client.rs 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. use crate::{poly::*, params::*, discrete_gaussian::*, gadget::*, arith::*, util::*, number_theory::*};
  2. fn serialize_polymatrix(vec: &mut Vec<u8>, a: &PolyMatrixRaw) {
  3. for i in 0..a.rows * a.cols * a.params.poly_len {
  4. vec.extend_from_slice(&u64::to_ne_bytes(a.data[i]));
  5. }
  6. }
  7. fn serialize_vec_polymatrix(vec: &mut Vec<u8>, a: &Vec<PolyMatrixRaw>) {
  8. for i in 0..a.len() {
  9. serialize_polymatrix(vec, &a[i]);
  10. }
  11. }
  12. pub struct PublicParameters<'a> {
  13. v_packing: Vec<PolyMatrixNTT<'a>>, // Ws
  14. v_expansion_left: Vec<PolyMatrixNTT<'a>>,
  15. v_expansion_right: Vec<PolyMatrixNTT<'a>>,
  16. conversion: PolyMatrixNTT<'a>, // V
  17. }
  18. impl<'a> PublicParameters<'a> {
  19. pub fn init(params: &'a Params) -> Self {
  20. PublicParameters {
  21. v_packing: Vec::new(),
  22. v_expansion_left: Vec::new(),
  23. v_expansion_right: Vec::new(),
  24. conversion: PolyMatrixNTT::zero(params, 2, 2 * params.m_conv())
  25. }
  26. }
  27. pub fn to_raw(&self) -> Vec<Vec<PolyMatrixRaw>> {
  28. vec![
  29. self.v_packing.iter().map(from_ntt_alloc).collect(),
  30. self.v_expansion_left.iter().map(from_ntt_alloc).collect(),
  31. self.v_expansion_right.iter().map(from_ntt_alloc).collect(),
  32. vec![from_ntt_alloc(&self.conversion)]
  33. ]
  34. }
  35. pub fn serialize(&self) -> Vec<u8> {
  36. let mut data = Vec::new();
  37. for v in self.to_raw().iter() {
  38. println!("{} bytes", data.len());
  39. serialize_vec_polymatrix(&mut data, v);
  40. }
  41. println!("{} bytes", data.len());
  42. data
  43. }
  44. }
  45. pub struct Query<'a> {
  46. ct: Option<PolyMatrixRaw<'a>>,
  47. // v_ct: Option<Vec<PolyMatrixRaw<'a>>>,
  48. }
  49. impl<'a> Query<'a> {
  50. pub fn serialize(&self) -> Vec<u8> {
  51. let mut data = Vec::new();
  52. if self.ct.is_some() {
  53. let ct = self.ct.as_ref().unwrap();
  54. serialize_polymatrix(&mut data, &ct);
  55. }
  56. data
  57. }
  58. }
  59. pub struct Client<'a> {
  60. params: &'a Params,
  61. sk_gsw: PolyMatrixRaw<'a>,
  62. sk_reg: PolyMatrixRaw<'a>,
  63. sk_gsw_full: PolyMatrixRaw<'a>,
  64. sk_reg_full: PolyMatrixRaw<'a>,
  65. dg: DiscreteGaussian,
  66. g: usize,
  67. stop_round: usize,
  68. }
  69. fn matrix_with_identity<'a> (p: &PolyMatrixRaw<'a>) -> PolyMatrixRaw<'a> {
  70. assert_eq!(p.cols, 1);
  71. let mut r = PolyMatrixRaw::zero(p.params, p.rows, p.rows + 1);
  72. r.copy_into(p, 0, 0);
  73. r.copy_into(&PolyMatrixRaw::identity(p.params, p.rows, p.rows), 0, 1);
  74. r
  75. }
  76. fn params_with_moduli(params: &Params, moduli: &Vec<u64>) -> Params {
  77. Params::init(
  78. params.poly_len,
  79. moduli,
  80. params.noise_width,
  81. params.n,
  82. params.pt_modulus,
  83. params.q2_bits,
  84. params.t_conv,
  85. params.t_exp_left,
  86. params.t_exp_right,
  87. params.t_gsw,
  88. params.expand_queries,
  89. params.db_dim_1,
  90. params.db_dim_2,
  91. )
  92. }
  93. impl<'a> Client<'a> {
