use openfhe::cxx::{CxxVector, SharedPtr}; use openfhe::ffi as ffi; fn main() { let _mult_depth: u32 = 1; let _scale_mod_size: u32 = 50; let _batch_size: u32 = 8; let mut _cc_params_ckksrns = ffi::GetParamsCKKSRNS(); _cc_params_ckksrns.pin_mut().SetMultiplicativeDepth(_mult_depth); _cc_params_ckksrns.pin_mut().SetScalingModSize(_scale_mod_size); _cc_params_ckksrns.pin_mut().SetBatchSize(_batch_size); let mut _cc = ffi::GenCryptoContextByParamsCKKSRNS(&_cc_params_ckksrns); _cc.Enable(ffi::PKESchemeFeature::PKE); _cc.Enable(ffi::PKESchemeFeature::KEYSWITCH); _cc.Enable(ffi::PKESchemeFeature::LEVELEDSHE); println!("CKKS scheme is using ring dimension {}\n", _cc.GetRingDimension()); let mut _key_pair = _cc.KeyGen(); _cc.EvalMultKeyGen(_key_pair.GetPrivateKey()); let mut _index_list = CxxVector::::new(); _index_list.pin_mut().push(1); _index_list.pin_mut().push(-2); _cc.EvalRotateKeyGen(_key_pair.GetPrivateKey(), &_index_list, SharedPtr::::null()); let mut _x_1 = CxxVector::::new(); _x_1.pin_mut().push(0.25); _x_1.pin_mut().push(0.5); _x_1.pin_mut().push(0.75); _x_1.pin_mut().push(1.0); _x_1.pin_mut().push(2.0); _x_1.pin_mut().push(3.0); _x_1.pin_mut().push(4.0); _x_1.pin_mut().push(5.0); let mut _x_2 = CxxVector::::new(); _x_2.pin_mut().push(5.0); _x_2.pin_mut().push(4.0); _x_2.pin_mut().push(3.0); _x_2.pin_mut().push(2.0); _x_2.pin_mut().push(1.0); _x_2.pin_mut().push(0.75); _x_2.pin_mut().push(0.5); _x_2.pin_mut().push(0.25); let mut _p_txt_1 = _cc.MakeCKKSPackedPlaintext(&_x_1, 1, 0, SharedPtr::::null(), 0); let mut _p_txt_2 = _cc.MakeCKKSPackedPlaintext(&_x_2, 1, 0, SharedPtr::::null(), 0); println!("Input x1: {}", _p_txt_1.GetString()); println!("Input x2: {}", _p_txt_2.GetString()); let mut _c1 = _cc.Encrypt(_key_pair.GetPublicKey(), _p_txt_1.GetPlainText()); let mut _c2 = _cc.Encrypt(_key_pair.GetPublicKey(), _p_txt_2.GetPlainText()); let mut _c_add = _cc.EvalAdd(_c1.GetCipherText(), _c2.GetCipherText()); let mut _c_sub = _cc.EvalSub(_c1.GetCipherText(), _c2.GetCipherText()); let mut _c_scalar = _cc.EvalMultByConst(_c1.GetCipherText(), 4.0); let mut _c_mul = _cc.EvalMult(_c1.GetCipherText(), _c2.GetCipherText()); let mut _c_rot_1 = _cc.EvalRotate(_c1.GetCipherText(), 1); let mut _c_rot_2 = _cc.EvalRotate(_c1.GetCipherText(), -2); let mut _result = ffi::GenEmptyPlainText(); println!("\nResults of homomorphic computations:"); _cc.Decrypt(_key_pair.GetPrivateKey(), _c1.GetCipherText(), _result.pin_mut()); _result.SetLength(_batch_size.try_into().unwrap()); println!("x1 = {}Estimated precision in bits: {}", _result.GetString(), _result.GetLogPrecision()); _cc.Decrypt(_key_pair.GetPrivateKey(), _c_add.GetCipherText(), _result.pin_mut()); _result.SetLength(_batch_size.try_into().unwrap()); println!("x1 + x2 = {}Estimated precision in bits: {}",_result.GetString(), _result.GetLogPrecision()); _cc.Decrypt(_key_pair.GetPrivateKey(), _c_sub.GetCipherText(), _result.pin_mut()); _result.SetLength(_batch_size.try_into().unwrap()); println!("x1 - x2 = {}", _result.GetString()); _cc.Decrypt(_key_pair.GetPrivateKey(), _c_scalar.GetCipherText(), _result.pin_mut()); _result.SetLength(_batch_size.try_into().unwrap()); println!("4 * x1 = {}", _result.GetString()); _cc.Decrypt(_key_pair.GetPrivateKey(), _c_mul.GetCipherText(), _result.pin_mut()); _result.SetLength(_batch_size.try_into().unwrap()); println!("x1 * x2 = {}", _result.GetString()); _cc.Decrypt(_key_pair.GetPrivateKey(), _c_rot_1.GetCipherText(), _result.pin_mut()); _result.SetLength(_batch_size.try_into().unwrap()); println!("\nIn rotations, very small outputs (~10^-10 here) correspond to 0's:"); println!("x1 rotate by 1 = {}", _result.GetString()); _cc.Decrypt(_key_pair.GetPrivateKey(), _c_rot_2.GetCipherText(), _result.pin_mut()); _result.SetLength(_batch_size.try_into().unwrap()); println!("x1 rotate by -2 = {}", _result.GetString()); }