preprocessing.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. #include <type_traits> // std::is_same<>
  2. #include <limits> // std::numeric_limits<>
  3. #include <climits> // CHAR_BIT
  4. #include <cmath> // std::log2, std::ceil, std::floor
  5. #include <stdexcept> // std::runtime_error
  6. #include <array> // std::array<>
  7. #include <iostream> // std::istream and std::ostream
  8. #include <vector> // std::vector<>
  9. #include <memory> // std::shared_ptr<>
  10. #include <utility> // std::move
  11. #include <algorithm> // std::copy
  12. #include <cstring> // std::memcpy
  13. #include <bsd/stdlib.h> // arc4random_buf
  14. #include <x86intrin.h> // SSE and AVX intrinsics
  15. #include <boost/asio/thread_pool.hpp>
  16. size_t communication_cost = 0;
  17. #include "bitutils.h"
  18. #include "block.h"
  19. #include "prg.h"
  20. #include "prg_aes_impl.h"
  21. #include <iostream>
  22. #include <fcntl.h>
  23. #include <cstdlib>
  24. #include "block.h"
  25. #include <chrono>
  26. #include <sys/mman.h>
  27. #include <sys/stat.h>
  28. #include <fcntl.h>
  29. #include <fstream>
  30. #include <future>
  31. #include <boost/asio.hpp>
  32. using boost::asio::ip::tcp;
  33. #include <mutex>
  34. #include <boost/lexical_cast.hpp>
  35. using socket_t = boost::asio::ip::tcp::socket;
  36. typedef unsigned char byte_t;
  37. typedef __m128i node_t;
  38. block<__m128i> seed_for_blinds;
  39. constexpr size_t leaf_size = 1;
  40. typedef __m128i leaf_type;
  41. typedef std::array<leaf_type, leaf_size> leaf_t;
  42. size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
  43. bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
  44. size_t leaves_per_node = is_packed ? sizeof(node_t) * CHAR_BIT / bits_per_leaf : 1;
  45. size_t input_bits(const size_t nitems) {
  46. return std::ceil(std::log2(nitems));
  47. }
  48. leaf_t val;
  49. using namespace dpf;
  50. #include "mpc.h"
  51. void generate_random_targets(uint8_t **target_share_read, size_t n_threads, bool party, size_t expo)
  52. {
  53. for (size_t j = 0; j < 64; ++j)
  54. {
  55. for (size_t i = 0; i < n_threads; ++i)
  56. {
  57. uint8_t random_value;
  58. arc4random_buf(&random_value, sizeof(uint8_t));
  59. target_share_read[i][j] = random_value; // rand();
  60. }
  61. }
  62. }
  63. void compute_CW(bool party, tcp::socket &sout, __m128i L, __m128i R, uint8_t bit, __m128i &CW)
  64. {
  65. // struct cw_construction
  66. //{
  67. __m128i rand_b, gamma_b;
  68. uint8_t bit_b;
  69. //};
  70. __m128i *X, *Y;
  71. if (party)
  72. {
  73. std::string qfile = std::string("./gamma1");
  74. int qfd = open(qfile.c_str(), O_RDWR);
  75. X = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  76. PROT_READ, MAP_PRIVATE, qfd, 0);
  77. close(qfd);
  78. qfile = std::string("./x1");
  79. qfd = open(qfile.c_str(), O_RDWR);
  80. Y = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  81. PROT_READ, MAP_PRIVATE, qfd, 0);
  82. close(qfd);
  83. }
  84. if (!party)
  85. {
  86. std::string qfile = std::string("./gamma0");