  94. pub fn init(params: &'a Params) -> Self {
  95. let sk_gsw_dims = params.get_sk_gsw();
  96. let sk_reg_dims = params.get_sk_reg();
  97. let sk_gsw = PolyMatrixRaw::zero(params, sk_gsw_dims.0, sk_gsw_dims.1);
  98. let sk_reg = PolyMatrixRaw::zero(params, sk_reg_dims.0, sk_reg_dims.1);
  99. let sk_gsw_full = matrix_with_identity(&sk_gsw);
  100. let sk_reg_full = matrix_with_identity(&sk_reg);
  101. let dg = DiscreteGaussian::init(params);
  102. let further_dims = params.db_dim_2;
  103. let num_expanded = 1usize << params.db_dim_1;
  104. let num_bits_to_gen = params.t_gsw * further_dims + num_expanded;
  105. let g = log2_ceil(num_bits_to_gen);
  106. let stop_round = log2_ceil(params.t_gsw * further_dims);
  107. Self {
  108. params,
  109. sk_gsw,
  110. sk_reg,
  111. sk_gsw_full,
  112. sk_reg_full,
  113. dg,
  114. g,
  115. stop_round,
  116. }
  117. }
  118. fn get_fresh_gsw_public_key(&mut self, m: usize) -> PolyMatrixRaw<'a> {
  119. let params = self.params;
  120. let n = params.n;
  121. let a = PolyMatrixRaw::random(params, 1, m);
  122. let e = PolyMatrixRaw::noise(params, n, m, &mut self.dg);
  123. let a_inv = -&a;
  124. let b_p = &self.sk_gsw.ntt() * &a.ntt();
  125. let b = &e.ntt() + &b_p;
  126. let p = stack(&a_inv, &b.raw());
  127. p
  128. }
  129. fn get_regev_sample(&mut self) -> PolyMatrixNTT<'a> {
  130. let params = self.params;
  131. let a = PolyMatrixRaw::random(params, 1, 1);
  132. let e = PolyMatrixRaw::noise(params, 1, 1, &mut self.dg);
  133. let b_p = &self.sk_reg.ntt() * &a.ntt();
  134. let b = &e.ntt() + &b_p;
  135. let mut p = PolyMatrixNTT::zero(params, 2, 1);
  136. p.copy_into(&(-&a).ntt(), 0, 0);
  137. p.copy_into(&b, 1, 0);
  138. p
  139. }
  140. fn get_fresh_reg_public_key(&mut self, m: usize) -> PolyMatrixNTT<'a> {
  141. let params = self.params;
  142. let mut p = PolyMatrixNTT::zero(params, 2, m);
  143. for i in 0..m {
  144. p.copy_into(&self.get_regev_sample(), 0, i);
  145. }
  146. p
  147. }
  148. fn encrypt_matrix_gsw(&mut self, ag: &PolyMatrixNTT<'a>) -> PolyMatrixNTT<'a> {
  149. let mx = ag.cols;
  150. let p = self.get_fresh_gsw_public_key(mx);
  151. let res = &(p.ntt()) + &(ag.pad_top(1));
  152. res
  153. }
  154. fn encrypt_matrix_reg(&mut self, a: &PolyMatrixNTT<'a>) -> PolyMatrixNTT<'a> {
  155. let m = a.cols;
  156. let p = self.get_fresh_reg_public_key(m);
  157. &p + &a.pad_top(1)
  158. }
  159. fn generate_expansion_params(&mut self, num_exp: usize, m_exp: usize) -> Vec<PolyMatrixNTT<'a>> {
  160. let params = self.params;
  161. let g_exp = build_gadget(params, 1, m_exp);
  162. let g_exp_ntt = g_exp.ntt();
  163. let mut res = Vec::new();
  164. for i in 0..num_exp {
  165. let t = (params.poly_len / (1 << i)) + 1;
  166. let tau_sk_reg = automorph_alloc(&self.sk_reg, t);
  167. let prod = &tau_sk_reg.ntt() * &g_exp_ntt;
  168. let w_exp_i = self.encrypt_matrix_reg(&prod);
  169. res.push(w_exp_i);
  170. }
  171. res
  172. }
  173. pub fn generate_keys(&mut self) -> PublicParameters {
