Eviction.java 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397
  1. package protocols;
  2. import java.util.Arrays;
  3. import com.oblivm.backend.flexsc.CompEnv;
  4. import com.oblivm.backend.gc.GCSignal;
  5. import com.oblivm.backend.gc.regular.GCEva;
  6. import com.oblivm.backend.gc.regular.GCGen;
  7. import com.oblivm.backend.network.Network;
  8. import communication.Communication;
  9. import crypto.Crypto;
  10. import gc.GCRoute;
  11. import gc.GCUtil;
  12. import oram.Bucket;
  13. import oram.Forest;
  14. import oram.Metadata;
  15. import oram.Tree;
  16. import oram.Tuple;
  17. import protocols.struct.Party;
  18. import util.M;
  19. import util.Util;
  20. // TODO: set bucket on path
  21. public class Eviction extends Protocol {
  22. public Eviction(Communication con1, Communication con2) {
  23. super(con1, con2);
  24. }
  25. private int[] prepareEviction(int[] target, int[] ti, int W) {
  26. int d = ti.length;
  27. int[] evict = new int[W * d];
  28. for (int r = 0; r < d; r++) {
  29. int tupleIndex = r * W + ti[r];
  30. for (int c = 0; c < W; c++) {
  31. int currIndex = r * W + c;
  32. if (currIndex == tupleIndex) {
  33. int targetIndex = target[r] * W + ti[target[r]];
  34. evict[targetIndex] = currIndex;
  35. } else
  36. evict[currIndex] = currIndex;
  37. }
  38. }
  39. return evict;
  40. }
  41. public void runE(boolean firstTree, int[] tupleParam, byte[] Li, Tuple[] originalPath, Tree OTi) {
  42. if (firstTree) {
  43. // OTi.setBucketsOnPath(new BigInteger(1, Li).longValue(), new Bucket[] { new
  44. // Bucket(originalPath) });
  45. return;
  46. }
  47. timer.start(M.offline_comp);
  48. // GC
  49. int d = OTi.getD();
  50. int sw = OTi.getStashSize();
  51. int w = OTi.getW();
  52. int logW = (int) Math.ceil(Math.log(w + 1) / Math.log(2));
  53. GCSignal[][] evict_LiKeyPairs = GCUtil.genKeyPairs(d - 1);
  54. GCSignal[] LiZeroKeys = GCUtil.getZeroKeys(evict_LiKeyPairs);
  55. GCSignal[][][] evict_E_feKeyPairs = new GCSignal[d][][];
  56. GCSignal[][][] evict_C_feKeyPairs = new GCSignal[d][][];
  57. GCSignal[][] E_feZeroKeys = new GCSignal[d][];
  58. GCSignal[][] C_feZeroKeys = new GCSignal[d][];
  59. GCSignal[][][][] evict_E_labelKeyPairs = new GCSignal[d][w][][];
  60. GCSignal[][][][] evict_C_labelKeyPairs = new GCSignal[d][w][][];
  61. GCSignal[][][] E_labelZeroKeys = new GCSignal[d][w][];
  62. GCSignal[][][] C_labelZeroKeys = new GCSignal[d][w][];
  63. GCSignal[][][] evict_deltaKeyPairs = new GCSignal[d][][];
  64. GCSignal[][] deltaZeroKeys = new GCSignal[d][];
  65. for (int i = 0; i < d; i++) {
  66. evict_E_feKeyPairs[i] = GCUtil.genKeyPairs(w);
  67. evict_C_feKeyPairs[i] = GCUtil.genKeyPairs(w);
  68. E_feZeroKeys[i] = GCUtil.getZeroKeys(evict_E_feKeyPairs[i]);
  69. C_feZeroKeys[i] = GCUtil.getZeroKeys(evict_C_feKeyPairs[i]);
  70. evict_deltaKeyPairs[i] = GCUtil.genKeyPairs(logW);
  71. deltaZeroKeys[i] = GCUtil.getZeroKeys(evict_deltaKeyPairs[i]);
