client.rs 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. use crate::{poly::*, params::*, discrete_gaussian::*, gadget::*, arith::*, util::*, number_theory::*};
  2. fn serialize_polymatrix(vec: &mut Vec<u8>, a: &PolyMatrixRaw) {
  3. for i in 0..a.rows * a.cols * a.params.poly_len {
  4. vec.extend_from_slice(&u64::to_ne_bytes(a.data[i]));
  5. }
  6. }
  7. fn serialize_vec_polymatrix(vec: &mut Vec<u8>, a: &Vec<PolyMatrixRaw>) {
  8. for i in 0..a.len() {
  9. serialize_polymatrix(vec, &a[i]);
  10. }
  11. }
  12. pub struct PublicParameters<'a> {
  13. v_packing: Vec<PolyMatrixNTT<'a>>, // Ws
  14. v_expansion_left: Vec<PolyMatrixNTT<'a>>,
  15. v_expansion_right: Vec<PolyMatrixNTT<'a>>,
  16. conversion: PolyMatrixNTT<'a>, // V
  17. }
  18. impl<'a> PublicParameters<'a> {
  19. pub fn init(params: &'a Params) -> Self {
  20. PublicParameters {
  21. v_packing: Vec::new(),
  22. v_expansion_left: Vec::new(),
  23. v_expansion_right: Vec::new(),
  24. conversion: PolyMatrixNTT::zero(params, 2, 2 * params.m_conv())
  25. }
  26. }
  27. pub fn to_raw(&self) -> Vec<Vec<PolyMatrixRaw>> {
  28. vec![
  29. self.v_packing.iter().map(from_ntt_alloc).collect(),
  30. self.v_expansion_left.iter().map(from_ntt_alloc).collect(),
  31. self.v_expansion_right.iter().map(from_ntt_alloc).collect(),
  32. vec![from_ntt_alloc(&self.conversion)]
  33. ]
  34. }
  35. pub fn serialize(&self) -> Vec<u8> {
  36. let mut data = Vec::new();
  37. for v in self.to_raw().iter() {
  38. serialize_vec_polymatrix(&mut data, v);
  39. }
  40. data
  41. }
  42. }
  43. pub struct Query<'a> {
  44. ct: Option<PolyMatrixRaw<'a>>,
  45. // v_ct: Option<Vec<PolyMatrixRaw<'a>>>,
  46. }
  47. impl<'a> Query<'a> {
  48. pub fn serialize(&self) -> Vec<u8> {
  49. let mut data = Vec::new();
  50. if self.ct.is_some() {
  51. let ct = self.ct.as_ref().unwrap();
  52. serialize_polymatrix(&mut data, &ct);
  53. }
  54. data
  55. }
  56. }
  57. pub struct Client<'a> {
  58. params: &'a Params,
  59. sk_gsw: PolyMatrixRaw<'a>,
  60. sk_reg: PolyMatrixRaw<'a>,
  61. sk_gsw_full: PolyMatrixRaw<'a>,
  62. sk_reg_full: PolyMatrixRaw<'a>,
  63. dg: DiscreteGaussian,
  64. g: usize,
  65. stop_round: usize,
  66. }
  67. fn matrix_with_identity<'a> (p: &PolyMatrixRaw<'a>) -> PolyMatrixRaw<'a> {
  68. assert_eq!(p.cols, 1);
  69. let mut r = PolyMatrixRaw::zero(p.params, p.rows, p.rows + 1);
  70. r.copy_into(p, 0, 0);
  71. r.copy_into(&PolyMatrixRaw::identity(p.params, p.rows, p.rows), 0, 1);
  72. r
  73. }
  74. fn params_with_moduli(params: &Params, moduli: &Vec<u64>) -> Params {
  75. Params::init(
  76. params.poly_len,
  77. moduli,
  78. params.noise_width,
  79. params.n,
  80. params.pt_modulus,
  81. params.q2_bits,
  82. params.t_conv,
  83. params.t_exp_left,
  84. params.t_exp_right,
  85. params.t_gsw,
  86. params.expand_queries,
  87. params.db_dim_1,
  88. params.db_dim_2,
  89. )
  90. }
  91. impl<'a> Client<'a> {
  92. pub fn init(params: &'a Params) -> Self {
