client.rs 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. use crate::{
  2. arith::*, discrete_gaussian::*, gadget::*, number_theory::*, params::*, poly::*, util::*,
  3. };
  4. use std::iter::once;
  5. fn serialize_polymatrix(vec: &mut Vec<u8>, a: &PolyMatrixRaw) {
  6. for i in 0..a.rows * a.cols * a.params.poly_len {
  7. vec.extend_from_slice(&u64::to_ne_bytes(a.data[i]));
  8. }
  9. }
  10. fn serialize_vec_polymatrix(vec: &mut Vec<u8>, a: &Vec<PolyMatrixRaw>) {
  11. for i in 0..a.len() {
  12. serialize_polymatrix(vec, &a[i]);
  13. }
  14. }
  15. pub struct PublicParameters<'a> {
  16. v_packing: Vec<PolyMatrixNTT<'a>>, // Ws
  17. v_expansion_left: Option<Vec<PolyMatrixNTT<'a>>>,
  18. v_expansion_right: Option<Vec<PolyMatrixNTT<'a>>>,
  19. v_conversion: Option<Vec<PolyMatrixNTT<'a>>>, // V
  20. }
  21. impl<'a> PublicParameters<'a> {
  22. pub fn init(params: &'a Params) -> Self {
  23. if params.expand_queries {
  24. PublicParameters {
  25. v_packing: Vec::new(),
  26. v_expansion_left: Some(Vec::new()),
  27. v_expansion_right: Some(Vec::new()),
  28. v_conversion: Some(Vec::new()),
  29. }
  30. } else {
  31. PublicParameters {
  32. v_packing: Vec::new(),
  33. v_expansion_left: None,
  34. v_expansion_right: None,
  35. v_conversion: None,
  36. }
  37. }
  38. }
  39. fn from_ntt_alloc_vec(v: &Vec<PolyMatrixNTT<'a>>) -> Option<Vec<PolyMatrixRaw<'a>>> {
  40. Some(v.iter().map(from_ntt_alloc).collect())
  41. }
  42. fn from_ntt_alloc_opt_vec(
  43. v: &Option<Vec<PolyMatrixNTT<'a>>>,
  44. ) -> Option<Vec<PolyMatrixRaw<'a>>> {
  45. Some(v.as_ref()?.iter().map(from_ntt_alloc).collect())
  46. }
  47. pub fn to_raw(&self) -> Vec<Option<Vec<PolyMatrixRaw>>> {
  48. vec![
  49. Self::from_ntt_alloc_vec(&self.v_packing),
  50. Self::from_ntt_alloc_opt_vec(&self.v_expansion_left),
  51. Self::from_ntt_alloc_opt_vec(&self.v_expansion_right),
  52. Self::from_ntt_alloc_opt_vec(&self.v_conversion),
  53. ]
  54. }
  55. pub fn serialize(&self) -> Vec<u8> {
  56. let mut data = Vec::new();
  57. for v in self.to_raw().iter() {
  58. if v.is_some() {
  59. serialize_vec_polymatrix(&mut data, v.as_ref().unwrap());
  60. }
  61. }
  62. data
  63. }
  64. }
  65. pub struct Query<'a> {
  66. ct: Option<PolyMatrixRaw<'a>>,
  67. v_buf: Option<Vec<u64>>,
  68. v_ct: Option<Vec<PolyMatrixRaw<'a>>>,
  69. }
  70. impl<'a> Query<'a> {
  71. pub fn empty() -> Self {
  72. Query {
  73. ct: None,
  74. v_ct: None,
  75. v_buf: None,
  76. }
  77. }
  78. pub fn serialize(&self) -> Vec<u8> {
  79. let mut data = Vec::new();
  80. if self.ct.is_some() {
  81. let ct = self.ct.as_ref().unwrap();
  82. serialize_polymatrix(&mut data, &ct);
  83. }
  84. if self.v_buf.is_some() {
  85. let v_buf = self.v_buf.as_ref().unwrap();
  86. data.extend(v_buf.iter().map(|x| x.to_ne_bytes()).flatten());
  87. }
  88. if self.v_ct.is_some() {
  89. let v_ct = self.v_ct.as_ref().unwrap();
  90. for x in v_ct {
  91. serialize_polymatrix(&mut data, x);
  92. }
  93. }
  94. data
  95. }
  96. }
  97. pub struct Client<'a> {
  98. params: &'a Params,
  99. sk_gsw: PolyMatrixRaw<'a>,
  100. sk_reg: PolyMatrixRaw<'a>,
  101. sk_gsw_full: PolyMatrixRaw<'a>,
  102. sk_reg_full: PolyMatrixRaw<'a>,
  103. dg: DiscreteGaussian,
  104. g: usize,
