use crate::{poly::*, params::*, discrete_gaussian::*, gadget::*, arith::*, util::*, number_theory::*}; use std::iter::once; fn serialize_polymatrix(vec: &mut Vec, a: &PolyMatrixRaw) { for i in 0..a.rows * a.cols * a.params.poly_len { vec.extend_from_slice(&u64::to_ne_bytes(a.data[i])); } } fn serialize_vec_polymatrix(vec: &mut Vec, a: &Vec) { for i in 0..a.len() { serialize_polymatrix(vec, &a[i]); } } pub struct PublicParameters<'a> { v_packing: Vec>, // Ws v_expansion_left: Option>>, v_expansion_right: Option>>, v_conversion: Option>>, // V } impl<'a> PublicParameters<'a> { pub fn init(params: &'a Params) -> Self { if params.expand_queries { PublicParameters { v_packing: Vec::new(), v_expansion_left: Some(Vec::new()), v_expansion_right: Some(Vec::new()), v_conversion: Some(Vec::new()) } } else { PublicParameters { v_packing: Vec::new(), v_expansion_left: None, v_expansion_right: None, v_conversion: None, } } } fn from_ntt_alloc_vec(v: &Vec>) -> Option>> { Some(v.iter().map(from_ntt_alloc).collect()) } fn from_ntt_alloc_opt_vec(v: &Option>>) -> Option>> { Some(v.as_ref()?.iter().map(from_ntt_alloc).collect()) } pub fn to_raw(&self) -> Vec>> { vec![ Self::from_ntt_alloc_vec(&self.v_packing), Self::from_ntt_alloc_opt_vec(&self.v_expansion_left), Self::from_ntt_alloc_opt_vec(&self.v_expansion_right), Self::from_ntt_alloc_opt_vec(&self.v_conversion), ] } pub fn serialize(&self) -> Vec { let mut data = Vec::new(); for v in self.to_raw().iter() { if v.is_some() { serialize_vec_polymatrix(&mut data, v.as_ref().unwrap()); } } data } } pub struct Query<'a> { ct: Option>, v_buf: Option>, v_ct: Option>>, } impl<'a> Query<'a> { pub fn empty() -> Self { Query { ct: None, v_ct: None, v_buf: None } } pub fn serialize(&self) -> Vec { let mut data = Vec::new(); if self.ct.is_some() { let ct = self.ct.as_ref().unwrap(); serialize_polymatrix(&mut data, &ct); } if self.v_buf.is_some() { let v_buf = self.v_buf.as_ref().unwrap(); data.extend(v_buf.iter().map(|x| { x.to_ne_bytes() }).flatten()); } if self.v_ct.is_some() { let v_ct = self.v_ct.as_ref().unwrap(); for x in v_ct { serialize_polymatrix(&mut data, x); } } data } } pub struct Client<'a> { params: &'a Params, sk_gsw: PolyMatrixRaw<'a>, sk_reg: PolyMatrixRaw<'a>, sk_gsw_full: PolyMatrixRaw<'a>, sk_reg_full: PolyMatrixRaw<'a>, dg: DiscreteGaussian, g: usize, stop_round: usize, } fn matrix_with_identity<'a> (p: &PolyMatrixRaw<'a>) -> PolyMatrixRaw<'a> { assert_eq!(p.cols, 1); let mut r = PolyMatrixRaw::zero(p.params, p.rows, p.rows + 1); r.copy_into(p, 0, 0); r.copy_into(&PolyMatrixRaw::identity(p.params, p.rows, p.rows), 0, 1); r } fn params_with_moduli(params: &Params, moduli: &Vec) -> Params { Params::init( params.poly_len, moduli, params.noise_width, params.n, params.pt_modulus, params.q2_bits, params.t_conv, params.t_exp_left, params.t_exp_right, params.t_gsw, params.expand_queries, params.db_dim_1, params.db_dim_2, params.instances, params.db_item_size, ) } impl<'a> Client<'a> { pub fn init(params: &'a Params) -> Self { let sk_gsw_dims = params.get_sk_gsw(); let sk_reg_dims = params.get_sk_reg(); let sk_gsw = PolyMatrixRaw::zero(params, sk_gsw_dims.0, sk_gsw_dims.1); let sk_reg = PolyMatrixRaw::zero(params, sk_reg_dims.0, sk_reg_dims.1); let sk_gsw_full = matrix_with_identity(&sk_gsw); let sk_reg_full = matrix_with_identity(&sk_reg); let dg = DiscreteGaussian::init(params); let further_dims = params.db_dim_2; let num_expanded = 1usize << params.db_dim_1; let num_bits_to_gen = params.t_gsw * further_dims + num_expanded; let g = log2_ceil_usize(num_bits_to_gen); let stop_round = log2_ceil_usize(params.t_gsw * further_dims); Self { params, sk_gsw, sk_reg, sk_gsw_full, sk_reg_full, dg, g, stop_round, } } fn get_fresh_gsw_public_key(&mut self, m: usize) -> PolyMatrixRaw<'a> { let params = self.params; let n = params.n; let a = PolyMatrixRaw::random(params, 1, m); let e = PolyMatrixRaw::noise(params, n, m, &mut self.dg); let a_inv = -&a; let b_p = &self.sk_gsw.ntt() * &a.ntt(); let b = &e.ntt() + &b_p; let p = stack(&a_inv, &b.raw()); p } fn get_regev_sample(&mut self) -> PolyMatrixNTT<'a> { let params = self.params; let a = PolyMatrixRaw::random(params, 1, 1); let e = PolyMatrixRaw::noise(params, 1, 1, &mut self.dg); let b_p = &self.sk_reg.ntt() * &a.ntt(); let b = &e.ntt() + &b_p; let mut p = PolyMatrixNTT::zero(params, 2, 1); p.copy_into(&(-&a).ntt(), 0, 0); p.copy_into(&b, 1, 0); p } fn get_fresh_reg_public_key(&mut self, m: usize) -> PolyMatrixNTT<'a> { let params = self.params; let mut p = PolyMatrixNTT::zero(params, 2, m); for i in 0..m { p.copy_into(&self.get_regev_sample(), 0, i); } p } fn encrypt_matrix_gsw(&mut self, ag: &PolyMatrixNTT<'a>) -> PolyMatrixNTT<'a> { let mx = ag.cols; let p = self.get_fresh_gsw_public_key(mx); let res = &(p.ntt()) + &(ag.pad_top(1)); res } fn encrypt_matrix_reg(&mut self, a: &PolyMatrixNTT<'a>) -> PolyMatrixNTT<'a> { let m = a.cols; let p = self.get_fresh_reg_public_key(m); &p + &a.pad_top(1) } fn generate_expansion_params(&mut self, num_exp: usize, m_exp: usize) -> Vec> { let params = self.params; let g_exp = build_gadget(params, 1, m_exp); let g_exp_ntt = g_exp.ntt(); let mut res = Vec::new(); for i in 0..num_exp { let t = (params.poly_len / (1 << i)) + 1; let tau_sk_reg = automorph_alloc(&self.sk_reg, t); let prod = &tau_sk_reg.ntt() * &g_exp_ntt; let w_exp_i = self.encrypt_matrix_reg(&prod); res.push(w_exp_i); } res } pub fn generate_keys(&mut self) -> PublicParameters { let params = self.params; self.dg.sample_matrix(&mut self.sk_gsw); self.dg.sample_matrix(&mut self.sk_reg); self.sk_gsw_full = matrix_with_identity(&self.sk_gsw); self.sk_reg_full = matrix_with_identity(&self.sk_reg); let sk_reg_ntt = to_ntt_alloc(&self.sk_reg); let m_conv = params.m_conv(); let mut pp = PublicParameters::init(params); // Params for packing let gadget_conv = build_gadget(params, 1, m_conv); let gadget_conv_ntt = to_ntt_alloc(&gadget_conv); for i in 0..params.n { let scaled = scalar_multiply_alloc(&sk_reg_ntt, &gadget_conv_ntt); let mut ag = PolyMatrixNTT::zero(params, params.n, m_conv); ag.copy_into(&scaled, i, 0); let w = self.encrypt_matrix_gsw(&ag); pp.v_packing.push(w); } if params.expand_queries { // Params for expansion pp.v_expansion_left = Some(self.generate_expansion_params(self.g, params.t_exp_left)); pp.v_expansion_right = Some(self.generate_expansion_params(self.stop_round + 1, params.t_exp_right)); // Params for converison let g_conv = build_gadget(params, 2, 2 * m_conv); let sk_reg_ntt = self.sk_reg.ntt(); let sk_reg_squared_ntt = &sk_reg_ntt * &sk_reg_ntt; pp.v_conversion = Some(Vec::from_iter(once(PolyMatrixNTT::zero(params, 2, 2 * m_conv)))); for i in 0..2*m_conv { let sigma; if i % 2 == 0 { let val = g_conv.get_poly(0, i)[0]; sigma = &sk_reg_squared_ntt * &single_poly(params, val).ntt(); } else { let val = g_conv.get_poly(1, i)[0]; sigma = &sk_reg_ntt * &single_poly(params, val).ntt(); } let ct = self.encrypt_matrix_reg(&sigma); pp.v_conversion.as_mut().unwrap()[0].copy_into(&ct, 0, i); } } pp } // reindexes a vector of regev ciphertexts, to help server fn reorient_reg_ciphertexts(&self, out: &mut [u64], v_reg: &Vec) { let params = self.params; let poly_len = params.poly_len; let crt_count = params.crt_count; assert_eq!(crt_count, 2); assert!(log2(params.moduli[0]) <= 32); let num_reg_expanded = 1< Query<'a> { let params = self.params; let further_dims = params.db_dim_2; let idx_dim0= idx_target / (1 << further_dims); let idx_further = idx_target % (1 << further_dims); let scale_k = params.modulus / params.pt_modulus; let bits_per = get_bits_per(params, params.t_gsw); let mut query = Query::empty(); if params.expand_queries { // pack query into single ciphertext let mut sigma = PolyMatrixRaw::zero(params, 1, 1); sigma.data[2*idx_dim0] = scale_k; for i in 0..further_dims as u64 { let bit: u64 = ((idx_further as u64) & (1 << i)) >> i; for j in 0..params.t_gsw { let val = (1u64 << (bits_per * j)) * bit; let idx = (i as usize) * params.t_gsw + (j as usize); sigma.data[2*idx + 1] = val; } } let inv_2_g_first = invert_uint_mod(1 << self.g, params.modulus).unwrap(); let inv_2_g_rest = invert_uint_mod(1 << (self.stop_round+1), params.modulus).unwrap(); for i in 0..params.poly_len/2 { sigma.data[2*i] = multiply_uint_mod(sigma.data[2*i], inv_2_g_first, params.modulus); sigma.data[2*i+1] = multiply_uint_mod(sigma.data[2*i+1], inv_2_g_rest, params.modulus); } query.ct = Some(from_ntt_alloc(&self.encrypt_matrix_reg(&to_ntt_alloc(&sigma)))); } else { let num_expanded = 1 << params.db_dim_1; let mut sigma_v = Vec::::new(); // generate regev ciphertexts let reg_cts_buf_words = num_expanded * 2 * params.poly_len; let mut reg_cts_buf = vec![0u64; reg_cts_buf_words]; let mut reg_cts = Vec::::new(); for i in 0..num_expanded { let value = ((i == idx_dim0) as u64) * scale_k; let sigma = PolyMatrixRaw::single_value(¶ms, value); reg_cts.push(self.encrypt_matrix_reg(&to_ntt_alloc(&sigma))); } // reorient into server's preferred indexing self.reorient_reg_ciphertexts(reg_cts_buf.as_mut_slice(), ®_cts); // generate GSW ciphertexts for i in 0..further_dims { let bit = ((idx_further as u64) & (1 << (i as u64))) >> (i as u64); let mut ct_gsw = PolyMatrixNTT::zero(¶ms, 2, 2 * params.t_gsw); for j in 0..params.t_gsw { let value = (1u64 << (bits_per * j)) * bit; let sigma = PolyMatrixRaw::single_value(¶ms, value); let