  72. for (int j = 0; j < w; j++) {
  73. evict_E_labelKeyPairs[i][j] = GCUtil.genKeyPairs(d - 1);
  74. evict_C_labelKeyPairs[i][j] = GCUtil.genKeyPairs(d - 1);
  75. E_labelZeroKeys[i][j] = GCUtil.getZeroKeys(evict_E_labelKeyPairs[i][j]);
  76. C_labelZeroKeys[i][j] = GCUtil.getZeroKeys(evict_C_labelKeyPairs[i][j]);
  77. }
  78. }
  79. Network channel = new Network(null, con1);
  80. CompEnv<GCSignal> gen = new GCGen(channel, timer, offline_band, M.offline_write);
  81. GCSignal[][][] outZeroKeys = new GCRoute<GCSignal>(gen, d, w).routing(LiZeroKeys, E_feZeroKeys, C_feZeroKeys,
  82. E_labelZeroKeys, C_labelZeroKeys, deltaZeroKeys);
  83. ((GCGen) gen).sendLastSetGTT();
  84. byte[][][] evict_tiOutKeyHashes = new byte[d][][];
  85. GCSignal[][][] evict_targetOutKeyPairs = new GCSignal[d][][];
  86. for (int i = 0; i < d; i++) {
  87. evict_tiOutKeyHashes[i] = GCUtil.genOutKeyHashes(outZeroKeys[1][i]);
  88. evict_targetOutKeyPairs[i] = GCUtil.recoverOutKeyPairs(outZeroKeys[0][i]);
  89. }
  90. timer.start(M.offline_write);
  91. con2.write(offline_band, evict_C_feKeyPairs);
  92. con2.write(offline_band, evict_C_labelKeyPairs);
  93. con1.write(offline_band, evict_tiOutKeyHashes);
  94. timer.stop(M.offline_write);
  95. // Permutation
  96. int[] evict_pi = Util.randomPermutation(d, Crypto.sr_CE);
  97. byte[][] evict_delta = new byte[d][(logW + 7) / 8];
  98. byte[][] evict_rho = new byte[d][(logW + 7) / 8];
  99. int[][] evict_delta_p = new int[d][];
  100. int[][] evict_rho_p = new int[d][];
  101. for (int i = 0; i < d; i++) {
  102. Crypto.sr_CE.nextBytes(evict_delta[i]);
  103. Crypto.sr_CE.nextBytes(evict_rho[i]);
  104. evict_delta_p[i] = Util.getXorPermutation(evict_delta[i], logW);
  105. evict_rho_p[i] = Util.getXorPermutation(evict_rho[i], logW);
  106. }
  107. timer.stop(M.offline_comp);
  108. ///////////////////////////////////////////////////////////////////
  109. timer.start(M.online_comp);
  110. Tuple[] pathTuples = new Tuple[d * w];
  111. System.arraycopy(originalPath, 0, pathTuples, 0, w);
  112. System.arraycopy(originalPath, sw, pathTuples, w, (d - 1) * w);
  113. Bucket[] pathBuckets = Bucket.tuplesToBuckets(pathTuples, d, w, w);
  114. GCSignal[] LiInputKeys = GCUtil.revSelectKeys(evict_LiKeyPairs, Li);
  115. GCSignal[][] E_feInputKeys = new GCSignal[d][];
  116. GCSignal[][][] E_labelInputKeys = new GCSignal[d][][];
  117. GCSignal[][] deltaInputKeys = new GCSignal[d][];
  118. for (int i = 0; i < d; i++) {
  119. E_feInputKeys[i] = GCUtil.selectFeKeys(evict_E_feKeyPairs[i], pathBuckets[i].getTuples());
  120. E_labelInputKeys[i] = GCUtil.selectLabelKeys(evict_E_labelKeyPairs[i], pathBuckets[i].getTuples());
  121. deltaInputKeys[i] = GCUtil.revSelectKeys(evict_deltaKeyPairs[i], evict_delta[i]);
  122. }
  123. timer.start(M.online_write);
  124. con1.write(online_band, LiInputKeys);
  125. con1.write(online_band, E_feInputKeys);
  126. con1.write(online_band, E_labelInputKeys);
