poly.rs 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. use std::arch::x86_64::*;
  2. use std::ops::{Add, Mul, Neg};
  3. use std::cell::RefCell;
  4. use rand::Rng;
  5. use rand::distributions::Standard;
  6. use crate::{arith::*, params::*, ntt::*, util::*, discrete_gaussian::*};
  7. const SCRATCH_SPACE: usize = 8192;
  8. thread_local!(static SCRATCH: RefCell<Vec<u64>> = RefCell::new(vec![0u64; SCRATCH_SPACE]));
  9. pub trait PolyMatrix<'a> {
  10. fn is_ntt(&self) -> bool;
  11. fn get_rows(&self) -> usize;
  12. fn get_cols(&self) -> usize;
  13. fn get_params(&self) -> &Params;
  14. fn num_words(&self) -> usize;
  15. fn zero(params: &'a Params, rows: usize, cols: usize) -> Self;
  16. fn random(params: &'a Params, rows: usize, cols: usize) -> Self;
  17. fn as_slice(&self) -> &[u64];
  18. fn as_mut_slice(&mut self) -> &mut [u64];
  19. fn zero_out(&mut self) {
  20. for item in self.as_mut_slice() {
  21. *item = 0;
  22. }
  23. }
  24. fn get_poly(&self, row: usize, col: usize) -> &[u64] {
  25. let num_words = self.num_words();
  26. let start = (row * self.get_cols() + col) * num_words;
  27. &self.as_slice()[start..start + num_words]
  28. }
  29. fn get_poly_mut(&mut self, row: usize, col: usize) -> &mut [u64] {
  30. let num_words = self.num_words();
  31. let start = (row * self.get_cols() + col) * num_words;
  32. &mut self.as_mut_slice()[start..start + num_words]
  33. }
  34. fn copy_into(&mut self, p: &Self, target_row: usize, target_col: usize) {
  35. assert!(target_row < self.get_rows());
  36. assert!(target_col < self.get_cols());
  37. assert!(target_row + p.get_rows() < self.get_rows());
  38. assert!(target_col + p.get_cols() < self.get_cols());
  39. for r in 0..p.get_rows() {
  40. for c in 0..p.get_cols() {
  41. let pol_src = p.get_poly(r, c);
  42. let pol_dst = self.get_poly_mut(target_row + r, target_col + c);
  43. pol_dst.copy_from_slice(pol_src);
  44. }
  45. }
  46. }
  47. fn pad_top(&self, pad_rows: usize) -> Self;
  48. }
  49. pub struct PolyMatrixRaw<'a> {
  50. pub params: &'a Params,
  51. pub rows: usize,
  52. pub cols: usize,
  53. pub data: Vec<u64>,
  54. }
  55. pub struct PolyMatrixNTT<'a> {
  56. pub params: &'a Params,
  57. pub rows: usize,
  58. pub cols: usize,
  59. pub data: Vec<u64>,
  60. }
  61. impl<'a> PolyMatrix<'a> for PolyMatrixRaw<'a> {
  62. fn is_ntt(&self) -> bool {
  63. false
  64. }
  65. fn get_rows(&self) -> usize {
  66. self.rows
  67. }
  68. fn get_cols(&self) -> usize {
  69. self.cols
  70. }
  71. fn get_params(&self) -> &Params {
  72. &self.params
  73. }
  74. fn as_slice(&self) -> &[u64] {
  75. self.data.as_slice()
  76. }
  77. fn as_mut_slice(&mut self) -> &mut [u64] {
  78. self.data.as_mut_slice()
  79. }
  80. fn num_words(&self) -> usize {
  81. self.params.poly_len
  82. }
  83. fn zero(params: &'a Params, rows: usize, cols: usize) -> PolyMatrixRaw<'a> {
  84. let num_coeffs = rows * cols * params.poly_len;