sigma_ntt = to_ntt_alloc(&sigma); let ct = &self.encrypt_matrix_reg(&sigma_ntt); ct_gsw.copy_into(ct, 0, 2*j + 1); let prod = &to_ntt_alloc(&self.sk_reg) * &sigma_ntt; let ct = &self.encrypt_matrix_reg(&prod); ct_gsw.copy_into(ct, 0, 2*j); } sigma_v.push(ct_gsw); } query.v_buf = Some(reg_cts_buf); query.v_ct = Some(sigma_v.iter().map(|x| { from_ntt_alloc(x) }).collect()); } query } pub fn decode_response(&self, data: &[u8]) -> Vec { /* 0. NTT over q2 the secret key 1. read first row in q2_bit chunks 2. read rest in q1_bit chunks 3. NTT over q2 the first row 4. Multiply the results of (0) and (3) 5. Divide and round correctly */ let params = self.params; let p = params.pt_modulus; let p_bits = log2_ceil(params.pt_modulus); let q1 = 4 * params.pt_modulus; let q1_bits = log2_ceil(q1) as usize; let q2 = Q2_VALUES[params.q2_bits as usize]; let q2_bits = params.q2_bits as usize; let q2_params = params_with_moduli(params, &vec![q2]); // this only needs to be done during keygen let mut sk_gsw_q2 = PolyMatrixRaw::zero(&q2_params, params.n, 1); for i in 0..params.poly_len * params.n { sk_gsw_q2.data[i] = recenter(self.sk_gsw.data[i], params.modulus, q2); } let mut sk_gsw_q2_ntt = PolyMatrixNTT::zero(&q2_params, params.n, 1); to_ntt(&mut sk_gsw_q2_ntt, &sk_gsw_q2); let mut result = PolyMatrixRaw::zero(¶ms, params.instances * params.n, params.n); let mut bit_offs = 0; for instance in 0..params.instances { // this must be done during decoding let mut first_row = PolyMatrixRaw::zero(&q2_params, 1, params.n); let mut rest_rows = PolyMatrixRaw::zero(¶ms, params.n, params.n); for i in 0..params.n * params.poly_len { first_row.data[i] = read_arbitrary_bits(data, bit_offs, q2_bits); bit_offs += q2_bits; } for i in 0..params.n * params.n * params.poly_len { rest_rows.data[i] = read_arbitrary_bits(data, bit_offs, q1_bits); bit_offs += q1_bits; } let mut first_row_q2 = PolyMatrixNTT::zero(&q2_params, 1, params.n); to_ntt(&mut first_row_q2, &first_row); let sk_prod = (&sk_gsw_q2_ntt * &first_row_q2).raw(); let q1_i64 = q1 as i64; let q2_i64 = q2 as i64; let p_i128 = p as i128; for i in 0..params.n * params.n * params.poly_len { let mut val_first = sk_prod.data[i] as i64; if val_first >= q2_i64/2 { val_first -= q2_i64; } let mut val_rest = rest_rows.data[i] as i64; if val_rest >= q1_i64/2 { val_rest -= q1_i64; } let denom = (q2 * (q1 / p)) as i64; let mut r = val_first * q1_i64; r += val_rest * q2_i64; // divide r by q2, rounding let sign: i64 = if r >= 0 { 1 } else { -1 }; let mut res = ((r + sign*(denom/2)) as i128) / (denom as i128); res = (res + (denom as i128/p_i128)*(p_i128) + 2*(p_i128)) % (p_i128); let idx = instance * params.n * params.n * params.poly_len + i; result.data[idx] = res as u64; } } // println!("{:?}", result.data); let trials = params.n * params.n; let chunks = params.instances * trials; let bytes_per_chunk = f64::ceil(params.db_item_size as f64 / chunks as f64) as usize; let logp = log2(params.pt_modulus); let modp_words_per_chunk = f64::ceil((bytes_per_chunk * 8) as f64 / logp as f64) as usize; result.to_vec(p_bits as usize, modp_words_per_chunk) } }