  87. int qfd = open(qfile.c_str(), O_RDWR);
  88. X = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  89. PROT_READ, MAP_PRIVATE, qfd, 0);
  90. close(qfd);
  91. qfile = std::string("./x0");
  92. qfd = open(qfile.c_str(), O_RDWR);
  93. Y = (__m128i *)mmap(NULL, 8 * sizeof(__m128i),
  94. PROT_READ, MAP_PRIVATE, qfd, 0);
  95. close(qfd);
  96. }
  97. // cw_construction computecw;
  98. // read(sin, boost::asio::buffer(&computecw, sizeof(computecw)));
  99. // computecw.rand_b;
  100. //__m128i gamma_b = computecw.gamma_b;
  101. if (party)
  102. {
  103. rand_b = Y[0]; //_mm_set_epi32(0x6fef9434, 0x6768121e, 0x20942286, 0x1b59f7a7);
  104. gamma_b = X[0]; // _mm_set_epi32(0x6a499109 , 0x803067dd , 0xd1e2281b , 0xe71b6262);
  105. bit_b = 1; // computecw.bit_b;
  106. }
  107. else
  108. {
  109. rand_b = Y[0]; // _mm_set_epi32(0xb29747df, 0xf7300f6d, 0x9476d971, 0xd5f75d98);
  110. gamma_b = X[0]; // _mm_set_epi32(0xb73142e2 , 0x10687aae , 0x06500d3ec , 0x29b5c85d);
  111. bit_b = 1; // computecw.bit_b;
  112. }
  113. uint8_t blinded_bit, blinded_bit_read;
  114. blinded_bit = bit ^ bit_b;
  115. __m128i blinded_L = L ^ R ^ rand_b;
  116. __m128i blinded_L_read;
  117. struct BlindsCW
  118. {
  119. __m128i blinded_message;
  120. uint8_t blinded_bit;
  121. };
  122. BlindsCW blinds_sent, blinds_recv;
  123. blinds_sent.blinded_bit = blinded_bit;
  124. blinds_sent.blinded_message = blinded_L;
  125. boost::asio::write(sout, boost::asio::buffer(&blinds_sent, sizeof(blinds_sent)));
  126. boost::asio::read(sout, boost::asio::buffer(&blinds_recv, sizeof(blinds_recv)));
  127. communication_cost += sizeof(blinds_recv);
  128. blinded_bit_read = blinds_recv.blinded_bit;
  129. blinded_L_read = blinds_recv.blinded_message;
  130. __m128i out_ = R ^ gamma_b; //_mm_setzero_si128;
  131. if (bit)
  132. {
  133. out_ ^= (L ^ R ^ blinded_L_read);
  134. }
  135. if (blinded_bit_read)
  136. {
  137. out_ ^= rand_b;
  138. }
  139. __m128i out_reconstruction;
  140. boost::asio::write(sout, boost::asio::buffer(&out_, sizeof(out_)));
  141. boost::asio::read(sout, boost::asio::buffer(&out_reconstruction, sizeof(out_reconstruction)));
  142. communication_cost += sizeof(out_reconstruction);
  143. out_reconstruction = out_ ^ out_reconstruction;
  144. CW = out_reconstruction;
  145. #ifdef DEBUG
  146. uint8_t bit_reconstruction;
  147. boost::asio::write(sout, boost::asio::buffer(&bit, sizeof(bit)));
  148. boost::asio::read(sout, boost::asio::buffer(&bit_reconstruction, sizeof(bit_reconstruction)));
  149. bit_reconstruction = bit ^ bit_reconstruction;
  150. __m128i L_reconstruction;
  151. boost::asio::write(sout, boost::asio::buffer(&L, sizeof(L)));
  152. boost::asio::read(sout, boost::asio::buffer(&L_reconstruction, sizeof(L_reconstruction)));
  153. L_reconstruction = L ^ L_reconstruction;
  154. __m128i R_reconstruction;
  155. boost::asio::write(sout, boost::asio::buffer(&R, sizeof(R)));
  156. boost::asio::read(sout, boost::asio::buffer(&R_reconstruction, sizeof(R_reconstruction)));