  127. con1.write(online_band, deltaInputKeys);
  128. timer.stop(M.online_write);
  129. PermuteTarget permutetarget = new PermuteTarget(con1, con2);
  130. permutetarget.runE(d, evict_pi, evict_targetOutKeyPairs);
  131. PermuteIndex permuteindex = new PermuteIndex(con1, con2);
  132. permuteindex.runE(w, evict_pi);
  133. int W = (int) Math.pow(2, logW);
  134. for (int i = 0; i < d; i++) {
  135. pathBuckets[i].expand(W);
  136. pathBuckets[i].permute(evict_delta_p[i]);
  137. }
  138. pathBuckets = Util.permute(pathBuckets, evict_pi);
  139. for (int i = 0; i < d; i++) {
  140. pathBuckets[i].permute(evict_rho_p[i]);
  141. }
  142. pathTuples = Bucket.bucketsToTuples(pathBuckets);
  143. SSXOT ssxot = new SSXOT(con1, con2);
  144. pathTuples = ssxot.runE(pathTuples, tupleParam);
  145. pathBuckets = Bucket.tuplesToBuckets(pathTuples, d, W, W);
  146. for (int i = 0; i < d; i++) {
  147. int[] rho_ivs = Util.inversePermutation(evict_rho_p[i]);
  148. pathBuckets[i].permute(rho_ivs);
  149. }
  150. int[] pi_ivs = Util.inversePermutation(evict_pi);
  151. pathBuckets = Util.permute(pathBuckets, pi_ivs);
  152. for (int i = 0; i < d; i++) {
  153. int[] delta_ivs = Util.inversePermutation(evict_delta_p[i]);
  154. pathBuckets[i].permute(delta_ivs);
  155. pathBuckets[i].shrink(w);
  156. }
  157. pathBuckets[0].expand(Arrays.copyOfRange(originalPath, w, sw));
  158. // OTi.setBucketsOnPath(new BigInteger(1, Li).longValue(), pathBuckets);
  159. timer.stop(M.online_comp);
  160. }
  161. public void runD(boolean firstTree, int[] tupleParam, byte[] Li, Tree OTi) {
  162. if (firstTree) {
  163. timer.start(M.online_read);
  164. // Tuple[] originalPath = con2.readTupleArrayAndDec();
  165. timer.stop(M.online_read);
  166. // OTi.setBucketsOnPath(new BigInteger(1, Li).longValue(), new Bucket[] { new
  167. // Bucket(originalPath) });
  168. return;
  169. }
  170. timer.start(M.offline_comp);
  171. // GC
  172. int d = OTi.getD();
  173. int w = OTi.getW();
  174. int logW = (int) Math.ceil(Math.log(w + 1) / Math.log(2));
  175. GCSignal[] LiZeroKeys = GCUtil.genEmptyKeys(d - 1);
  176. GCSignal[][] E_feZeroKeys = new GCSignal[d][];
  177. GCSignal[][] C_feZeroKeys = new GCSignal[d][];
  178. GCSignal[][][] E_labelZeroKeys = new GCSignal[d][w][];
  179. GCSignal[][][] C_labelZeroKeys = new GCSignal[d][w][];
  180. GCSignal[][] deltaZeroKeys = new GCSignal[d][];
  181. for (int i = 0; i < d; i++) {
  182. E_feZeroKeys[i] = GCUtil.genEmptyKeys(w);
  183. C_feZeroKeys[i] = GCUtil.genEmptyKeys(w);
  184. deltaZeroKeys[i] = GCUtil.genEmptyKeys(logW);
  185. for (int j = 0; j < w; j++) {
  186. E_labelZeroKeys[i][j] = GCUtil.genEmptyKeys(d - 1);
  187. C_labelZeroKeys[i][j] = GCUtil.genEmptyKeys(d - 1);
  188. }
  189. }
  190. Network channel = new Network(con1, null);
  191. CompEnv<GCSignal> eva = new GCEva(channel, timer, M.offline_read);
  192. GCRoute<GCSignal> evict_gcroute = new GCRoute<GCSignal>(eva, d, w);
