Rener Oliveira (Ubuntu WSL) 1 рік тому
батько
коміт
ea73f15942
2 змінених файлів з 388 додано та 0 видалено
  1. 10 0
      src/bindings.cpp
  2. 378 0
      src/pke/examples/advanced-real-numbers-128.py

+ 10 - 0
src/bindings.cpp

@@ -154,6 +154,13 @@ void bind_crypto_context(py::module &m)
     m.def("ReleaseAllContexts", &CryptoContextFactory<DCRTPoly>::ReleaseAllContexts);
 }
 
+int get_native_int(){
+    #if NATIVEINT == 128 && !defined(__EMSCRIPTEN__)
+        return 128;
+    #else
+        return 64;    
+    #endif
+}
 void bind_enums_and_constants(py::module &m)
 {
     /* ---- PKE enums ---- */ 
@@ -210,6 +217,9 @@ void bind_enums_and_constants(py::module &m)
     /*TODO (Oliveira): If we expose Poly's and ParmType, this block will go somewhere else */
     using ParmType = typename DCRTPoly::Params;
     py::class_<ParmType, std::shared_ptr<ParmType>>(m, "ParmType");
+
+    //NATIVEINT function
+    m.def("get_native_int", &get_native_int);
 }
 
 void bind_keys(py::module &m)

+ 378 - 0
src/pke/examples/advanced-real-numbers-128.py

@@ -0,0 +1,378 @@
+from openfhe import *
+import time # to enable TIC-TOC timing measurements
+
+def AutomaticRescaleDemo(scalTech):
+    if(scalTech == ScalingTechnique.FLEXIBLEAUTO):
+        print("\n\n\n ===== FlexibleAutoDemo =============\n") 
+    else:
+         print("\n\n\n ===== FixedAutoDemo =============\n")
+
+    batchSize = 8
+    parameters = CCParamsCKKSRNS()
+    parameters.SetMultiplicativeDepth(6)
+    parameters.SetScalingModSize(90)
+    parameters.SetScalingTechnique(scalTech)
+    parameters.SetBatchSize(batchSize)
+
+    cc = GenCryptoContext(parameters)
+
+    print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()}\n")
+
+    cc.Enable(PKESchemeFeature.PKE)
+    cc.Enable(PKESchemeFeature.KEYSWITCH)
+    cc.Enable(PKESchemeFeature.LEVELEDSHE)
+
+    keys = cc.KeyGen()
+    cc.EvalMultKeyGen(keys.secretKey)
+
+    # Input
+    x = [1.0, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07]
+    ptxt = cc.MakeCKKSPackedPlaintext(x)
+
+    print(f"Input x: {ptxt}")
+
+    c = cc.Encrypt(keys.publicKey,ptxt)
+
+    # Computing f(x) = x^18 + x^9 + d
+    #
+    # In the following we compute f(x) with a computation
+    # that has a multiplicative depth of 5.
+    #
+    # The result is correct, even though there is no call to
+    # the Rescale() operation.
+
+    c2 = cc.EvalMult(c, c)                       # x^2
+    c4 = cc.EvalMult(c2, c2)                     # x^4
+    c8 = cc.EvalMult(c4, c4)                     # x^8
+    c16 = cc.EvalMult(c8, c8)                    # x^16
+    c9 = cc.EvalMult(c8, c)                      # x^9
+    c18 = cc.EvalMult(c16, c2)                   # x^18
+    cRes = cc.EvalAdd(cc.EvalAdd(c18, c9), 1.0)  # Final result 1
+    #cRes2 = cc.EvalSub()
+
+    result = Decrypt(cRes,keys.secretKey)
+    print("x^18 + x^9 + 1 = ", result)
+    result.SetLength(batchSize)
+    print(f"Result: {result}")
+
+def ManualRescaleDemo(ScalingTechnique):
+    print("\n\n\n ===== FixedManualDemo =============\n")
+    
+    batchSize = 8
+    parameters = CCParamsCKKSRNS()
+    parameters.SetMultiplicativeDepth(5)