  105. stop_round: usize,
  106. }
  107. fn matrix_with_identity<'a>(p: &PolyMatrixRaw<'a>) -> PolyMatrixRaw<'a> {
  108. assert_eq!(p.cols, 1);
  109. let mut r = PolyMatrixRaw::zero(p.params, p.rows, p.rows + 1);
  110. r.copy_into(p, 0, 0);
  111. r.copy_into(&PolyMatrixRaw::identity(p.params, p.rows, p.rows), 0, 1);
  112. r
  113. }
  114. fn params_with_moduli(params: &Params, moduli: &Vec<u64>) -> Params {
  115. Params::init(
  116. params.poly_len,
  117. moduli,
  118. params.noise_width,
  119. params.n,
  120. params.pt_modulus,
  121. params.q2_bits,
  122. params.t_conv,
  123. params.t_exp_left,
  124. params.t_exp_right,
  125. params.t_gsw,
  126. params.expand_queries,
  127. params.db_dim_1,
  128. params.db_dim_2,
  129. params.instances,
  130. params.db_item_size,
  131. )
  132. }
  133. impl<'a> Client<'a> {
  134. pub fn init(params: &'a Params) -> Self {
  135. let sk_gsw_dims = params.get_sk_gsw();
  136. let sk_reg_dims = params.get_sk_reg();
  137. let sk_gsw = PolyMatrixRaw::zero(params, sk_gsw_dims.0, sk_gsw_dims.1);
  138. let sk_reg = PolyMatrixRaw::zero(params, sk_reg_dims.0, sk_reg_dims.1);
  139. let sk_gsw_full = matrix_with_identity(&sk_gsw);
  140. let sk_reg_full = matrix_with_identity(&sk_reg);
  141. let dg = DiscreteGaussian::init(params);
  142. let further_dims = params.db_dim_2;
  143. let num_expanded = 1usize << params.db_dim_1;
  144. let num_bits_to_gen = params.t_gsw * further_dims + num_expanded;
  145. let g = log2_ceil_usize(num_bits_to_gen);
  146. let stop_round = log2_ceil_usize(params.t_gsw * further_dims);
  147. Self {
  148. params,
  149. sk_gsw,
  150. sk_reg,
  151. sk_gsw_full,
  152. sk_reg_full,
  153. dg,
  154. g,
  155. stop_round,
  156. }
  157. }
  158. fn get_fresh_gsw_public_key(&mut self, m: usize) -> PolyMatrixRaw<'a> {
  159. let params = self.params;
  160. let n = params.n;
  161. let a = PolyMatrixRaw::random(params, 1, m);
  162. let e = PolyMatrixRaw::noise(params, n, m, &mut self.dg);
  163. let a_inv = -&a;
  164. let b_p = &self.sk_gsw.ntt() * &a.ntt();
  165. let b = &e.ntt() + &b_p;
  166. let p = stack(&a_inv, &b.raw());
  167. p
  168. }
  169. fn get_regev_sample(&mut self) -> PolyMatrixNTT<'a> {
  170. let params = self.params;
  171. let a = PolyMatrixRaw::random(params, 1, 1);
  172. let e = PolyMatrixRaw::noise(params, 1, 1, &mut self.dg);
  173. let b_p = &self.sk_reg.ntt() * &a.ntt();
  174. let b = &e.ntt() + &b_p;
  175. let mut p = PolyMatrixNTT::zero(params, 2, 1);
  176. p.copy_into(&(-&a).ntt(), 0, 0);
  177. p.copy_into(&b, 1, 0);
  178. p
  179. }
  180. fn get_fresh_reg_public_key(&mut self, m: usize) -> PolyMatrixNTT<'a> {
  181. let params = self.params;
  182. let mut p = PolyMatrixNTT::zero(params, 2, m);
  183. for i in 0..m {
  184. p.copy_into(&self.get_regev_sample(), 0, i);
  185. }
  186. p
  187. }
  188. fn encrypt_matrix_gsw(&mut self, ag: &PolyMatrixNTT<'a>) -> PolyMatrixNTT<'a> {
  189. let mx = ag.cols;
  190. let p = self.get_fresh_gsw_public_key(mx);
  191. let res = &(p.ntt()) + &(ag.pad_top(1));
  192. res
  193. }
  194. fn encrypt_matrix_reg(&mut self, a: &PolyMatrixNTT<'a>) -> PolyMatrixNTT<'a> {
  195. let m = a.cols;
  196. let p = self.get_fresh_reg_public_key(m);
  197. &p + &a.pad_top(1)
  198. }
  199. fn generate_expansion_params(