  193. evict_gcroute.routing(LiZeroKeys, E_feZeroKeys, C_feZeroKeys, E_labelZeroKeys, C_labelZeroKeys, deltaZeroKeys);
  194. ((GCEva) eva).receiveLastSetGTT();
  195. eva.setEvaluate();
  196. timer.start(M.offline_read);
  197. byte[][][] evict_tiOutKeyHashes = con1.readTripleByteArrayAndDec();
  198. timer.stop(M.offline_read);
  199. timer.stop(M.offline_comp);
  200. //////////////////////////////////////////////////////////////////////
  201. timer.start(M.online_comp);
  202. timer.start(M.online_read);
  203. GCSignal[] LiInputKeys = con1.readGCSignalArrayAndDec();
  204. GCSignal[][] E_feInputKeys = con1.readDoubleGCSignalArrayAndDec();
  205. GCSignal[][][] E_labelInputKeys = con1.readTripleGCSignalArrayAndDec();
  206. GCSignal[][] deltaInputKeys = con1.readDoubleGCSignalArrayAndDec();
  207. GCSignal[][] C_feInputKeys = con2.readDoubleGCSignalArrayAndDec();
  208. GCSignal[][][] C_labelInputKeys = con2.readTripleGCSignalArrayAndDec();
  209. timer.stop(M.online_read);
  210. GCSignal[][][] outKeys = evict_gcroute.routing(LiInputKeys, E_feInputKeys, C_feInputKeys, E_labelInputKeys,
  211. C_labelInputKeys, deltaInputKeys);
  212. byte[][] ti_p = new byte[deltaInputKeys.length][];
  213. for (int i = 0; i < ti_p.length; i++) {
  214. ti_p[i] = Util.padArray(GCUtil.evaOutKeys(outKeys[1][i], evict_tiOutKeyHashes[i]).toByteArray(),
  215. (logW + 7) / 8);
  216. }
  217. PermuteTarget permutetarget = new PermuteTarget(con1, con2);
  218. int[] target_pp = permutetarget.runD(firstTree, outKeys[0]);
  219. PermuteIndex permuteindex = new PermuteIndex(con1, con2);
  220. int[] ti_pp = permuteindex.runD(firstTree, ti_p, w);
  221. int W = (int) Math.pow(2, logW);
  222. int[] evict = prepareEviction(target_pp, ti_pp, W);
  223. SSXOT ssxot = new SSXOT(con1, con2);
  224. ssxot.runD(evict.length, evict.length, tupleParam, evict);
  225. timer.start(M.online_read);
  226. // Bucket[] pathBuckets = con2.readBucketArrayAndDec();
  227. timer.stop(M.online_read);
  228. // OTi.setBucketsOnPath(new BigInteger(1, Li).longValue(), pathBuckets);
  229. timer.stop(M.online_comp);
  230. }
  231. public void runC(boolean firstTree, int[] tupleParam, Tuple[] originalPath, int d, int sw, int w) {
  232. if (firstTree) {
  233. timer.start(M.online_write);
  234. // con2.write(online_band, originalPath);
  235. timer.stop(M.online_write);
  236. return;
  237. }
  238. timer.start(M.offline_comp);
  239. // GC
  240. timer.start(M.offline_read);
  241. GCSignal[][][] evict_C_feKeyPairs = con1.readTripleGCSignalArrayAndDec();
  242. GCSignal[][][][] evict_C_labelKeyPairs = con1.readQuadGCSignalArrayAndDec();
  243. timer.stop(M.offline_read);
  244. // Permutation
  245. int logW = (int) Math.ceil(Math.log(w + 1) / Math.log(2));
  246. int[] evict_pi = Util.randomPermutation(d, Crypto.sr_CE);
  247. byte[][] evict_delta = new byte[d][(logW + 7) / 8];
  248. byte[][] evict_rho = new byte[d][(logW + 7) / 8];
  249. int[][] evict_delta_p = new int[d][];
