lib.rs 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168
  1. mod aligned_memory_mt;
  2. pub mod client;
  3. mod ot;
  4. mod params;
  5. pub mod server;
  6. mod spiral_mt;
  7. use aes::cipher::{BlockEncrypt, KeyInit};
  8. use aes::Aes128Enc;
  9. use aes::Block;
  10. use std::mem;
  11. use serde::{Deserialize, Serialize};
  12. use std::os::raw::c_uchar;
  13. use rayon::scope;
  14. use rayon::ThreadPoolBuilder;
  15. use serde_with::serde_as;
  16. use spiral_rs::params::*;
  17. use crate::ot::{otkey_init, xor16};
  18. use crate::spiral_mt::*;
  19. pub type DbEntry = u64;
  20. // Encrypt a database of 2^r elements, where each element is a DbEntry,
  21. // using the 2*r provided keys (r pairs of keys). Also rotate the
  22. // database by rot positions, and add the provided blinding factor to
  23. // each element before encryption (the same blinding factor for all
  24. // elements). Each element is encrypted in AES counter mode, with the
  25. // counter being the element number and the key computed as the XOR of r
  26. // of the provided keys, one from each pair, according to the bits of
  27. // the element number. Outputs a byte vector containing the encrypted
  28. // database.
  29. fn db_encrypt(
  30. db: &[DbEntry],
  31. keys: &[[u8; 16]],
  32. r: usize,
  33. rot: usize,
  34. blind: DbEntry,
  35. num_threads: usize,
  36. ) -> Vec<u8> {
  37. let num_records: usize = 1 << r;
  38. let num_record_mask: usize = num_records - 1;
  39. let mut ret = vec![0; num_records * mem::size_of::<DbEntry>()];
  40. scope(|s| {
  41. let mut record_thread_start = 0usize;
  42. let records_per_thread_base = num_records / num_threads;
  43. let records_per_thread_extra = num_records % num_threads;
  44. let mut retslice = ret.as_mut_slice();
  45. for thr in 0..num_threads {
  46. let records_this_thread =
  47. records_per_thread_base + if thr < records_per_thread_extra { 1 } else { 0 };
  48. let record_thread_end = record_thread_start + records_this_thread;
  49. let (thread_ret, retslice_) =
  50. retslice.split_at_mut(records_this_thread * mem::size_of::<DbEntry>());
  51. retslice = retslice_;
  52. s.spawn(move |_| {
  53. let mut offset = 0usize;
  54. for j in record_thread_start..record_thread_end {
  55. let rec = (j + rot) & num_record_mask;
  56. let mut key = Block::from([0u8; 16]);
  57. for i in 0..r {
  58. let bit = if (j & (1 << i)) == 0 { 0 } else { 1 };
  59. xor16(&mut key, &keys[2 * i + bit]);
  60. }
  61. let aes = Aes128Enc::new(&key);
  62. let mut block = Block::from([0u8; 16]);
  63. block[0..8].copy_from_slice(&j.to_le_bytes());
  64. aes.encrypt_block(&mut block);
  65. let aeskeystream = DbEntry::from_le_bytes(block[0..8].try_into().unwrap());
  66. let encelem = (db[rec].wrapping_add(blind)) ^ aeskeystream;
  67. thread_ret[offset..offset + mem::size_of::<DbEntry>()]
  68. .copy_from_slice(&encelem.to_le_bytes());
  69. offset += mem::size_of::<DbEntry>();
  70. }
  71. });
  72. record_thread_start = record_thread_end;
  73. }
  74. });
  75. ret
  76. }
  77. // Having received the key for element q with r parallel 1-out-of-2 OTs,
  78. // and having received the encrypted element with (non-symmetric) PIR,
  79. // use the key to decrypt the element.
  80. fn dbentry_decrypt(key: &Block, q: usize, encelement: DbEntry) -> DbEntry {
  81. let aes = Aes128Enc::new(key);
  82. let mut block = Block::from([0u8; 16]);
  83. block[0..8].copy_from_slice(&q.to_le_bytes());
  84. aes.encrypt_block(&mut block);
  85. let aeskeystream = DbEntry::from_le_bytes(block[0..8].try_into().unwrap());
  86. encelement ^ aeskeystream
  87. }
  88. // Things that are only done once total, not once for each SPIR
  89. pub fn init(num_threads: usize) {
  90. otkey_init();
  91. // Initialize the thread pool
  92. ThreadPoolBuilder::new()
  93. .num_threads(num_threads)
  94. .build_global()
  95. .unwrap();
  96. }
  97. pub fn print_params_summary(params: &Params) {
  98. let db_elem_size = params.item_size();
  99. let total_size = params.num_items() * db_elem_size;
  100. println!(
  101. "Using a {} x {} byte database ({} bytes total)",
  102. params.num_items(),
  103. db_elem_size,
  104. total_size
  105. );
  106. }
  107. // The message format for a single preprocess query
  108. #[derive(Serialize, Deserialize)]
  109. struct PreProcSingleMsg {
  110. ot_query: Vec<[u8; 32]>,
  111. spc_query: Vec<u8>,
  112. }
  113. // The message format for a single preprocess response
  114. #[serde_as]
  115. #[derive(Serialize, Deserialize)]
  116. struct PreProcSingleRespMsg {
  117. #[serde_as(as = "Vec<[_; 64]>")]
  118. ot_resp: Vec<[u8; 64]>,
  119. }
  120. #[no_mangle]
  121. pub extern "C" fn spir_init(num_threads: u32) {
  122. init(num_threads as usize);
  123. }
  124. #[repr(C)]
  125. pub struct VecData {
  126. data: *const c_uchar,
  127. len: usize,
  128. cap: usize,
  129. }
  130. #[repr(C)]
  131. pub struct VecMutData {
  132. data: *mut c_uchar,
  133. len: usize,
  134. cap: usize,
  135. }
  136. pub fn to_vecdata(v: Vec<u8>) -> VecData {
  137. let vecdata = VecData {
  138. data: v.as_ptr(),
  139. len: v.len(),
  140. cap: v.capacity(),
  141. };
  142. std::mem::forget(v);
  143. vecdata
  144. }
  145. #[no_mangle]
  146. pub extern "C" fn spir_vecdata_free(vecdata: VecMutData) {
  147. unsafe { Vec::from_raw_parts(vecdata.data, vecdata.len, vecdata.cap) };
  148. }