+    parameters.SetScalingModSize(50)
+    parameters.SetBatchSize(batchSize)
+
+    cc = GenCryptoContext(parameters)
+
+    print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()}\n")
+    
+    cc.Enable(PKESchemeFeature.PKE)
+    cc.Enable(PKESchemeFeature.KEYSWITCH)
+    cc.Enable(PKESchemeFeature.LEVELEDSHE)
+
+    keys = cc.KeyGen()
+    cc.EvalMultKeyGen(keys.secretKey)
+
+    # Input
+    x = [1.0, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07]
+    ptxt = cc.MakeCKKSPackedPlaintext(x)
+
+    print(f"Input x: {ptxt}")
+
+    c = cc.Encrypt(keys.publicKey,ptxt)
+
+    # Computing f(x) = x^18 + x^9 + 1
+    #
+    # Compare the following with the corresponding code
+    # for FLEXIBLEAUTO. Here we need to track the depth of ciphertexts
+    # and call Rescale whenever needed. In this instance it's still
+    # not hard to do so, but this can be quite tedious in other
+    # complicated computations. (e.g. in bootstrapping)
+    #
+    #
+
+    # x^2
+    c2_depth_2 = cc.EvalMult(c, c)
+    c2_depth_1 = cc.Rescale(c2_depth_2)
+    # x^4
+    c4_depth2 = cc.EvalMult(c2_depth_1, c2_depth_1)
+    c4_depth1 = cc.Rescale(c4_depth2)
+    # x^8
+    c8_depth2 = cc.EvalMult(c4_depth1, c4_depth1)
+    c8_depth1 = cc.Rescale(c8_depth2)
+    # x^16
+    c16_depth2 = cc.EvalMult(c8_depth1, c8_depth1)
+    c16_depth1 = cc.Rescale(c16_depth2)
+    # x^9
+    c9_depth2 = cc.EvalMult(c8_depth1, c)
+    # x^18
+    c18_depth2 = cc.EvalMult(c16_depth1, c2_depth_1)
+    # Final result
+    cRes_depth2 = cc.EvalAdd(cc.EvalAdd(c18_depth2, c9_depth2), 1.0)
+    cRes_depth1 = cc.Rescale(cRes_depth2)
+
+    result = Decrypt(cRes_depth1,keys.secretKey)
+    result.SetLength(batchSize)
+    print("x^18 + x^9 + 1 = ", result)
+
+def HybridKeySwitchingDemo1():
+    
+    dnum = 2
+    batchSize = 8
+    parameters = CCParamsCKKSRNS()
+    parameters.SetMultiplicativeDepth(5)
+    parameters.SetScalingModSize(50)
+    parameters.SetBatchSize(batchSize)
+    parameters.SetScalingTechnique(ScalingTechnique.FLEXIBLEAUTO)
+    parameters.SetNumLargeDigits(dnum)
+
+    cc = GenCryptoContext(parameters)
+
+    print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()}\n")
+
+    print(f"- Using HYBRID key switching with {dnum} digits\n")
+
+    cc.Enable(PKESchemeFeature.PKE)
+    cc.Enable(PKESchemeFeature.KEYSWITCH)
+    cc.Enable(PKESchemeFeature.LEVELEDSHE)
+
+    keys = cc.KeyGen()
+    cc.EvalRotateKeyGen(keys.secretKey,[1,-2])
+
+    # Input
+    x = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7]
+    ptxt = cc.MakeCKKSPackedPlaintext(x)
+
+    print(f"Input x: {ptxt}")
+
+    c = cc.Encrypt(keys.publicKey,ptxt)
+
+    t = time.time()
+    cRot1 = cc.EvalRotate(c,1)
+    cRot2 = cc.EvalRotate(cRot1,-2)
+    time2digits = time.time() - t
+
+    result = Decrypt(cRot2,keys.secretKey)
+    result.SetLength(batchSize)
+    print(f"x rotate by -1 = {result}")
+    print(f" - 2 rotations with HYBRID (2 digits) took {time2digits*1000} ms")
+
+
+def HybridKeySwitchingDemo2():
+    print("\n\n\n ===== HybridKeySwitchingDemo2 =============\n")
+    dnum = 3
+    batchSize = 8
+    parameters = CCParamsCKKSRNS()