  157. R_reconstruction = R ^ R_reconstruction;
  158. __m128i CW_debug;
  159. if (bit_reconstruction != 0)
  160. {
  161. CW_debug = L_reconstruction;
  162. }
  163. else
  164. {
  165. CW_debug = R_reconstruction;
  166. }
  167. assert(CW_debug[0] == CW[0]);
  168. assert(CW_debug[1] == CW[1]);
  169. #endif
  170. munmap(X, 8 * sizeof(__m128i));
  171. munmap(Y, 8 * sizeof(__m128i));
  172. }
  173. __m128i bit_mask_avx2_msb(unsigned int n)
  174. {
  175. __m128i ones = _mm_set1_epi32(-1);
  176. __m128i cnst32_128 = _mm_set_epi32(32, 64, 96, 128);
  177. __m128i shift = _mm_set1_epi32(n);
  178. shift = _mm_subs_epu16(cnst32_128, shift);
  179. return _mm_sllv_epi32(ones, shift);
  180. }
  181. __m128i bit_mask_avx2_lsb(unsigned int n)
  182. {
  183. __m128i ones = _mm_set1_epi32(-1);
  184. __m128i cnst32_128 = _mm_set_epi32(128, 96, 64, 32);
  185. __m128i shift = _mm_set1_epi32(n);
  186. shift = _mm_subs_epu16(cnst32_128, shift);
  187. return _mm_srlv_epi32(ones, shift);
  188. }
  189. template <typename node_t, typename prgkey_t>
  190. static inline void traverse(const prgkey_t &prgkey, const node_t &seed, node_t s[2])
  191. {
  192. dpf::PRG(prgkey, clear_lsb(seed, 0b11), s, 2);
  193. } // dpf::expand
  194. inline void evalfull_mpc(const size_t &nodes_per_leaf, const size_t &depth, const size_t &nbits, const size_t &nodes_in_interval,
  195. const AES_KEY &prgkey, uint8_t target_share[64], std::vector<socket_t> &socketsPb,
  196. const size_t from, const size_t to, __m128i *output, int8_t *_t, __m128i &final_correction_word, bool party, size_t socket_no = 0)
  197. {
  198. __m128i root;
  199. arc4random_buf(&root, sizeof(root));
  200. root = set_lsb(root, party);
  201. const size_t from_node = std::floor(static_cast<double>(from) / nodes_per_leaf);
  202. __m128i *s[2] = {
  203. reinterpret_cast<__m128i *>(output) + nodes_in_interval * (nodes_per_leaf - 1),
  204. s[0] + nodes_in_interval / 2
  205. };
  206. int8_t *t[2] = {_t, _t + nodes_in_interval / 2};
  207. int curlayer = depth % 2;
  208. s[curlayer][0] = root;
  209. t[curlayer][0] = get_lsb(root, 0b01);
  210. __m128i *CW = (__m128i *)std::aligned_alloc(sizeof(__m256i), depth * sizeof(__m128i));
  211. for (size_t layer = 0; layer < depth; ++layer)
  212. {
  213. #ifdef VERBOSE
  214. printf("layer = %zu\n", layer);
  215. #endif
  216. curlayer = 1 - curlayer;
  217. size_t i = 0, j = 0;
  218. auto nextbit = (from_node >> (nbits - layer - 1)) & 1;
  219. size_t nodes_in_prev_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth - layer)));
  220. size_t nodes_in_cur_layer = std::ceil(static_cast<double>(nodes_in_interval) / (1ULL << (depth - layer - 1)));
  221. __m128i L = _mm_setzero_si128();
  222. __m128i R = _mm_setzero_si128();
  223. for (i = nextbit, j = nextbit; j < nodes_in_prev_layer - 1; ++j, i += 2)
  224. {
  225. traverse(prgkey, s[1 - curlayer][j], &s[curlayer][i]);
  226. L ^= s[curlayer][i];
  227. R ^= s[curlayer][i + 1];
  228. }
  229. if (nodes_in_prev_layer > j)
  230. {
  231. if (i < nodes_in_cur_layer - 1)