  93. let sk_gsw_dims = params.get_sk_gsw();
  94. let sk_reg_dims = params.get_sk_reg();
  95. let sk_gsw = PolyMatrixRaw::zero(params, sk_gsw_dims.0, sk_gsw_dims.1);
  96. let sk_reg = PolyMatrixRaw::zero(params, sk_reg_dims.0, sk_reg_dims.1);
  97. let sk_gsw_full = matrix_with_identity(&sk_gsw);
  98. let sk_reg_full = matrix_with_identity(&sk_reg);
  99. let dg = DiscreteGaussian::init(params);
  100. let further_dims = params.db_dim_2;
  101. let num_expanded = 1usize << params.db_dim_1;
  102. let num_bits_to_gen = params.t_gsw * further_dims + num_expanded;
  103. let g = log2_ceil(num_bits_to_gen);
  104. let stop_round = log2_ceil(params.t_gsw * further_dims);
  105. Self {
  106. params,
  107. sk_gsw,
  108. sk_reg,
  109. sk_gsw_full,
  110. sk_reg_full,
  111. dg,
  112. g,
  113. stop_round,
  114. }
  115. }
  116. fn get_fresh_gsw_public_key(&mut self, m: usize) -> PolyMatrixRaw<'a> {
  117. let params = self.params;
  118. let n = params.n;
  119. let a = PolyMatrixRaw::random(params, 1, m);
  120. let e = PolyMatrixRaw::noise(params, n, m, &mut self.dg);
  121. let a_inv = -&a;
  122. let b_p = &self.sk_gsw.ntt() * &a.ntt();
  123. let b = &e.ntt() + &b_p;
  124. let p = stack(&a_inv, &b.raw());
  125. p
  126. }
  127. fn get_regev_sample(&mut self) -> PolyMatrixNTT<'a> {
  128. let params = self.params;
  129. let a = PolyMatrixRaw::random(params, 1, 1);
  130. let e = PolyMatrixRaw::noise(params, 1, 1, &mut self.dg);
  131. let b_p = &self.sk_reg.ntt() * &a.ntt();
  132. let b = &e.ntt() + &b_p;
  133. let mut p = PolyMatrixNTT::zero(params, 2, 1);
  134. p.copy_into(&(-&a).ntt(), 0, 0);
  135. p.copy_into(&b, 1, 0);
  136. p
  137. }
  138. fn get_fresh_reg_public_key(&mut self, m: usize) -> PolyMatrixNTT<'a> {
  139. let params = self.params;
  140. let mut p = PolyMatrixNTT::zero(params, 2, m);
  141. for i in 0..m {
  142. p.copy_into(&self.get_regev_sample(), 0, i);
  143. }
  144. p
  145. }
  146. fn encrypt_matrix_gsw(&mut self, ag: &PolyMatrixNTT<'a>) -> PolyMatrixNTT<'a> {
  147. let mx = ag.cols;
  148. let p = self.get_fresh_gsw_public_key(mx);
  149. let res = &(p.ntt()) + &(ag.pad_top(1));
  150. res
  151. }
  152. fn encrypt_matrix_reg(&mut self, a: &PolyMatrixNTT<'a>) -> PolyMatrixNTT<'a> {
  153. let m = a.cols;
  154. let p = self.get_fresh_reg_public_key(m);
  155. &p + &a.pad_top(1)
  156. }
  157. fn generate_expansion_params(&mut self, num_exp: usize, m_exp: usize) -> Vec<PolyMatrixNTT<'a>> {
  158. let params = self.params;
  159. let g_exp = build_gadget(params, 1, m_exp);
  160. let g_exp_ntt = g_exp.ntt();
  161. let mut res = Vec::new();
  162. for i in 0..num_exp {
  163. let t = (params.poly_len / (1 << i)) + 1;
  164. let tau_sk_reg = automorph_alloc(&self.sk_reg, t);
  165. let prod = &tau_sk_reg.ntt() * &g_exp_ntt;
  166. let w_exp_i = self.encrypt_matrix_reg(&prod);
  167. res.push(w_exp_i);
  168. }
  169. res
  170. }
  171. pub fn generate_keys(&mut self) -> PublicParameters {