  85. let data: Vec<u64> = vec![0; num_coeffs];
  86. PolyMatrixRaw {
  87. params,
  88. rows,
  89. cols,
  90. data,
  91. }
  92. }
  93. fn random(params: &'a Params, rows: usize, cols: usize) -> Self {
  94. let rng = rand::thread_rng();
  95. let mut iter = rng.sample_iter(&Standard);
  96. let mut out = PolyMatrixRaw::zero(params, rows, cols);
  97. for r in 0..rows {
  98. for c in 0..cols {
  99. for i in 0..params.poly_len {
  100. let val: u64 = iter.next().unwrap();
  101. out.get_poly_mut(r, c)[i] = val % params.modulus;
  102. }
  103. }
  104. }
  105. out
  106. }
  107. fn pad_top(&self, pad_rows: usize) -> Self {
  108. let mut padded = Self::zero(self.params, self.rows + pad_rows, self.cols);
  109. padded.copy_into(&self, pad_rows, 0);
  110. padded
  111. }
  112. }
  113. impl<'a> PolyMatrixRaw<'a> {
  114. pub fn identity(params: &'a Params, rows: usize, cols: usize) -> PolyMatrixRaw<'a> {
  115. let num_coeffs = rows * cols * params.poly_len;
  116. let mut data: Vec<u64> = vec![0; num_coeffs];
  117. for r in 0..rows {
  118. let c = r;
  119. let idx = r * cols * params.poly_len + c * params.poly_len;
  120. data[idx] = 1;
  121. }
  122. PolyMatrixRaw {
  123. params,
  124. rows,
  125. cols,
  126. data,
  127. }
  128. }
  129. pub fn noise(params: &'a Params, rows: usize, cols: usize, dg: &mut DiscreteGaussian) -> Self {
  130. let mut out = PolyMatrixRaw::zero(params, rows, cols);
  131. dg.sample_matrix(&mut out);
  132. out
  133. }
  134. pub fn ntt(&self) -> PolyMatrixNTT<'a> {
  135. to_ntt_alloc(&self)
  136. }
  137. }
  138. impl<'a> PolyMatrix<'a> for PolyMatrixNTT<'a> {
  139. fn is_ntt(&self) -> bool {
  140. true
  141. }
  142. fn get_rows(&self) -> usize {
  143. self.rows
  144. }
  145. fn get_cols(&self) -> usize {
  146. self.cols
  147. }
  148. fn get_params(&self) -> &Params {
  149. &self.params
  150. }
  151. fn as_slice(&self) -> &[u64] {
  152. self.data.as_slice()
  153. }
  154. fn as_mut_slice(&mut self) -> &mut [u64] {
  155. self.data.as_mut_slice()
  156. }
  157. fn num_words(&self) -> usize {
  158. self.params.poly_len * self.params.crt_count
  159. }
  160. fn zero(params: &'a Params, rows: usize, cols: usize) -> PolyMatrixNTT<'a> {
  161. let num_coeffs = rows * cols * params.poly_len * params.crt_count;
  162. let data: Vec<u64> = vec![0; num_coeffs];
  163. PolyMatrixNTT {
  164. params,
  165. rows,
  166. cols,
  167. data,
  168. }
  169. }
  170. fn random(params: &'a Params, rows: usize, cols: usize) -> Self {
  171. let rng = rand::thread_rng();
  172. let mut iter = rng.sample_iter(&Standard);
  173. let mut out = PolyMatrixNTT::zero(params, rows, cols);
  174. for r in 0..rows {
  175. for c in 0..cols {
  176. for i in 0..params.crt_count {
  177. for j in 0..params.poly_len {
  178. let idx = calc_index(&[i, j], &[params.crt_count, params.poly_len]);
  179. let val: u64 = iter.next().unwrap();
  180. out.get_poly_mut(r, c)[idx] = val % params.moduli[i];