  232. {
  233. traverse(prgkey, s[1 - curlayer][j], &s[curlayer][i]);
  234. L ^= s[curlayer][i];
  235. R ^= s[curlayer][i + 1];
  236. }
  237. }
  238. compute_CW(party, socketsPb[socket_no], L, R, target_share[layer], CW[layer]);
  239. uint8_t advice_L = get_lsb(L) ^ target_share[layer];
  240. uint8_t advice_R = get_lsb(R) ^ target_share[layer];
  241. uint8_t cwt_L, cwt_R;
  242. uint8_t advice[2];
  243. uint8_t cwts[2];
  244. advice[0] = advice_L;
  245. advice[1] = advice_R;
  246. boost::asio::write(socketsPb[socket_no + 1], boost::asio::buffer(&advice, sizeof(advice)));
  247. boost::asio::read(socketsPb[socket_no + 1], boost::asio::buffer(&cwts, sizeof(cwts)));
  248. cwt_L = cwts[0];
  249. cwt_R = cwts[1];
  250. cwt_L = cwt_L ^ advice_L ^ 1;
  251. cwt_R = cwt_R ^ advice_R;
  252. for (size_t j = 0; j < nodes_in_prev_layer; ++j)
  253. {
  254. t[curlayer][2 * j] = get_lsb(s[curlayer][2 * j]) ^ (cwt_L & t[1 - curlayer][j]);
  255. s[curlayer][2 * j] = clear_lsb(xor_if(s[curlayer][2 * j], CW[layer], !t[1 - curlayer][j]), 0b11);
  256. t[curlayer][(2 * j) + 1] = get_lsb(s[curlayer][(2 * j) + 1]) ^ (cwt_R & t[1 - curlayer][j]);
  257. s[curlayer][(2 * j) + 1] = clear_lsb(xor_if(s[curlayer][(2 * j) + 1], CW[layer], !t[1 - curlayer][j]), 0b11);
  258. }
  259. }
  260. free(CW);
  261. __m128i Gamma = _mm_setzero_si128();
  262. for (size_t i = 0; i < to + 1; ++i)
  263. {
  264. Gamma[0] += output[i][0];
  265. Gamma[1] += output[i][1];
  266. }
  267. if (party)
  268. {
  269. Gamma[0] = -Gamma[0];
  270. Gamma[1] = -Gamma[1];
  271. }
  272. boost::asio::write(socketsPb[socket_no + 3], boost::asio::buffer(&Gamma, sizeof(Gamma)));
  273. boost::asio::read(socketsPb[socket_no + 3], boost::asio::buffer(&final_correction_word, sizeof(final_correction_word)));
  274. communication_cost += sizeof(Gamma);
  275. final_correction_word = Gamma; // final_correction_word + Gamma;
  276. } // dpf::__evalinterval
  277. void convert_shares(__m128i **output, int8_t **flags, size_t n_threads, size_t db_nitems, __m128i *final_correction_word, tcp::socket &sb, bool party)
  278. {
  279. for (size_t j = 0; j < db_nitems; ++j)
  280. {
  281. for (size_t k = 0; k < n_threads; ++k)
  282. {
  283. if (party)
  284. {
  285. output[k][j] = -output[k][j];
  286. flags[k][j] = -flags[k][j];
  287. }
  288. }
  289. #ifdef DEBUG
  290. int8_t out = flags[0][j];
  291. int8_t out_rec;
  292. boost::asio::write(sb, boost::asio::buffer(&out, sizeof(out)));
  293. boost::asio::read(sb, boost::asio::buffer(&out_rec, sizeof(out_rec)));
  294. out_rec = out_rec + out;
  295. if (out_rec != 0)
  296. std::cout << j << "(flags) --> " << (int)out_rec << std::endl
  297. << std::endl;
  298. __m128i out2 = output[0][j];
  299. __m128i out_rec2;
  300. boost::asio::write(sb, boost::asio::buffer(&out2, sizeof(out2)));
  301. boost::asio::read(sb, boost::asio::buffer(&out_rec2, sizeof(out_rec2)));
  302. out_rec2 = out_rec2 + out2;
  303. if (out_rec2[0] != 0)
  304. std::cout << j << "--> " << out_rec2[0] << std::endl;
  305. #endif