  174. let params = self.params;
  175. self.dg.sample_matrix(&mut self.sk_gsw);
  176. self.dg.sample_matrix(&mut self.sk_reg);
  177. self.sk_gsw_full = matrix_with_identity(&self.sk_gsw);
  178. self.sk_reg_full = matrix_with_identity(&self.sk_reg);
  179. let sk_reg_ntt = to_ntt_alloc(&self.sk_reg);
  180. let m_conv = params.m_conv();
  181. let mut pp = PublicParameters::init(params);
  182. // Params for packing
  183. let gadget_conv = build_gadget(params, 1, m_conv);
  184. let gadget_conv_ntt = to_ntt_alloc(&gadget_conv);
  185. for i in 0..params.n {
  186. let scaled = scalar_multiply_alloc(&sk_reg_ntt, &gadget_conv_ntt);
  187. let mut ag = PolyMatrixNTT::zero(params, params.n, m_conv);
  188. ag.copy_into(&scaled, i, 0);
  189. let w = self.encrypt_matrix_gsw(&ag);
  190. pp.v_packing.push(w);
  191. }
  192. if params.expand_queries {
  193. // Params for expansion
  194. pp.v_expansion_left = self.generate_expansion_params(self.g, params.t_exp_left);
  195. println!("dims exp left {} x {}", pp.v_expansion_left[0].rows, pp.v_expansion_left[0].cols);
  196. pp.v_expansion_right = self.generate_expansion_params(self.stop_round + 1, params.t_exp_right);
  197. // Params for converison
  198. let g_conv = build_gadget(params, 2, 2 * m_conv);
  199. let sk_reg_squared_ntt = &self.sk_reg.ntt() * &self.sk_reg.ntt();
  200. pp.conversion = PolyMatrixNTT::zero(params, 2, 2 * m_conv);
  201. for i in 0..2*m_conv {
  202. if i % 2 == 0 {
  203. let val = g_conv.get_poly(0, i)[0];
  204. let sigma = &sk_reg_squared_ntt * &single_poly(params, val).ntt();
  205. let ct = self.encrypt_matrix_reg(&sigma);
  206. pp.conversion.copy_into(&ct, 0, i);
  207. }
  208. }
  209. }
  210. pp
  211. }
  212. pub fn generate_query(&mut self, idx_target: usize) -> Query<'a> {
  213. let params = self.params;
  214. let further_dims = params.db_dim_2;
  215. let idx_dim0= idx_target / (1 << further_dims);
  216. let idx_further = idx_target % (1 << further_dims);
  217. let scale_k = params.modulus / params.pt_modulus;
  218. let bits_per = get_bits_per(params, params.t_gsw);
  219. let mut query = Query { ct: None };
  220. if params.expand_queries {
  221. // pack query into single ciphertext
  222. let mut sigma = PolyMatrixRaw::zero(params, 1, 1);
  223. sigma.data[2*idx_dim0] = scale_k;
  224. for i in 0..further_dims as u64 {
  225. let bit: u64 = ((idx_further as u64) & (1 << i)) >> i;
  226. for j in 0..params.t_gsw {
  227. let val = (1u64 << (bits_per * j)) * bit;
  228. let idx = (i as usize) * params.t_gsw + (j as usize);
  229. sigma.data[2*idx + 1] = val;
  230. }
  231. }
  232. let inv_2_g_first = invert_uint_mod(1 << self.g, params.modulus).unwrap();
  233. let inv_2_g_rest = invert_uint_mod(1 << (self.stop_round+1), params.modulus).unwrap();
  234. for i in 0..params.poly_len/2 {
  235. sigma.data[2*i] = multiply_uint_mod(sigma.data[2*i], inv_2_g_first, params.modulus);
  236. sigma.data[2*i+1] = multiply_uint_mod(sigma.data[2*i+1], inv_2_g_rest, params.modulus);