  172. let params = self.params;
  173. self.dg.sample_matrix(&mut self.sk_gsw);
  174. self.dg.sample_matrix(&mut self.sk_reg);
  175. self.sk_gsw_full = matrix_with_identity(&self.sk_gsw);
  176. self.sk_reg_full = matrix_with_identity(&self.sk_reg);
  177. let sk_reg_ntt = to_ntt_alloc(&self.sk_reg);
  178. let m_conv = params.m_conv();
  179. let mut pp = PublicParameters::init(params);
  180. // Params for packing
  181. let gadget_conv = build_gadget(params, 1, m_conv);
  182. let gadget_conv_ntt = to_ntt_alloc(&gadget_conv);
  183. for i in 0..params.n {
  184. let scaled = scalar_multiply_alloc(&sk_reg_ntt, &gadget_conv_ntt);
  185. let mut ag = PolyMatrixNTT::zero(params, params.n, m_conv);
  186. ag.copy_into(&scaled, i, 0);
  187. let w = self.encrypt_matrix_gsw(&ag);
  188. pp.v_packing.push(w);
  189. }
  190. if params.expand_queries {
  191. // Params for expansion
  192. pp.v_expansion_left = self.generate_expansion_params(self.g, params.t_exp_left);
  193. pp.v_expansion_right = self.generate_expansion_params(self.stop_round + 1, params.t_exp_right);
  194. // Params for converison
  195. let g_conv = build_gadget(params, 2, 2 * m_conv);
  196. let sk_reg_ntt = self.sk_reg.ntt();
  197. let sk_reg_squared_ntt = &sk_reg_ntt * &sk_reg_ntt;
  198. pp.conversion = PolyMatrixNTT::zero(params, 2, 2 * m_conv);
  199. for i in 0..2*m_conv {
  200. let sigma;
  201. if i % 2 == 0 {
  202. let val = g_conv.get_poly(0, i)[0];
  203. sigma = &sk_reg_squared_ntt * &single_poly(params, val).ntt();
  204. } else {
  205. let val = g_conv.get_poly(1, i)[0];
  206. sigma = &sk_reg_ntt * &single_poly(params, val).ntt();
  207. }
  208. let ct = self.encrypt_matrix_reg(&sigma);
  209. pp.conversion.copy_into(&ct, 0, i);
  210. }
  211. }
  212. pp
  213. }
  214. pub fn generate_query(&mut self, idx_target: usize) -> Query<'a> {
  215. let params = self.params;
  216. let further_dims = params.db_dim_2;
  217. let idx_dim0= idx_target / (1 << further_dims);
  218. let idx_further = idx_target % (1 << further_dims);
  219. let scale_k = params.modulus / params.pt_modulus;
  220. let bits_per = get_bits_per(params, params.t_gsw);
  221. let mut query = Query { ct: None };
  222. if params.expand_queries {
  223. // pack query into single ciphertext
  224. let mut sigma = PolyMatrixRaw::zero(params, 1, 1);
  225. sigma.data[2*idx_dim0] = scale_k;
  226. for i in 0..further_dims as u64 {
  227. let bit: u64 = ((idx_further as u64) & (1 << i)) >> i;
  228. for j in 0..params.t_gsw {
  229. let val = (1u64 << (bits_per * j)) * bit;
  230. let idx = (i as usize) * params.t_gsw + (j as usize);
  231. sigma.data[2*idx + 1] = val;
  232. }
  233. }
  234. let inv_2_g_first = invert_uint_mod(1 << self.g, params.modulus).unwrap();
  235. let inv_2_g_rest = invert_uint_mod(1 << (self.stop_round+1), params.modulus).unwrap();
  236. for i in 0..params.poly_len/2 {
  237. sigma.data[2*i] = multiply_uint_mod(sigma.data[2*i], inv_2_g_first, params.modulus);