  306. }
  307. for (size_t i = 0; i < n_threads; ++i)
  308. {
  309. int64_t pm = 0;
  310. int64_t rb;
  311. arc4random_buf(&rb, sizeof(rb));
  312. for (size_t j = 0; j < db_nitems; ++j)
  313. {
  314. if (party)
  315. {
  316. if (flags[i][j] != 0)
  317. pm -= 1;
  318. }
  319. if (!party)
  320. {
  321. if (flags[i][j] != 0)
  322. pm += 1; // flags[0][j];
  323. }
  324. }
  325. }
  326. }
  327. void accept_conncections_from_Pb(boost::asio::io_context &io_context, std::vector<socket_t> &socketsPb, int port, size_t j)
  328. {
  329. tcp::acceptor acceptor_a(io_context, tcp::endpoint(tcp::v4(), port));
  330. tcp::socket sb_a(acceptor_a.accept());
  331. socketsPb[j] = std::move(sb_a);
  332. }
  333. int main(int argc, char *argv[])
  334. {
  335. boost::asio::io_context io_context;
  336. tcp::resolver resolver(io_context);
  337. const std::string host1 = argv[1];
  338. const size_t n_threads = atoi(argv[2]);
  339. const size_t number_of_sockets = 5 * n_threads;
  340. const size_t expo = atoi(argv[3]);
  341. const size_t maxRAM = atoi(argv[4]);
  342. const size_t db_nitems = 1ULL << expo;
  343. size_t RAM_needed_per_thread = 164 * db_nitems;
  344. std::cout << "RAM needed = " << n_threads*RAM_needed_per_thread << " bytes = " << n_threads*RAM_needed_per_thread/1073741824 << " GiB" << std::endl;
  345. std::cout << "RAM needed per thread = " << RAM_needed_per_thread << " bytes = " << (RAM_needed_per_thread>>30) << " GiB" << std::endl;
  346. size_t thread_per_batch = std::floor(double(maxRAM<<30)/RAM_needed_per_thread);
  347. if (thread_per_batch > n_threads) {
  348. thread_per_batch = n_threads;
  349. }
  350. std::cout << "thread_per_batch = " << thread_per_batch << std::endl;
  351. if (thread_per_batch < 1) {
  352. std::cout << "You need more RAM" << std::endl;
  353. exit(0);
  354. }
  355. size_t n_batches = std::ceil(double(n_threads)/thread_per_batch);
  356. std::cout << "n_batches = " << n_batches << std::endl;
  357. std::vector<socket_t> socketsPb;
  358. for (size_t j = 0; j < number_of_sockets + 1; ++j)
  359. {
  360. tcp::socket emptysocket(io_context);
  361. socketsPb.emplace_back(std::move(emptysocket));
  362. }
  363. socketsPb.reserve(number_of_sockets + 1);
  364. std::vector<int> ports;
  365. for (size_t j = 0; j < number_of_sockets; ++j)
  366. {
  367. int port = 6000;
  368. ports.push_back(port + j);
  369. }
  370. std::vector<int> ports2_0;
  371. for (size_t j = 0; j < number_of_sockets; ++j)
  372. {
  373. int port = 20000;
  374. ports2_0.push_back(port + j);
  375. }
  376. std::vector<int> ports2_1;
  377. for (size_t j = 0; j < number_of_sockets; ++j)
  378. {
  379. int port = 40000;
  380. ports2_1.push_back(port + j);
  381. }
  382. bool party;
  383. #if (PARTY == 0)
  384. party = false;
  385. for (size_t j = 0; j < number_of_sockets; ++j)
  386. {
  387. tcp::socket sb_a(io_context);
  388. boost::asio::connect(sb_a, resolver.resolve({host1, std::to_string(ports[j])}));
  389. socketsPb[j] = std::move(sb_a);
  390. }
  391. #else
  392. party = true;
