j = 0; j < a[0].length; ++j) res[j][i] = a[i][j]; return res; } public T[][][] rref(T[][][] m) { T[][][] result = env.newTArray(m.length, m[0].length, 1); for (int r = 0; r < m.length; ++r) for (int c = 0; c < m[r].length; ++c) result[r][c] = m[r][c]; for (int p = 0; p < result.length; ++p) { /* Make this pivot 1 */ T[] pv = result[p][p]; T pvZero = lib.eq(pv, lib.publicValue(0)); T[] pvInv = lib.div(lib.publicValue(1), pv); for (int i = 0; i < result[p].length; ++i) result[p][i] = integerlib.mux(lib.multiply(result[p][i], pvInv), result[p][i], pvZero); /* Make other rows zero */ for (int r = 0; r < result.length; ++r) { if (r != p) { T[] f = result[r][p]; for (int i = 0; i < result[r].length; ++i) result[r][i] = lib.sub(result[r][i], lib.multiply(f, result[p][i])); } } } return result; } public T[][][] fastInverse(T[][][] m) { int dimension = m.length; T[][][] extended = env.newTArray(dimension, dimension * 2, 1); T[] zeroFloat = lib.publicValue(0); T[] oneFloat = lib.publicValue(1); for (int i = 0; i < dimension; ++i) { for (int j = 0; j < dimension; ++j) extended[i][j] = m[i][j]; for (int j = 0; j < dimension; ++j) extended[i][dimension + j] = zeroFloat; extended[i][dimension + i] = oneFloat; } extended = rref(extended); T[][][] result = env.newTArray(dimension, dimension, 1); for (int i = 0; i < dimension; ++i) { for (int j = 0; j < dimension; ++j) result[i][j] = extended[i][dimension + j]; } return result; } public T[][] solve(T[][][] A, T[][] b) { int dimension = A.length; T[][][] extended = env.newTArray(dimension, dimension + 1, 1); for (int i = 0; i < dimension; ++i) { for (int j = 0; j < dimension; ++j) extended[i][j] = A[i][j]; extended[i][dimension] = b[i]; } extended = rref(extended); T[][] result = env.newTArray(dimension, 1); for (int i = 0; i < dimension; ++i) { result[i] = extended[i][dimension]; } return result; } public T[][] getColumn(T[][][] matrix, int col) { T[][] res = env.newTArray(matrix[0].length, 1); for (int i = 0; i < matrix[0].length; ++i) res[i] = matrix[i][col]; return res; } public T[][] getRow(T[][][] matrix, int row) { T[][] res = env.newTArray(matrix.length, 1); for (int i = 0; i < matrix.length; ++i) res[i] = matrix[row][i]; return res; } // using Gram-Schmidt process public void QRDecomposition(T[][][] matrix, T[][][] res1, T[][][] res2) { T[][][] u = env.newTArray(matrix[0].length, matrix.length, 1); T[][][] e = env.newTArray(matrix[0].length, matrix.length, 1); T[][][] a = transpose(matrix); for (int i = 0; i < matrix[0].length; ++i) { u[i] = a[i]; for (int j = 0; j < i; ++j) { u[i] = veclib.sub(u[i], veclib.projection(a[i], e[j])); } e[i] = veclib.normalize(u[i]); } T[][][] r = env.newTArray(matrix.length, matrix[0].length, 1); T[] zero = lib.publicValue(0); for (int i = 0; i < r.length; ++i) { for (int j = 0; j < r[0].length; ++j) { if (i <= j) r[i][j] = veclib.innerProduct(e[i], a[j]); else r[i][j] = zero; } } res1 = transpose(e); res2 = r; } public T[][][] eigenValues(T[][][] matrix, int numberOfIterations) { T[][][] e1 = null, e2 = null; QRDecomposition(matrix, e1, e2); T[][][] newMatrix = null; for (int i = 0; i < numberOfIterations; ++i) { newMatrix = multiply(e1, e2); QRDecomposition(newMatrix, e1, e2); } return newMatrix; } public static double[][] rref(double[][] mat) { double[][] rref = new double[mat.length][mat[0].length]; /* Copy matrix */ for (int r = 0; r < rref.length; ++r) { for (int c = 0; c < rref[r].length; ++c) { rref[r][c] = mat[r][c]; } } for (int p = 0; p < rref.length; ++p) { /* Make this pivot 1 */ double pv = rref[p][p]; if (pv != 0) { double pvInv = 1.0 / pv; for (int i = 0; i < rref[p].length; ++i) { rref[p][i] *= pvInv; } } /* Make other rows zero */ for (int r = 0; r < rref.length; ++r) { if (r != p) { double f = rref[r][p]; for (int i = 0; i < rref[0].length; ++i) { rref[r][i] -= (f * rref[p][i]); } } } } return rref; } }