  238. sigma.data[2*i+1] = multiply_uint_mod(sigma.data[2*i+1], inv_2_g_rest, params.modulus);
  239. }
  240. query.ct = Some(from_ntt_alloc(&self.encrypt_matrix_reg(&to_ntt_alloc(&sigma))));
  241. } else {
  242. assert!(false);
  243. }
  244. query
  245. }
  246. pub fn decode_response(&self, data: &[u8]) -> Vec<u8> {
  247. /*
  248. 0. NTT over q2 the secret key
  249. 1. read first row in q2_bit chunks
  250. 2. read rest in q1_bit chunks
  251. 3. NTT over q2 the first row
  252. 4. Multiply the results of (0) and (3)
  253. 5. Divide and round correctly
  254. */
  255. let params = self.params;
  256. let p = params.pt_modulus;
  257. let p_bits = log2_ceil(params.pt_modulus as usize);
  258. let q1 = 4 * params.pt_modulus;
  259. let q1_bits = log2_ceil(q1 as usize);
  260. let q2 = Q2_VALUES[params.q2_bits as usize];
  261. let q2_bits = params.q2_bits as usize;
  262. let q2_params = params_with_moduli(params, &vec![q2]);
  263. // this only needs to be done during keygen
  264. let mut sk_gsw_q2 = PolyMatrixRaw::zero(&q2_params, params.n, 1);
  265. for i in 0..params.poly_len * params.n {
  266. sk_gsw_q2.data[i] = recenter(self.sk_gsw.data[i], params.modulus, q2);
  267. }
  268. let mut sk_gsw_q2_ntt = PolyMatrixNTT::zero(&q2_params, params.n, 1);
  269. to_ntt(&mut sk_gsw_q2_ntt, &sk_gsw_q2);
  270. // this must be done during decoding
  271. let mut first_row = PolyMatrixRaw::zero(&q2_params, 1, params.n);
  272. let mut rest_rows = PolyMatrixRaw::zero(&params, params.n, params.n);
  273. let mut bit_offs = 0;
  274. for i in 0..params.n * params.poly_len {
  275. first_row.data[i] = read_arbitrary_bits(data, bit_offs, q2_bits);
  276. bit_offs += q2_bits;
  277. }
  278. for i in 0..params.n * params.n * params.poly_len {
  279. rest_rows.data[i] = read_arbitrary_bits(data, bit_offs, q1_bits);
  280. bit_offs += q1_bits;
  281. }
  282. let mut first_row_q2 = PolyMatrixNTT::zero(&q2_params, 1, params.n);
  283. to_ntt(&mut first_row_q2, &first_row);
  284. let sk_prod = (&sk_gsw_q2_ntt * &first_row_q2).raw();
  285. let q1_i64 = q1 as i64;
  286. let q2_i64 = q2 as i64;
  287. let p_i128 = p as i128;
  288. let mut result = PolyMatrixRaw::zero(&params, params.n, params.n);
  289. for i in 0..result.rows * result.cols * params.poly_len {
  290. let mut val_first = sk_prod.data[i] as i64;
  291. if val_first >= q2_i64/2 {
  292. val_first -= q2_i64;
  293. }
  294. let mut val_rest = rest_rows.data[i] as i64;
  295. if val_rest >= q1_i64/2 {
  296. val_rest -= q1_i64;
  297. }
  298. let denom = (q2 * (q1 / p)) as i64;
  299. let mut r = val_first * q1_i64;
  300. r += val_rest * q2_i64;
  301. // divide r by q2, rounding
  302. let sign: i64 = if r >= 0 { 1 } else { -1 };
  303. let mut res = ((r + sign*(denom/2)) as i128) / (denom as i128);
  304. res = (res + (denom as i128/p_i128)*(p_i128) + 2*(p_i128)) % (p_i128);
  305. result.data[i] = res as u64;
  306. }
  307. println!("{:?}", result.data);
  308. result.to_vec(p_bits)
  309. }
  310. }