  393. boost::asio::thread_pool pool2(number_of_sockets);
  394. for (size_t j = 0; j < number_of_sockets; ++j)
  395. {
  396. boost::asio::post(pool2, std::bind(accept_conncections_from_Pb, std::ref(io_context), std::ref(socketsPb), ports[j], j));
  397. }
  398. pool2.join();
  399. #endif
  400. __m128i *final_correction_word = (__m128i *)std::aligned_alloc(sizeof(__m256i), thread_per_batch * sizeof(__m128i));
  401. AES_KEY aeskey;
  402. __m128i **output = (__m128i **)malloc(sizeof(__m128i *) * thread_per_batch);
  403. int8_t **flags = (int8_t **)malloc(sizeof(uint8_t *) * thread_per_batch);
  404. for (size_t j = 0; j < thread_per_batch; ++j)
  405. {
  406. output[j] = (__m128i *)std::aligned_alloc(sizeof(node_t), db_nitems * sizeof(__m128i));
  407. flags[j] = (int8_t *)std::aligned_alloc(sizeof(node_t), db_nitems * sizeof(uint8_t));
  408. }
  409. const size_t bits_per_leaf = std::is_same<leaf_t, bool>::value ? 1 : sizeof(leaf_t) * CHAR_BIT;
  410. const bool is_packed = (sizeof(leaf_t) < sizeof(node_t));
  411. const size_t nodes_per_leaf = is_packed ? 1 : std::ceil(static_cast<double>(bits_per_leaf) / (sizeof(node_t) * CHAR_BIT));
  412. const size_t depth = std::ceil(std::log2(db_nitems));
  413. const size_t nbits = std::ceil(std::log2(db_nitems));
  414. const size_t nodes_in_interval = db_nitems - 1;
  415. auto start = std::chrono::steady_clock::now();
  416. #ifdef VERBOSE
  417. printf("n_threads = %zu\n\n", n_threads);
  418. #endif
  419. uint8_t **target_share_read = new uint8_t *[thread_per_batch];
  420. for (size_t i = 0; i < n_threads; i++) target_share_read[i] = new uint8_t[64];
  421. for(size_t iters = 0; iters < n_batches; ++iters)
  422. {
  423. if (n_batches > 1) {
  424. printf("Starting evalfull_mpc batch %lu / %lu\n", iters+1, n_batches);
  425. }
  426. generate_random_targets(target_share_read, thread_per_batch, party, expo);
  427. boost::asio::thread_pool pool(thread_per_batch);
  428. for (size_t j = 0; j < thread_per_batch; ++j)
  429. {
  430. boost::asio::post(pool, std::bind(evalfull_mpc, std::ref(nodes_per_leaf), std::ref(depth), std::ref(nbits), std::ref(nodes_in_interval),
  431. std::ref(aeskey), target_share_read[j], std::ref(socketsPb), 0, db_nitems - 1, output[j],
  432. flags[j], std::ref(final_correction_word[j]), party, 5 * j));
  433. }
  434. pool.join();
  435. convert_shares(output, flags, thread_per_batch, db_nitems, final_correction_word, socketsPb[0], party);
  436. }
  437. for(size_t j = 0; j < thread_per_batch; ++j)
  438. {
  439. free(output[j]);
  440. free(flags[j]);
  441. delete[] target_share_read[j];
  442. }
  443. free(output);
  444. free(flags);
  445. free(final_correction_word);
  446. delete[] target_share_read;
  447. auto end = std::chrono::steady_clock::now();
  448. std::chrono::duration<double> elapsed_seconds = end - start;
  449. std::cout << "WallClockTime: " << elapsed_seconds.count() << " s" << std::endl;
  450. std::cout << "CommunicationCost: " << communication_cost << " bytes" << std::endl;
  451. return 0;
  452. }