  200. &mut self,
  201. num_exp: usize,
  202. m_exp: usize,
  203. ) -> Vec<PolyMatrixNTT<'a>> {
  204. let params = self.params;
  205. let g_exp = build_gadget(params, 1, m_exp);
  206. let g_exp_ntt = g_exp.ntt();
  207. let mut res = Vec::new();
  208. for i in 0..num_exp {
  209. let t = (params.poly_len / (1 << i)) + 1;
  210. let tau_sk_reg = automorph_alloc(&self.sk_reg, t);
  211. let prod = &tau_sk_reg.ntt() * &g_exp_ntt;
  212. let w_exp_i = self.encrypt_matrix_reg(&prod);
  213. res.push(w_exp_i);
  214. }
  215. res
  216. }
  217. pub fn generate_keys(&mut self) -> PublicParameters {
  218. let params = self.params;
  219. self.dg.sample_matrix(&mut self.sk_gsw);
  220. self.dg.sample_matrix(&mut self.sk_reg);
  221. self.sk_gsw_full = matrix_with_identity(&self.sk_gsw);
  222. self.sk_reg_full = matrix_with_identity(&self.sk_reg);
  223. let sk_reg_ntt = to_ntt_alloc(&self.sk_reg);
  224. let m_conv = params.m_conv();
  225. let mut pp = PublicParameters::init(params);
  226. // Params for packing
  227. let gadget_conv = build_gadget(params, 1, m_conv);
  228. let gadget_conv_ntt = to_ntt_alloc(&gadget_conv);
  229. for i in 0..params.n {
  230. let scaled = scalar_multiply_alloc(&sk_reg_ntt, &gadget_conv_ntt);
  231. let mut ag = PolyMatrixNTT::zero(params, params.n, m_conv);
  232. ag.copy_into(&scaled, i, 0);
  233. let w = self.encrypt_matrix_gsw(&ag);
  234. pp.v_packing.push(w);
  235. }
  236. if params.expand_queries {
  237. // Params for expansion
  238. pp.v_expansion_left = Some(self.generate_expansion_params(self.g, params.t_exp_left));
  239. pp.v_expansion_right =
  240. Some(self.generate_expansion_params(self.stop_round + 1, params.t_exp_right));
  241. // Params for converison
  242. let g_conv = build_gadget(params, 2, 2 * m_conv);
  243. let sk_reg_ntt = self.sk_reg.ntt();
  244. let sk_reg_squared_ntt = &sk_reg_ntt * &sk_reg_ntt;
  245. pp.v_conversion = Some(Vec::from_iter(once(PolyMatrixNTT::zero(
  246. params,
  247. 2,
  248. 2 * m_conv,
  249. ))));
  250. for i in 0..2 * m_conv {
  251. let sigma;
  252. if i % 2 == 0 {
  253. let val = g_conv.get_poly(0, i)[0];
  254. sigma = &sk_reg_squared_ntt * &single_poly(params, val).ntt();
  255. } else {
  256. let val = g_conv.get_poly(1, i)[0];
  257. sigma = &sk_reg_ntt * &single_poly(params, val).ntt();
  258. }
  259. let ct = self.encrypt_matrix_reg(&sigma);
  260. pp.v_conversion.as_mut().unwrap()[0].copy_into(&ct, 0, i);
  261. }
  262. }
  263. pp
  264. }
  265. // reindexes a vector of regev ciphertexts, to help server
  266. fn reorient_reg_ciphertexts(&self, out: &mut [u64], v_reg: &Vec<PolyMatrixNTT>) {
  267. let params = self.params;
  268. let poly_len = params.poly_len;
  269. let crt_count = params.crt_count;
  270. assert_eq!(crt_count, 2);
  271. assert!(log2(params.moduli[0]) <= 32);
  272. let num_reg_expanded = 1 << params.db_dim_1;
  273. let ct_rows = v_reg[0].rows;
  274. let ct_cols = v_reg[0].cols;
  275. assert_eq!(ct_rows, 2);
  276. assert_eq!(ct_cols, 1);
  277. for j in 0..num_reg_expanded {
  278. for r in 0..ct_rows {
  279. for m in 0..ct_cols {
  280. for z in 0..params.poly_len {
  281. let idx_a_in =
  282. r * (ct_cols * crt_count * poly_len) + m * (crt_count * poly_len);