  237. }
  238. query.ct = Some(from_ntt_alloc(&self.encrypt_matrix_reg(&to_ntt_alloc(&sigma))));
  239. } else {
  240. assert!(false);
  241. }
  242. query
  243. }
  244. pub fn decode_response(&self, data: &[u8]) -> Vec<u8> {
  245. /*
  246. 0. NTT over q2 the secret key
  247. 1. read first row in q2_bit chunks
  248. 2. read rest in q1_bit chunks
  249. 3. NTT over q2 the first row
  250. 4. Multiply the results of (0) and (3)
  251. 5. Divide and round correctly
  252. */
  253. let params = self.params;
  254. let p = params.pt_modulus;
  255. let p_bits = log2_ceil(params.pt_modulus as usize);
  256. let q1 = 4 * params.pt_modulus;
  257. let q1_bits = log2_ceil(q1 as usize);
  258. let q2 = Q2_VALUES[params.q2_bits as usize];
  259. let q2_bits = params.q2_bits as usize;
  260. let q2_params = params_with_moduli(params, &vec![q2]);
  261. // this only needs to be done during keygen
  262. let mut sk_gsw_q2 = PolyMatrixRaw::zero(&q2_params, params.n, 1);
  263. for i in 0..params.poly_len * params.n {
  264. sk_gsw_q2.data[i] = recenter(self.sk_gsw.data[i], params.modulus, q2);
  265. }
  266. let mut sk_gsw_q2_ntt = PolyMatrixNTT::zero(&q2_params, params.n, 1);
  267. to_ntt(&mut sk_gsw_q2_ntt, &sk_gsw_q2);
  268. // this must be done during decoding
  269. let mut first_row = PolyMatrixRaw::zero(&q2_params, 1, params.n);
  270. let mut rest_rows = PolyMatrixRaw::zero(&params, params.n, params.n);
  271. let mut bit_offs = 0;
  272. for i in 0..params.n * params.poly_len {
  273. first_row.data[i] = read_arbitrary_bits(data, bit_offs, q2_bits);
  274. bit_offs += q2_bits;
  275. }
  276. for i in 0..params.n * params.n * params.poly_len {
  277. rest_rows.data[i] = read_arbitrary_bits(data, bit_offs, q1_bits);
  278. bit_offs += q1_bits;
  279. }
  280. let mut first_row_q2 = PolyMatrixNTT::zero(&q2_params, 1, params.n);
  281. to_ntt(&mut first_row_q2, &first_row);
  282. let sk_prod = (&sk_gsw_q2_ntt * &first_row_q2).raw();
  283. let q1_i64 = q1 as i64;
  284. let q2_i64 = q2 as i64;
  285. let p_i128 = p as i128;
  286. let mut result = PolyMatrixRaw::zero(&params, params.n, params.n);
  287. for i in 0..result.rows * result.cols * params.poly_len {
  288. let mut val_first = sk_prod.data[i] as i64;
  289. if val_first >= q2_i64/2 {
  290. val_first -= q2_i64;
  291. }
  292. let mut val_rest = rest_rows.data[i] as i64;
  293. if val_rest >= q1_i64/2 {
  294. val_rest -= q1_i64;
  295. }
  296. let denom = (q2 * (q1 / p)) as i64;
  297. let mut r = val_first * q1_i64;
  298. r += val_rest * q2_i64;
  299. // divide r by q2, rounding
  300. let sign: i64 = if r >= 0 { 1 } else { -1 };
  301. let mut res = ((r + sign*(denom/2)) as i128) / (denom as i128);
  302. res = (res + (denom as i128/p_i128)*(p_i128) + 2*(p_i128)) % (p_i128);
  303. result.data[i] = res as u64;
  304. // println!("{:?}, {:?} -> {:?}", val_first, val_rest, res as u64);
  305. }
  306. println!("{:?}", result.data);
  307. result.to_vec(p_bits)
  308. }
  309. }