  181. }
  182. }
  183. }
  184. }
  185. out
  186. }
  187. fn pad_top(&self, pad_rows: usize) -> Self {
  188. let mut padded = Self::zero(self.params, self.rows + pad_rows, self.cols);
  189. padded.copy_into(&self, pad_rows, 0);
  190. padded
  191. }
  192. }
  193. impl<'a> PolyMatrixNTT<'a> {
  194. pub fn raw(&self) -> PolyMatrixRaw<'a> {
  195. from_ntt_alloc(&self)
  196. }
  197. }
  198. pub fn multiply_poly(params: &Params, res: &mut [u64], a: &[u64], b: &[u64]) {
  199. for c in 0..params.crt_count {
  200. for i in 0..params.poly_len {
  201. res[i] = multiply_modular(params, a[i], b[i], c);
  202. }
  203. }
  204. }
  205. pub fn multiply_add_poly(params: &Params, res: &mut [u64], a: &[u64], b: &[u64]) {
  206. for c in 0..params.crt_count {
  207. for i in 0..params.poly_len {
  208. res[i] = multiply_add_modular(params, a[i], b[i], res[i], c);
  209. }
  210. }
  211. }
  212. pub fn add_poly(params: &Params, res: &mut [u64], a: &[u64], b: &[u64]) {
  213. for c in 0..params.crt_count {
  214. for i in 0..params.poly_len {
  215. res[i] = add_modular(params, a[i], b[i], c);
  216. }
  217. }
  218. }
  219. pub fn invert_poly(params: &Params, res: &mut [u64], a: &[u64]) {
  220. for c in 0..params.crt_count {
  221. for i in 0..params.poly_len {
  222. res[i] = invert_modular(params, a[i], c);
  223. }
  224. }
  225. }
  226. pub fn multiply_add_poly_avx(params: &Params, res: &mut [u64], a: &[u64], b: &[u64]) {
  227. for c in 0..params.crt_count {
  228. for i in (0..params.poly_len).step_by(4) {
  229. unsafe {
  230. let p_x = &a[c*params.poly_len + i] as *const u64;
  231. let p_y = &b[c*params.poly_len + i] as *const u64;
  232. let p_z = &mut res[c*params.poly_len + i] as *mut u64;
  233. let x = _mm256_loadu_si256(p_x as *const __m256i);
  234. let y = _mm256_loadu_si256(p_y as *const __m256i);
  235. let z = _mm256_loadu_si256(p_z as *const __m256i);
  236. let product = _mm256_mul_epu32(x, y);
  237. let out = _mm256_add_epi64(z, product);
  238. _mm256_storeu_si256(p_z as *mut __m256i, out);
  239. }
  240. }
  241. }
  242. }
  243. pub fn modular_reduce(params: &Params, res: &mut [u64]) {
  244. for c in 0..params.crt_count {
  245. for i in 0..params.poly_len {
  246. res[c*params.poly_len + i] %= params.moduli[c];
  247. }
  248. }
  249. }
  250. #[cfg(not(target_feature = "avx2"))]
  251. pub fn multiply(res: &mut PolyMatrixNTT, a: &PolyMatrixNTT, b: &PolyMatrixNTT) {
  252. assert!(a.cols == b.rows);
  253. for i in 0..a.rows {
  254. for j in 0..b.cols {
  255. for z in 0..res.params.poly_len {
  256. res.get_poly_mut(i, j)[z] = 0;
  257. }
  258. for k in 0..a.cols {
  259. let params = res.params;
  260. let res_poly = res.get_poly_mut(i, j);
  261. let pol1 = a.get_poly(i, k);
  262. let pol2 = b.get_poly(k, j);
  263. multiply_add_poly(params, res_poly, pol1, pol2);
  264. }
  265. }
  266. }
  267. }
  268. #[cfg(target_feature = "avx2")]