  283. let idx_a_out = z * (num_reg_expanded * ct_cols * ct_rows)
  284. + j * (ct_cols * ct_rows)
  285. + m * (ct_rows)
  286. + r;
  287. let val1 = v_reg[j].data[idx_a_in + z] % params.moduli[0];
  288. let val2 = v_reg[j].data[idx_a_in + params.poly_len + z] % params.moduli[1];
  289. out[idx_a_out] = val1 | (val2 << 32);
  290. }
  291. }
  292. }
  293. }
  294. }
  295. pub fn generate_query(&mut self, idx_target: usize) -> Query<'a> {
  296. let params = self.params;
  297. let further_dims = params.db_dim_2;
  298. let idx_dim0 = idx_target / (1 << further_dims);
  299. let idx_further = idx_target % (1 << further_dims);
  300. let scale_k = params.modulus / params.pt_modulus;
  301. let bits_per = get_bits_per(params, params.t_gsw);
  302. let mut query = Query::empty();
  303. if params.expand_queries {
  304. // pack query into single ciphertext
  305. let mut sigma = PolyMatrixRaw::zero(params, 1, 1);
  306. sigma.data[2 * idx_dim0] = scale_k;
  307. for i in 0..further_dims as u64 {
  308. let bit: u64 = ((idx_further as u64) & (1 << i)) >> i;
  309. for j in 0..params.t_gsw {
  310. let val = (1u64 << (bits_per * j)) * bit;
  311. let idx = (i as usize) * params.t_gsw + (j as usize);
  312. sigma.data[2 * idx + 1] = val;
  313. }
  314. }
  315. let inv_2_g_first = invert_uint_mod(1 << self.g, params.modulus).unwrap();
  316. let inv_2_g_rest = invert_uint_mod(1 << (self.stop_round + 1), params.modulus).unwrap();
  317. for i in 0..params.poly_len / 2 {
  318. sigma.data[2 * i] =
  319. multiply_uint_mod(sigma.data[2 * i], inv_2_g_first, params.modulus);
  320. sigma.data[2 * i + 1] =
  321. multiply_uint_mod(sigma.data[2 * i + 1], inv_2_g_rest, params.modulus);
  322. }
  323. query.ct = Some(from_ntt_alloc(
  324. &self.encrypt_matrix_reg(&to_ntt_alloc(&sigma)),
  325. ));
  326. } else {
  327. let num_expanded = 1 << params.db_dim_1;
  328. let mut sigma_v = Vec::<PolyMatrixNTT>::new();
  329. // generate regev ciphertexts
  330. let reg_cts_buf_words = num_expanded * 2 * params.poly_len;
  331. let mut reg_cts_buf = vec![0u64; reg_cts_buf_words];
  332. let mut reg_cts = Vec::<PolyMatrixNTT>::new();
  333. for i in 0..num_expanded {
  334. let value = ((i == idx_dim0) as u64) * scale_k;
  335. let sigma = PolyMatrixRaw::single_value(&params, value);
  336. reg_cts.push(self.encrypt_matrix_reg(&to_ntt_alloc(&sigma)));
  337. }
  338. // reorient into server's preferred indexing
  339. self.reorient_reg_ciphertexts(reg_cts_buf.as_mut_slice(), &reg_cts);
  340. // generate GSW ciphertexts
  341. for i in 0..further_dims {
  342. let bit = ((idx_further as u64) & (1 << (i as u64))) >> (i as u64);
  343. let mut ct_gsw = PolyMatrixNTT::zero(&params, 2, 2 * params.t_gsw);
  344. for j in 0..params.t_gsw {
  345. let value = (1u64 << (bits_per * j)) * bit;
  346. let sigma = PolyMatrixRaw::single_value(&params, value);
  347. let sigma_ntt = to_ntt_alloc(&sigma);
  348. let ct = &self.encrypt_matrix_reg(&sigma_ntt);
  349. ct_gsw.copy_into(ct, 0, 2 * j + 1);
  350. let prod = &to_ntt_alloc(&self.sk_reg) * &sigma_ntt;
  351. let ct = &self.encrypt_matrix_reg(&prod);
  352. ct_gsw.copy_into(ct, 0, 2 * j);
  353. }
  354. sigma_v.push(ct_gsw);
  355. }
  356. query.v_buf = Some(reg_cts_buf);
  357. query.v_ct = Some(sigma_v.iter().map(|x| from_ntt_alloc(x)).collect());
