# Initial Settings
from openfhe import *
# import openfhe.PKESchemeFeature as Feature


# Sample Program: Step 1: Set CryptoContext
parameters = CCParamsBGVRNS()
parameters.SetPlaintextModulus(65537)
parameters.SetMultiplicativeDepth(2)

crypto_context = GenCryptoContext(parameters)
# Enable features that you wish to use
crypto_context.Enable(PKESchemeFeature.PKE)
crypto_context.Enable(PKESchemeFeature.KEYSWITCH)
crypto_context.Enable(PKESchemeFeature.LEVELEDSHE)

# Sample Program: Step 2: Key Generation

# Generate a public/private key pair
key_pair = crypto_context.KeyGen()

# Generate the relinearization key
crypto_context.EvalMultKeyGen(key_pair.secretKey)

# Generate the rotation evaluation keys
crypto_context.EvalRotateKeyGen(key_pair.secretKey, [1, 2, -1, -2])

# Sample Program: Step 3: Encryption

# First plaintext vector is encoded
vector_of_ints1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
plaintext1 = crypto_context.MakePackedPlaintext(vector_of_ints1)

# Second plaintext vector is encoded
vector_of_ints2 = [3, 2, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12]
plaintext2 = crypto_context.MakePackedPlaintext(vector_of_ints2)

# Third plaintext vector is encoded
vector_of_ints3 = [1, 2, 5, 2, 5, 6, 7, 8, 9, 10, 11, 12]
plaintext3 = crypto_context.MakePackedPlaintext(vector_of_ints3)

# The encoded vectors are encrypted
ciphertext1 = crypto_context.Encrypt(key_pair.publicKey, plaintext1)
ciphertext2 = crypto_context.Encrypt(key_pair.publicKey, plaintext2)
ciphertext3 = crypto_context.Encrypt(key_pair.publicKey, plaintext3)

#  Sample Program: Step 4: Evaluation

# Homomorphic additions
ciphertext_add12 = crypto_context.EvalAdd(ciphertext1, ciphertext2)
ciphertext_add_result = crypto_context.EvalAdd(ciphertext_add12, ciphertext3)

# Homomorphic Multiplication
ciphertext_mult12 = crypto_context.EvalMult(ciphertext1, ciphertext2)
ciphertext_mult_result = crypto_context.EvalMult(ciphertext_mult12, ciphertext3)

# Homomorphic Rotations
ciphertext_rot1 = crypto_context.EvalRotate(ciphertext1, 1)
ciphertext_rot2 = crypto_context.EvalRotate(ciphertext1, 2)
ciphertext_rot3 = crypto_context.EvalRotate(ciphertext1, -1)
ciphertext_rot4 = crypto_context.EvalRotate(ciphertext1, -2)

# Sample Program: Step 5: Decryption

# Decrypt the result of additions
plaintext_add_result = crypto_context.Decrypt(ciphertext_add_result,key_pair.secretKey)

# Decrypt the result of multiplications
plaintext_mult_result = crypto_context.Decrypt(ciphertext_mult_result,key_pair.secretKey)

# Decrypt the result of rotations
plaintextRot1 = crypto_context.Decrypt(ciphertext_rot1,key_pair.secretKey)
plaintextRot2 = crypto_context.Decrypt(ciphertext_rot2,key_pair.secretKey)
plaintextRot3 = crypto_context.Decrypt(ciphertext_rot3,key_pair.secretKey)
plaintextRot4 = crypto_context.Decrypt(ciphertext_rot4,key_pair.secretKey)


plaintextRot1.SetLength(len(vector_of_ints1))
plaintextRot2.SetLength(len(vector_of_ints1))
plaintextRot3.SetLength(len(vector_of_ints1))
plaintextRot4.SetLength(len(vector_of_ints1))

print("Plaintext #1: " + str(plaintext1))
print("Plaintext #2: " + str(plaintext2))
print("Plaintext #3: " + str(plaintext3))

# Output Results
print("\nResults of homomorphic computations")
print("#1 + #2 + #3 = " + str(plaintext_add_result))
print("#1 * #2 * #3 = " + str(plaintext_mult_result))
print("Left rotation of #1 by 1 = " + str(plaintextRot1))
print("Left rotation of #1 by 2 = " + str(plaintextRot2))
print("Right rotation of #1 by 1 = " + str(plaintextRot3))
print("Right rotation of #1 by 2 = " + str(plaintextRot4))