  250. int[][] evict_rho_p = new int[d][];
  251. for (int i = 0; i < d; i++) {
  252. Crypto.sr_CE.nextBytes(evict_delta[i]);
  253. Crypto.sr_CE.nextBytes(evict_rho[i]);
  254. evict_delta_p[i] = Util.getXorPermutation(evict_delta[i], logW);
  255. evict_rho_p[i] = Util.getXorPermutation(evict_rho[i], logW);
  256. }
  257. timer.stop(M.offline_comp);
  258. ///////////////////////////////////////////////////////////////
  259. timer.start(M.online_comp);
  260. Tuple[] pathTuples = new Tuple[d * w];
  261. System.arraycopy(originalPath, 0, pathTuples, 0, w);
  262. System.arraycopy(originalPath, sw, pathTuples, w, (d - 1) * w);
  263. Bucket[] pathBuckets = Bucket.tuplesToBuckets(pathTuples, d, w, w);
  264. GCSignal[][] C_feInputKeys = new GCSignal[d][];
  265. GCSignal[][][] C_labelInputKeys = new GCSignal[d][][];
  266. for (int i = 0; i < d; i++) {
  267. C_feInputKeys[i] = GCUtil.selectFeKeys(evict_C_feKeyPairs[i], pathBuckets[i].getTuples());
  268. C_labelInputKeys[i] = GCUtil.selectLabelKeys(evict_C_labelKeyPairs[i], pathBuckets[i].getTuples());
  269. }
  270. timer.start(M.online_write);
  271. con2.write(online_band, C_feInputKeys);
  272. con2.write(online_band, C_labelInputKeys);
  273. timer.stop(M.online_write);
  274. PermuteTarget permutetarget = new PermuteTarget(con1, con2);
  275. permutetarget.runC(firstTree, d, evict_pi);
  276. PermuteIndex permuteindex = new PermuteIndex(con1, con2);
  277. permuteindex.runC(firstTree, w, evict_pi, evict_rho);
  278. int W = (int) Math.pow(2, logW);
  279. for (int i = 0; i < d; i++) {
  280. pathBuckets[i].expand(W);
  281. pathBuckets[i].permute(evict_delta_p[i]);
  282. }
  283. pathBuckets = Util.permute(pathBuckets, evict_pi);
  284. for (int i = 0; i < d; i++) {
  285. pathBuckets[i].permute(evict_rho_p[i]);
  286. }
  287. pathTuples = Bucket.bucketsToTuples(pathBuckets);
  288. SSXOT ssxot = new SSXOT(con1, con2);
  289. pathTuples = ssxot.runC(pathTuples, tupleParam);
  290. pathBuckets = Bucket.tuplesToBuckets(pathTuples, d, W, W);
  291. for (int i = 0; i < d; i++) {
  292. int[] rho_ivs = Util.inversePermutation(evict_rho_p[i]);
  293. pathBuckets[i].permute(rho_ivs);
  294. }
  295. int[] pi_ivs = Util.inversePermutation(evict_pi);
  296. pathBuckets = Util.permute(pathBuckets, pi_ivs);
  297. for (int i = 0; i < d; i++) {
  298. int[] delta_ivs = Util.inversePermutation(evict_delta_p[i]);
  299. pathBuckets[i].permute(delta_ivs);
  300. pathBuckets[i].shrink(w);
  301. }
  302. pathBuckets[0].expand(Arrays.copyOfRange(originalPath, w, sw));
  303. timer.start(M.online_write);
  304. // con2.write(online_band, pathBuckets);
  305. timer.stop(M.online_write);
  306. timer.stop(M.online_comp);
  307. }
  308. @Override
  309. public void run(Party party, Metadata md, Forest[] forest) {
  310. System.out.println("Use PIRRetrieve to test Eviction");
  311. }
  312. @Override
  313. public void run(Party party, Metadata md, Forest forest) {
  314. }
  315. }