  358. }
  359. query
  360. }
  361. pub fn decode_response(&self, data: &[u8]) -> Vec<u8> {
  362. /*
  363. 0. NTT over q2 the secret key
  364. 1. read first row in q2_bit chunks
  365. 2. read rest in q1_bit chunks
  366. 3. NTT over q2 the first row
  367. 4. Multiply the results of (0) and (3)
  368. 5. Divide and round correctly
  369. */
  370. let params = self.params;
  371. let p = params.pt_modulus;
  372. let p_bits = log2_ceil(params.pt_modulus);
  373. let q1 = 4 * params.pt_modulus;
  374. let q1_bits = log2_ceil(q1) as usize;
  375. let q2 = Q2_VALUES[params.q2_bits as usize];
  376. let q2_bits = params.q2_bits as usize;
  377. let q2_params = params_with_moduli(params, &vec![q2]);
  378. // this only needs to be done during keygen
  379. let mut sk_gsw_q2 = PolyMatrixRaw::zero(&q2_params, params.n, 1);
  380. for i in 0..params.poly_len * params.n {
  381. sk_gsw_q2.data[i] = recenter(self.sk_gsw.data[i], params.modulus, q2);
  382. }
  383. let mut sk_gsw_q2_ntt = PolyMatrixNTT::zero(&q2_params, params.n, 1);
  384. to_ntt(&mut sk_gsw_q2_ntt, &sk_gsw_q2);
  385. let mut result = PolyMatrixRaw::zero(&params, params.instances * params.n, params.n);
  386. let mut bit_offs = 0;
  387. for instance in 0..params.instances {
  388. // this must be done during decoding
  389. let mut first_row = PolyMatrixRaw::zero(&q2_params, 1, params.n);
  390. let mut rest_rows = PolyMatrixRaw::zero(&params, params.n, params.n);
  391. for i in 0..params.n * params.poly_len {
  392. first_row.data[i] = read_arbitrary_bits(data, bit_offs, q2_bits);
  393. bit_offs += q2_bits;
  394. }
  395. for i in 0..params.n * params.n * params.poly_len {
  396. rest_rows.data[i] = read_arbitrary_bits(data, bit_offs, q1_bits);
  397. bit_offs += q1_bits;
  398. }
  399. let mut first_row_q2 = PolyMatrixNTT::zero(&q2_params, 1, params.n);
  400. to_ntt(&mut first_row_q2, &first_row);
  401. let sk_prod = (&sk_gsw_q2_ntt * &first_row_q2).raw();
  402. let q1_i64 = q1 as i64;
  403. let q2_i64 = q2 as i64;
  404. let p_i128 = p as i128;
  405. for i in 0..params.n * params.n * params.poly_len {
  406. let mut val_first = sk_prod.data[i] as i64;
  407. if val_first >= q2_i64 / 2 {
  408. val_first -= q2_i64;
  409. }
  410. let mut val_rest = rest_rows.data[i] as i64;
  411. if val_rest >= q1_i64 / 2 {
  412. val_rest -= q1_i64;
  413. }
  414. let denom = (q2 * (q1 / p)) as i64;
  415. let mut r = val_first * q1_i64;
  416. r += val_rest * q2_i64;
  417. // divide r by q2, rounding
  418. let sign: i64 = if r >= 0 { 1 } else { -1 };
  419. let mut res = ((r + sign * (denom / 2)) as i128) / (denom as i128);
  420. res = (res + (denom as i128 / p_i128) * (p_i128) + 2 * (p_i128)) % (p_i128);
  421. let idx = instance * params.n * params.n * params.poly_len + i;
  422. result.data[idx] = res as u64;
  423. }
  424. }
  425. // println!("{:?}", result.data);
  426. let trials = params.n * params.n;
  427. let chunks = params.instances * trials;
  428. let bytes_per_chunk = f64::ceil(params.db_item_size as f64 / chunks as f64) as usize;
  429. let logp = log2(params.pt_modulus);
  430. let modp_words_per_chunk = f64::ceil((bytes_per_chunk * 8) as f64 / logp as f64) as usize;
  431. result.to_vec(p_bits as usize, modp_words_per_chunk)
  432. }
  433. }