lib.rs 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. // We really want points to be capital letters and scalars to be
  2. // lowercase letters
  3. #![allow(non_snake_case)]
  4. mod aligned_memory_mt;
  5. pub mod client;
  6. mod ot;
  7. mod params;
  8. pub mod server;
  9. mod spiral_mt;
  10. use aes::cipher::{BlockEncrypt, KeyInit};
  11. use aes::Aes128Enc;
  12. use aes::Block;
  13. use std::env;
  14. use std::mem;
  15. use std::time::Instant;
  16. use serde::{Deserialize, Serialize};
  17. use std::os::raw::c_uchar;
  18. use rayon::scope;
  19. use rayon::ThreadPoolBuilder;
  20. use serde_with::serde_as;
  21. use spiral_rs::client::*;
  22. use spiral_rs::params::*;
  23. use spiral_rs::server::*;
  24. use crate::ot::{otkey_init, xor16};
  25. use crate::spiral_mt::*;
  26. pub type DbEntry = u64;
  27. // Encrypt a database of 2^r elements, where each element is a DbEntry,
  28. // using the 2*r provided keys (r pairs of keys). Also rotate the
  29. // database by rot positions, and add the provided blinding factor to
  30. // each element before encryption (the same blinding factor for all
  31. // elements). Each element is encrypted in AES counter mode, with the
  32. // counter being the element number and the key computed as the XOR of r
  33. // of the provided keys, one from each pair, according to the bits of
  34. // the element number. Outputs a byte vector containing the encrypted
  35. // database.
  36. fn db_encrypt(
  37. db: &[DbEntry],
  38. keys: &[[u8; 16]],
  39. r: usize,
  40. rot: usize,
  41. blind: DbEntry,
  42. num_threads: usize,
  43. ) -> Vec<u8> {
  44. let num_records: usize = 1 << r;
  45. let num_record_mask: usize = num_records - 1;
  46. let mut ret = Vec::<u8>::with_capacity(num_records * mem::size_of::<DbEntry>());
  47. ret.resize(num_records * mem::size_of::<DbEntry>(), 0);
  48. scope(|s| {
  49. let mut record_thread_start = 0usize;
  50. let records_per_thread_base = num_records / num_threads;
  51. let records_per_thread_extra = num_records % num_threads;
  52. let mut retslice = ret.as_mut_slice();
  53. for thr in 0..num_threads {
  54. let records_this_thread =
  55. records_per_thread_base + if thr < records_per_thread_extra { 1 } else { 0 };
  56. let record_thread_end = record_thread_start + records_this_thread;
  57. let (thread_ret, retslice_) =
  58. retslice.split_at_mut(records_this_thread * mem::size_of::<DbEntry>());
  59. retslice = retslice_;
  60. s.spawn(move |_| {
  61. let mut offset = 0usize;
  62. for j in record_thread_start..record_thread_end {
  63. let rec = (j + rot) & num_record_mask;
  64. let mut key = Block::from([0u8; 16]);
  65. for i in 0..r {
  66. let bit = if (j & (1 << i)) == 0 { 0 } else { 1 };
  67. xor16(&mut key, &keys[2 * i + bit]);
  68. }
  69. let aes = Aes128Enc::new(&key);
  70. let mut block = Block::from([0u8; 16]);
  71. block[0..8].copy_from_slice(&j.to_le_bytes());
  72. aes.encrypt_block(&mut block);
  73. let aeskeystream = DbEntry::from_le_bytes(block[0..8].try_into().unwrap());
  74. let encelem = (db[rec].wrapping_add(blind)) ^ aeskeystream;
  75. thread_ret[offset..offset + mem::size_of::<DbEntry>()]
  76. .copy_from_slice(&encelem.to_le_bytes());
  77. offset += mem::size_of::<DbEntry>();
  78. }
  79. });
  80. record_thread_start = record_thread_end;
  81. }
  82. });
  83. ret
  84. }
  85. // Having received the key for element q with r parallel 1-out-of-2 OTs,
  86. // and having received the encrypted element with (non-symmetric) PIR,
  87. // use the key to decrypt the element.
  88. fn dbentry_decrypt(key: &Block, q: usize, encelement: DbEntry) -> DbEntry {
  89. let aes = Aes128Enc::new(key);
  90. let mut block = Block::from([0u8; 16]);
  91. block[0..8].copy_from_slice(&q.to_le_bytes());
  92. aes.encrypt_block(&mut block);
  93. let aeskeystream = DbEntry::from_le_bytes(block[0..8].try_into().unwrap());
  94. encelement ^ aeskeystream
  95. }
  96. // Things that are only done once total, not once for each SPIR
  97. pub fn init(num_threads: usize) {
  98. otkey_init();
  99. // Initialize the thread pool
  100. ThreadPoolBuilder::new()
  101. .num_threads(num_threads)
  102. .build_global()
  103. .unwrap();
  104. }
  105. pub fn print_params_summary(params: &Params) {
  106. let db_elem_size = params.item_size();
  107. let total_size = params.num_items() * db_elem_size;
  108. println!(
  109. "Using a {} x {} byte database ({} bytes total)",
  110. params.num_items(),
  111. db_elem_size,
  112. total_size
  113. );
  114. }
  115. // The message format for a single preprocess query
  116. #[derive(Serialize, Deserialize)]
  117. struct PreProcSingleMsg {
  118. ot_query: Vec<[u8; 32]>,
  119. spc_query: Vec<u8>,
  120. }
  121. // The message format for a single preprocess response
  122. #[serde_as]
  123. #[derive(Serialize, Deserialize)]
  124. struct PreProcSingleRespMsg {
  125. #[serde_as(as = "Vec<[_; 64]>")]
  126. ot_resp: Vec<[u8; 64]>,
  127. }
  128. #[no_mangle]
  129. pub extern "C" fn spir_init(num_threads: u32) {
  130. init(num_threads as usize);
  131. }
  132. #[repr(C)]
  133. pub struct VecData {
  134. data: *const c_uchar,
  135. len: usize,
  136. cap: usize,
  137. }
  138. #[repr(C)]
  139. pub struct VecMutData {
  140. data: *mut c_uchar,
  141. len: usize,
  142. cap: usize,
  143. }
  144. pub fn to_vecdata(v: Vec<u8>) -> VecData {
  145. let vecdata = VecData {
  146. data: v.as_ptr(),
  147. len: v.len(),
  148. cap: v.capacity(),
  149. };
  150. std::mem::forget(v);
  151. vecdata
  152. }
  153. #[no_mangle]
  154. pub extern "C" fn spir_vecdata_free(vecdata: VecMutData) {
  155. unsafe { Vec::from_raw_parts(vecdata.data, vecdata.len, vecdata.cap) };
  156. }