+    parameters.SetMultiplicativeDepth(5)
+    parameters.SetScalingModSize(50)
+    parameters.SetBatchSize(batchSize)
+    parameters.SetScalingTechnique(ScalingTechnique.FLEXIBLEAUTO)
+    parameters.SetNumLargeDigits(dnum)
+
+    cc = GenCryptoContext(parameters)
+
+    # Compare the ring dimension in this demo to the one in the previous
+    print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()}\n")
+
+    print(f"- Using HYBRID key switching with {dnum} digits\n")
+
+    cc.Enable(PKESchemeFeature.PKE)
+    cc.Enable(PKESchemeFeature.KEYSWITCH)
+    cc.Enable(PKESchemeFeature.LEVELEDSHE)
+
+    keys = cc.KeyGen()
+    cc.EvalRotateKeyGen(keys.secretKey,[1,-2])
+
+    # Input
+    x = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7]
+    ptxt = cc.MakeCKKSPackedPlaintext(x)
+
+    print(f"Input x: {ptxt}")
+
+    c = cc.Encrypt(keys.publicKey,ptxt)
+
+    t = time.time()
+    cRot1 = cc.EvalRotate(c,1)
+    cRot2 = cc.EvalRotate(cRot1,-2)
+    time3digits = time.time() - t
+    # The runtime here is smaller than the previous demo
+
+    result = Decrypt(cRot2,keys.secretKey)
+    result.SetLength(batchSize)
+    print(f"x rotate by -1 = {result}")
+    print(f" - 2 rotations with HYBRID (3 digits) took {time3digits*1000} ms")
+
+def FastRotationDemo1():
+    print("\n\n\n ===== FastRotationDemo1 =============\n")
+    batchSize = 8
+    parameters = CCParamsCKKSRNS()
+    parameters.SetMultiplicativeDepth(5)
+    parameters.SetScalingModSize(50)
+    parameters.SetBatchSize(batchSize)
+
+    cc = GenCryptoContext(parameters)
+
+    N = cc.GetRingDimension()
+    print(f"CKKS scheme is using ring dimension {N}\n")
+
+    cc.Enable(PKESchemeFeature.PKE)
+    cc.Enable(PKESchemeFeature.KEYSWITCH)
+    cc.Enable(PKESchemeFeature.LEVELEDSHE)
+
+    keys = cc.KeyGen()
+    cc.EvalRotateKeyGen(keys.secretKey,[1,2,3,4,5,6,7])
+
+    # Input
+    x = [0, 0, 0, 0, 0, 0, 0, 1]
+    ptxt = cc.MakeCKKSPackedPlaintext(x)
+
+    print(f"Input x: {ptxt}")
+
+    c = cc.Encrypt(keys.publicKey,ptxt)
+
+    # First, we perform 7 regular (non-hoisted) rotations
+    # and measure the runtime
+    t = time.time()
+    cRot1 = cc.EvalRotate(c,1)
+    cRot2 = cc.EvalRotate(c,2)
+    cRot3 = cc.EvalRotate(c,3)
+    cRot4 = cc.EvalRotate(c,4)
+    cRot5 = cc.EvalRotate(c,5)
+    cRot6 = cc.EvalRotate(c,6)
+    cRot7 = cc.EvalRotate(c,7)
+    timeNoHoisting = time.time() - t
+
+    cResNoHoist = c + cRot1 + cRot2 + cRot3 + cRot4 + cRot5 + cRot6 + cRot7
+
+    # M is the cyclotomic order and we need it to call EvalFastRotation
+    M = 2*N
+
+    # Then, we perform 7 rotations with hoisting.
+    t = time.time()
+    cPrecomp = cc.EvalFastRotationPrecompute(c)
+    cRot1 = cc.EvalFastRotation(c, 1, M, cPrecomp)
+    cRot2 = cc.EvalFastRotation(c, 2, M, cPrecomp)
+    cRot3 = cc.EvalFastRotation(c, 3, M, cPrecomp)
+    cRot4 = cc.EvalFastRotation(c, 4, M, cPrecomp)
+    cRot5 = cc.EvalFastRotation(c, 5, M, cPrecomp)
+    cRot6 = cc.EvalFastRotation(c, 6, M, cPrecomp)
+    cRot7 = cc.EvalFastRotation(c, 7, M, cPrecomp)
+    timeHoisting = time.time() - t
+    # The time with hoisting should be faster than without hoisting.