  269. pub fn multiply(res: &mut PolyMatrixNTT, a: &PolyMatrixNTT, b: &PolyMatrixNTT) {
  270. assert!(res.rows == a.rows);
  271. assert!(res.cols == b.cols);
  272. assert!(a.cols == b.rows);
  273. let params = res.params;
  274. for i in 0..a.rows {
  275. for j in 0..b.cols {
  276. for z in 0..res.params.poly_len {
  277. res.get_poly_mut(i, j)[z] = 0;
  278. }
  279. let res_poly = res.get_poly_mut(i, j);
  280. for k in 0..a.cols {
  281. let pol1 = a.get_poly(i, k);
  282. let pol2 = b.get_poly(k, j);
  283. multiply_add_poly_avx(params, res_poly, pol1, pol2);
  284. }
  285. modular_reduce(params, res_poly);
  286. }
  287. }
  288. }
  289. pub fn add(res: &mut PolyMatrixNTT, a: &PolyMatrixNTT, b: &PolyMatrixNTT) {
  290. assert!(res.rows == a.rows);
  291. assert!(res.cols == a.cols);
  292. assert!(a.rows == b.rows);
  293. assert!(a.cols == b.cols);
  294. let params = res.params;
  295. for i in 0..a.rows {
  296. for j in 0..a.cols {
  297. let res_poly = res.get_poly_mut(i, j);
  298. let pol1 = a.get_poly(i, j);
  299. let pol2 = b.get_poly(i, j);
  300. add_poly(params, res_poly, pol1, pol2);
  301. }
  302. }
  303. }
  304. pub fn invert(res: &mut PolyMatrixRaw, a: &PolyMatrixRaw) {
  305. assert!(res.rows == a.rows);
  306. assert!(res.cols == a.cols);
  307. let params = res.params;
  308. for i in 0..a.rows {
  309. for j in 0..a.cols {
  310. let res_poly = res.get_poly_mut(i, j);
  311. let pol1 = a.get_poly(i, j);
  312. invert_poly(params, res_poly, pol1);
  313. }
  314. }
  315. }
  316. pub fn stack<'a>(a: &PolyMatrixRaw<'a>, b: &PolyMatrixRaw<'a>) -> PolyMatrixRaw<'a> {
  317. assert_eq!(a.cols, b.cols);
  318. let mut c = PolyMatrixRaw::zero(a.params, a.rows + b.rows, a.cols);
  319. c.copy_into(a, 0, 0);
  320. c.copy_into(b, a.rows, 0);
  321. c
  322. }
  323. pub fn scalar_multiply(res: &mut PolyMatrixNTT, a: &PolyMatrixNTT, b: &PolyMatrixNTT) {
  324. assert_eq!(a.rows, 1);
  325. assert_eq!(a.cols, 1);
  326. let params = res.params;
  327. let pol2 = a.get_poly(0, 0);
  328. for i in 0..b.rows {
  329. for j in 0..b.cols {
  330. let res_poly = res.get_poly_mut(i, j);
  331. let pol1 = b.get_poly(i, j);
  332. multiply_poly(params, res_poly, pol1, pol2);
  333. }
  334. }
  335. }
  336. pub fn scalar_multiply_alloc<'a>(a: &PolyMatrixNTT<'a>, b: &PolyMatrixNTT<'a>) -> PolyMatrixNTT<'a> {
  337. let mut res = PolyMatrixNTT::zero(b.params, b.rows, b.cols);
  338. scalar_multiply(&mut res, a, b);
  339. res
  340. }
  341. pub fn to_ntt(a: &mut PolyMatrixNTT, b: &PolyMatrixRaw) {
  342. let params = a.params;
  343. for r in 0..a.rows {
  344. for c in 0..a.cols {
  345. let pol_src = b.get_poly(r, c);
  346. let pol_dst = a.get_poly_mut(r, c);
  347. for n in 0..params.crt_count {
  348. for z in 0..params.poly_len {
  349. pol_dst[n * params.poly_len + z] = pol_src[z] % params.moduli[n];
  350. }
  351. }
  352. ntt_forward(params, pol_dst);
  353. }
  354. }
  355. }
  356. pub fn to_ntt_alloc<'a>(b: &PolyMatrixRaw<'a>) -> PolyMatrixNTT<'a> {
