#include #include "Enclave_t.h" #include "config.hpp" #include "utils.hpp" #include "sort.hpp" #include "route.hpp" #define PROFILE_ROUTING struct MsgBuffer { pthread_mutex_t mutex; uint8_t *buf; // The number of messages (not bytes) in, or on their way into, the // buffer uint32_t reserved; // The number of messages definitely in the buffer uint32_t inserted; MsgBuffer() : buf(NULL), reserved(0), inserted(0) { pthread_mutex_init(&mutex, NULL); } ~MsgBuffer() { delete[] buf; } // The number passed is messages, not bytes void alloc(uint32_t msgs) { delete[] buf; buf = NULL; reserved = 0; inserted = 0; // This may throw bad_alloc, but we'll catch it higher up buf = new uint8_t[size_t(msgs) * g_teems_config.msg_size]; } // Reset the contents of the buffer void reset() { memset(buf, 0, inserted * g_teems_config.msg_size); reserved = 0; inserted = 0; } // You can't copy a MsgBuffer MsgBuffer(const MsgBuffer&) = delete; MsgBuffer &operator=(const MsgBuffer&) = delete; }; enum RouteStep { ROUTE_NOT_STARTED, ROUTE_ROUND_1, ROUTE_ROUND_2 }; // The round1 MsgBuffer stores messages we ingest while waiting for // round 1 to start, which will be sorted and sent out in round 1. The // round2 MsgBuffer stores messages we receive in round 1, which will be // padded, sorted, and sent out in round 2. static struct RouteState { MsgBuffer round1; MsgBuffer round2; RouteStep step; uint32_t tot_msg_per_ing; uint32_t max_msg_to_each_str; uint32_t max_round2_msgs; } route_state; // Computes ceil(x/y) where x and y are integers, x>=0, y>0. #define CEILDIV(x,y) (((x)+(y)-1)/(y)) // Call this near the end of ecall_config_load, but before // comms_init_nodestate. Returns true on success, false on failure. bool route_init() { // Compute the maximum number of messages we could receive by direct // ingestion // Each ingestion node will have at most // ceil(user_count/num_ingestion_nodes) users, and each user will // send at most m_priv_out messages. uint32_t users_per_ing = CEILDIV(g_teems_config.user_count, g_teems_config.num_ingestion_nodes); uint32_t tot_msg_per_ing = users_per_ing * g_teems_config.m_priv_out; // Compute the maximum number of messages we could receive in round 1 // Each ingestion node will send us an our_weight/tot_weight // fraction of the messages they hold uint32_t max_msg_from_each_ing = CEILDIV(tot_msg_per_ing, g_teems_config.tot_weight) * g_teems_config.my_weight; // And the maximum number we can receive in total is that times the // number of ingestion nodes uint32_t max_round1_msgs = max_msg_from_each_ing * g_teems_config.num_ingestion_nodes; // Compute the maximum number of messages we could send in round 2 // Each storage node has at most this many users uint32_t users_per_str = CEILDIV(g_teems_config.user_count, g_teems_config.num_storage_nodes); // And so can receive at most this many messages uint32_t tot_msg_per_str = users_per_str * g_teems_config.m_priv_in; // Which will be at most this many from us uint32_t max_msg_to_each_str = CEILDIV(tot_msg_per_str, g_teems_config.tot_weight) * g_teems_config.my_weight; // But we can't send more messages to each storage server than we // could receive in total if (max_msg_to_each_str > max_round1_msgs) { max_msg_to_each_str = max_round1_msgs; } // And the max total number of outgoing messages in round 2 is then uint32_t max_round2_msgs = max_msg_to_each_str * g_teems_config.num_storage_nodes; // In case we have a weird configuration where users can send more // messages per epoch than they can receive, ensure the round 2 // buffer is large enough to hold the incoming messages as well if (max_round2_msgs < max_round1_msgs) { max_round2_msgs = max_round1_msgs; } /* printf("round1_msgs = %u, round2_msgs = %u\n", max_round1_msgs, max_round2_msgs); */ // Create the route state try { route_state.round1.alloc(tot_msg_per_ing); route_state.round2.alloc(max_round2_msgs); } catch (std::bad_alloc&) { printf("Memory allocation failed in route_init\n"); return false; } route_state.step = ROUTE_NOT_STARTED; route_state.tot_msg_per_ing = tot_msg_per_ing; route_state.max_msg_to_each_str = max_msg_to_each_str; route_state.max_round2_msgs = max_round2_msgs; threadid_t nthreads = g_teems_config.nthreads; #ifdef PROFILE_ROUTING unsigned long start = printf_with_rtclock("begin precompute evalplans (%u,%hu) (%u,%hu)\n", tot_msg_per_ing, nthreads, max_round2_msgs, nthreads); #endif sort_precompute_evalplan(tot_msg_per_ing, nthreads); sort_precompute_evalplan(max_round2_msgs, nthreads); #ifdef PROFILE_ROUTING printf_with_rtclock_diff(start, "end precompute evalplans\n"); #endif return true; } // Precompute the WaksmanNetworks needed for the sorts. If you pass -1, // it will return the number of different sizes it needs. If you pass // [0,sizes-1], it will compute one WaksmanNetwork with that size index // and return the number of available WaksmanNetworks of that size. size_t ecall_precompute_sort(int sizeidx) { size_t ret = 0; switch(sizeidx) { case 0: #ifdef PROFILE_ROUTING {unsigned long start = printf_with_rtclock("begin precompute WaksmanNetwork (%u)\n", route_state.tot_msg_per_ing); #endif ret = sort_precompute(route_state.tot_msg_per_ing); #ifdef PROFILE_ROUTING printf_with_rtclock_diff(start, "end precompute Waksman Network (%u)\n", route_state.tot_msg_per_ing);} #endif break; case 1: #ifdef PROFILE_ROUTING {unsigned long start = printf_with_rtclock("begin precompute WaksmanNetwork (%u)\n", route_state.max_round2_msgs); #endif ret = sort_precompute(route_state.max_round2_msgs); #ifdef PROFILE_ROUTING printf_with_rtclock_diff(start, "end precompute Waksman Network (%u)\n", route_state.max_round2_msgs);} #endif break; default: ret = 2; break; } return ret; } // Directly ingest a buffer of num_msgs messages into the round1 buffer. // Return true on success, false on failure. bool ecall_ingest_raw(uint8_t *msgs, uint32_t num_msgs) { uint16_t msg_size = g_teems_config.msg_size; MsgBuffer &round1 = route_state.round1; pthread_mutex_lock(&round1.mutex); uint32_t start = round1.reserved; if (start + num_msgs > route_state.tot_msg_per_ing) { pthread_mutex_unlock(&round1.mutex); printf("Max %u messages exceeded\n", route_state.tot_msg_per_ing); return false; } round1.reserved += num_msgs; pthread_mutex_unlock(&round1.mutex); memmove(round1.buf + start * msg_size, msgs, num_msgs * msg_size); pthread_mutex_lock(&round1.mutex); round1.inserted += num_msgs; pthread_mutex_unlock(&round1.mutex); return true; } // Send the round 1 messages static void send_round1_msgs(const uint8_t *msgs, const uint64_t *indices, uint32_t N) { uint16_t msg_size = g_teems_config.msg_size; uint16_t tot_weight = g_teems_config.tot_weight; /* for (uint32_t i=0;i