+
+    cResHoist = c + cRot1 + cRot2 + cRot3 + cRot4 + cRot5 + cRot6 + cRot7
+    
+    result = Decrypt(cResNoHoist,keys.secretKey)
+    result.SetLength(batchSize)
+    print(f"Result without hoisting: {result}")
+    print(f" - 7 rotations without hoisting took {timeNoHoisting*1000} ms")
+
+    
+    result = Decrypt(cResHoist,keys.secretKey)
+    result.SetLength(batchSize)
+    print(f"Result with hoisting: {result}")
+    print(f" - 7 rotations with hoisting took {timeHoisting*1000} ms")
+
+
+
+
+def FastRotationDemo2():
+    print("\n\n\n ===== FastRotationDemo2 =============\n")
+
+    digitSize = 3
+    batchSize = 8
+
+    parameters = CCParamsCKKSRNS()
+    parameters.SetMultiplicativeDepth(1)
+    parameters.SetScalingModSize(50)
+    parameters.SetBatchSize(batchSize)
+    parameters.SetScalingTechnique(ScalingTechnique.FLEXIBLEAUTO)
+    parameters.SetKeySwitchTechnique(KeySwitchTechnique.BV)
+    parameters.SetFirstModSize(60)
+    parameters.SetDigitSize(digitSize)
+
+    cc = GenCryptoContext(parameters)
+
+    N = cc.GetRingDimension()
+    print(f"CKKS scheme is using ring dimension {N}\n")
+
+    cc.Enable(PKESchemeFeature.PKE)
+    cc.Enable(PKESchemeFeature.KEYSWITCH)
+    cc.Enable(PKESchemeFeature.LEVELEDSHE)
+
+    keys = cc.KeyGen()
+    cc.EvalRotateKeyGen(keys.secretKey,[1,2,3,4,5,6,7])
+
+    # Input
+    x = [0, 0, 0, 0, 0, 0, 0, 1]
+    ptxt = cc.MakeCKKSPackedPlaintext(x)
+
+    print(f"Input x: {ptxt}")
+
+    c = cc.Encrypt(keys.publicKey,ptxt)
+
+    # First, we perform 7 regular (non-hoisted) rotations
+    # and measure the runtime
+    t = time.time()
+    cRot1 = cc.EvalRotate(c,1)
+    cRot2 = cc.EvalRotate(c,2)
+    cRot3 = cc.EvalRotate(c,3)
+    cRot4 = cc.EvalRotate(c,4)
+    cRot5 = cc.EvalRotate(c,5)
+    cRot6 = cc.EvalRotate(c,6)
+    cRot7 = cc.EvalRotate(c,7)
+    timeNoHoisting = time.time() - t
+
+    cResNoHoist = c + cRot1 + cRot2 + cRot3 + cRot4 + cRot5 + cRot6 + cRot7
+
+    # M is the cyclotomic order and we need it to call EvalFastRotation
+    M = 2*N
+
+    # Then, we perform 7 rotations with hoisting.
+    t = time.time()
+    cPrecomp = cc.EvalFastRotationPrecompute(c)
+    cRot1 = cc.EvalFastRotation(c, 1, M, cPrecomp)
+    cRot2 = cc.EvalFastRotation(c, 2, M, cPrecomp)
+    cRot3 = cc.EvalFastRotation(c, 3, M, cPrecomp)
+    cRot4 = cc.EvalFastRotation(c, 4, M, cPrecomp)
+    cRot5 = cc.EvalFastRotation(c, 5, M, cPrecomp)
+    cRot6 = cc.EvalFastRotation(c, 6, M, cPrecomp)
+    cRot7 = cc.EvalFastRotation(c, 7, M, cPrecomp)
+    timeHoisting = time.time() - t
+    # The time with hoisting should be faster than without hoisting.
+    # Also, the benefits from hoisting should be more pronounced in this
+    # case because we're using BV. Of course, we also observe less
+    # accurate results than when using HYBRID, because of using
+    # digitSize = 10 (Users can decrease digitSize to see the accuracy
+    # increase, and performance decrease).
+
+    cResHoist = c + cRot1 + cRot2 + cRot3 + cRot4 + cRot5 + cRot6 + cRot7
+
+    result = Decrypt(cResNoHoist,keys.secretKey)
+    result.SetLength(batchSize)
+    print(f"Result without hoisting: {result}")
+    print(f" - 7 rotations without hoisting took {timeNoHoisting*1000} ms")
+
+    result = Decrypt(cResHoist,keys.secretKey)
+    result.SetLength(batchSize)
+    print(f"Result with hoisting: {result}")
+    print(f" - 7 rotations with hoisting took {timeHoisting*1000} ms")
+
+
+def main():
+    if get_native_int() == 128:
+        AutomaticRescaleDemo(ScalingTechnique.FIXEDAUTO)
+        # Note that FLEXIBLEAUTO is not supported for 128-bit CKKS
+        ManualRescaleDemo(ScalingTechnique.FIXEDMANUAL)
+        HybridKeySwitchingDemo1()
+        HybridKeySwitchingDemo2()
+        FastRotationDemo1()
+        FastRotationDemo2()
+    else:
+        print("This demo only runs for 128-bit CKKS.\n")
+
+if __name__ == "__main__":
+    main()
+