  357. let mut a = PolyMatrixNTT::zero(b.params, b.rows, b.cols);
  358. to_ntt(&mut a, b);
  359. a
  360. }
  361. pub fn from_ntt(a: &mut PolyMatrixRaw, b: &PolyMatrixNTT) {
  362. let params = a.params;
  363. SCRATCH.with(|scratch_cell| {
  364. let scratch_vec = &mut *scratch_cell.borrow_mut();
  365. let scratch = scratch_vec.as_mut_slice();
  366. for r in 0..a.rows {
  367. for c in 0..a.cols {
  368. let pol_src = b.get_poly(r, c);
  369. let pol_dst = a.get_poly_mut(r, c);
  370. scratch[0..pol_src.len()].copy_from_slice(pol_src);
  371. ntt_inverse(params, scratch);
  372. for z in 0..params.poly_len {
  373. pol_dst[z] = params.crt_compose_2(scratch[z], scratch[params.poly_len + z]);
  374. }
  375. }
  376. }
  377. });
  378. }
  379. pub fn from_ntt_alloc<'a>(b: &PolyMatrixNTT<'a>) -> PolyMatrixRaw<'a> {
  380. let mut a = PolyMatrixRaw::zero(b.params, b.rows, b.cols);
  381. from_ntt(&mut a, b);
  382. a
  383. }
  384. impl<'a, 'b> Neg for &'b PolyMatrixRaw<'a> {
  385. type Output = PolyMatrixRaw<'a>;
  386. fn neg(self) -> Self::Output {
  387. let mut out = PolyMatrixRaw::zero(self.params, self.rows, self.cols);
  388. invert(&mut out, self);
  389. out
  390. }
  391. }
  392. impl<'a, 'b> Mul for &'b PolyMatrixNTT<'a> {
  393. type Output = PolyMatrixNTT<'a>;
  394. fn mul(self, rhs: Self) -> Self::Output {
  395. let mut out = PolyMatrixNTT::zero(self.params, self.rows, rhs.cols);
  396. multiply(&mut out, self, rhs);
  397. out
  398. }
  399. }
  400. impl<'a, 'b> Add for &'b PolyMatrixNTT<'a> {
  401. type Output = PolyMatrixNTT<'a>;
  402. fn add(self, rhs: Self) -> Self::Output {
  403. let mut out = PolyMatrixNTT::zero(self.params, self.rows, self.cols);
  404. add(&mut out, self, rhs);
  405. out
  406. }
  407. }
  408. #[cfg(test)]
  409. mod test {
  410. use super::*;
  411. fn get_params() -> Params {
  412. get_test_params()
  413. }
  414. fn assert_all_zero(a: &[u64]) {
  415. for i in a {
  416. assert_eq!(*i, 0);
  417. }
  418. }
  419. #[test]
  420. fn sets_all_zeros() {
  421. let params = get_params();
  422. let m1 = PolyMatrixNTT::zero(&params, 2, 1);
  423. assert_all_zero(m1.as_slice());
  424. }
  425. #[test]
  426. fn multiply_correctness() {
  427. let params = get_params();
  428. let m1 = PolyMatrixNTT::zero(&params, 2, 1);
  429. let m2 = PolyMatrixNTT::zero(&params, 3, 2);
  430. let m3 = &m2 * &m1;
  431. assert_all_zero(m3.as_slice());
  432. }
  433. #[test]
  434. fn full_multiply_correctness() {
  435. let params = get_params();
  436. let mut m1 = PolyMatrixRaw::zero(&params, 1, 1);
  437. let mut m2 = PolyMatrixRaw::zero(&params, 1, 1);
  438. m1.get_poly_mut(0, 0)[1] = 100;
  439. m2.get_poly_mut(0, 0)[1] = 7;
  440. let m1_ntt = to_ntt_alloc(&m1);
  441. let m2_ntt = to_ntt_alloc(&m2);
  442. let m3_ntt = &m1_ntt * &m2_ntt;
  443. let m3 = from_ntt_alloc(&m3_ntt);
  444. assert_eq!(m3.get_poly(0, 0)[2], 700);
  445. }
  446. }