|
@@ -2,7 +2,7 @@ use crate::{BridgeInfo, BridgeInfoType};
|
|
|
use lox_library::proto::trust_promotion::UNTRUSTED_INTERVAL;
|
|
|
use nalgebra::{Cholesky, DMatrix, DVector};
|
|
|
use rand::Rng;
|
|
|
-use statrs::distribution::{Continuous, MultivariateNormal, Normal};
|
|
|
+use statrs::distribution::{ContinuousCDF, MultivariateNormal, Normal};
|
|
|
use std::{
|
|
|
cmp::{max, min},
|
|
|
collections::{BTreeMap, HashSet},
|
|
@@ -333,52 +333,29 @@ impl Analyzer for NormalAnalyzer {
|
|
|
let alpha = 1.0 - confidence;
|
|
|
|
|
|
let (mean_vec, sd_vec, cov_mat) = Self::stats(&[bridge_ips, negative_reports]);
|
|
|
+ let bridge_ips_mean = mean_vec[0];
|
|
|
let negative_reports_mean = mean_vec[1];
|
|
|
let bridge_ips_sd = sd_vec[0];
|
|
|
let negative_reports_sd = sd_vec[1];
|
|
|
|
|
|
- // Artificially create data for alternative hypothesis
|
|
|
- let num_days = bridge_ips.len() as usize;
|
|
|
- let mut bridge_ips_blocked = vec![0; num_days];
|
|
|
- let mut negative_reports_blocked = vec![0; num_days];
|
|
|
- let bridge_ips_deviation = (2.0 * bridge_ips_sd).round() as u32;
|
|
|
- for i in 0..num_days {
|
|
|
- // Suppose bridge stats will go down by 2 SDs
|
|
|
- bridge_ips_blocked[i] = if bridge_ips_deviation > bridge_ips[i] {
|
|
|
- 0
|
|
|
- } else {
|
|
|
- bridge_ips[i] - bridge_ips_deviation
|
|
|
- };
|
|
|
- // Suppose negative reports will go up by 2 SDs
|
|
|
- negative_reports_blocked[i] =
|
|
|
- negative_reports[i] + (2.0 * negative_reports_sd).round() as u32;
|
|
|
- }
|
|
|
- let (mean_vec_blocked, _sd_vec_blocked, cov_mat_blocked) =
|
|
|
- Self::stats(&[&bridge_ips_blocked, &negative_reports_blocked]);
|
|
|
-
|
|
|
- let mvn = MultivariateNormal::new(mean_vec, cov_mat).unwrap();
|
|
|
- let pdf = mvn.pdf(&DVector::from_vec(vec![
|
|
|
- bridge_ips_today as f64,
|
|
|
- negative_reports_today as f64,
|
|
|
- ]));
|
|
|
-
|
|
|
- let mvn_blocked = MultivariateNormal::new(mean_vec_blocked, cov_mat_blocked).unwrap();
|
|
|
- let pdf_blocked = mvn_blocked.pdf(&DVector::from_vec(vec![
|
|
|
- bridge_ips_today as f64,
|
|
|
- negative_reports_today as f64,
|
|
|
- ]));
|
|
|
-
|
|
|
- // Also model negative reports in isolation
|
|
|
+ /*
|
|
|
+ let mvn = MultivariateNormal::new(mean_vec, cov_mat).unwrap();
|
|
|
+ let pdf = mvn.pdf(&DVector::from_vec(vec![
|
|
|
+ bridge_ips_today as f64,
|
|
|
+ negative_reports_today as f64,
|
|
|
+ ]));
|
|
|
+ */
|
|
|
+
|
|
|
+ // Model each variable in isolation. We use 1 - the CDF for
|
|
|
+ // negative reports because more negative reports is worse.
|
|
|
+ let bip_normal = Normal::new(bridge_ips_mean, bridge_ips_sd).unwrap();
|
|
|
+ let bip_cdf = bip_normal.cdf(bridge_ips_today as f64);
|
|
|
let nr_normal = Normal::new(negative_reports_mean, negative_reports_sd).unwrap();
|
|
|
- let nr_pdf = nr_normal.pdf(negative_reports_today as f64);
|
|
|
- let nr_normal_blocked = Normal::new(
|
|
|
- negative_reports_mean + 2.0 * negative_reports_sd,
|
|
|
- negative_reports_sd,
|
|
|
- )
|
|
|
- .unwrap();
|
|
|
- let nr_pdf_blocked = nr_normal_blocked.pdf(negative_reports_today as f64);
|
|
|
-
|
|
|
- (pdf / pdf_blocked).ln() < alpha || (nr_pdf / nr_pdf_blocked).ln() < alpha
|
|
|
+ let nr_cdf = 1.0 - nr_normal.cdf(negative_reports_today as f64);
|
|
|
+
|
|
|
+ // For now, just look at each variable in isolation
|
|
|
+ // TODO: How do we do a multivariate normal CDF?
|
|
|
+ bip_cdf < alpha || nr_cdf < alpha
|
|
|
}
|
|
|
|
|
|
/// Evaluate invite-only bridge with lv3+ users submitting positive reports
|
|
@@ -400,67 +377,33 @@ impl Analyzer for NormalAnalyzer {
|
|
|
|
|
|
let (mean_vec, sd_vec, cov_mat) =
|
|
|
Self::stats(&[bridge_ips, negative_reports, positive_reports]);
|
|
|
+ let bridge_ips_mean = mean_vec[0];
|
|
|
let negative_reports_mean = mean_vec[1];
|
|
|
+ let positive_reports_mean = mean_vec[2];
|
|
|
let bridge_ips_sd = sd_vec[0];
|
|
|
let negative_reports_sd = sd_vec[1];
|
|
|
let positive_reports_sd = sd_vec[2];
|
|
|
|
|
|
- // Artificially create data for alternative hypothesis
|
|
|
- let num_days = bridge_ips.len() as usize;
|
|
|
- let mut bridge_ips_blocked = vec![0; num_days];
|
|
|
- let mut negative_reports_blocked = vec![0; num_days];
|
|
|
- let mut positive_reports_blocked = vec![0; num_days];
|
|
|
- let bridge_ips_deviation = (2.0 * bridge_ips_sd).round() as u32;
|
|
|
- let positive_reports_deviation = (2.0 * positive_reports_sd).round() as u32;
|
|
|
- for i in 0..num_days {
|
|
|
- // Suppose positive reports will go down by 2 SDs
|
|
|
- positive_reports_blocked[i] = if positive_reports_deviation > positive_reports[i] {
|
|
|
- 0
|
|
|
- } else {
|
|
|
- positive_reports[i] - positive_reports_deviation
|
|
|
- };
|
|
|
- // Suppose bridge stats will go down by 2 SDs
|
|
|
- bridge_ips_blocked[i] = if bridge_ips_deviation > bridge_ips[i] {
|
|
|
- 0
|
|
|
- } else {
|
|
|
- bridge_ips[i] - bridge_ips_deviation
|
|
|
- };
|
|
|
- // Suppose each user who would have submitted a positive report but
|
|
|
- // didn't submits a negative report instead.
|
|
|
- negative_reports_blocked[i] =
|
|
|
- negative_reports[i] + positive_reports[i] - positive_reports_blocked[i];
|
|
|
- }
|
|
|
- let (mean_vec_blocked, _sd_vec_blocked, cov_mat_blocked) = Self::stats(&[
|
|
|
- &bridge_ips_blocked,
|
|
|
- &negative_reports_blocked,
|
|
|
- &positive_reports_blocked,
|
|
|
- ]);
|
|
|
-
|
|
|
- let mvn = MultivariateNormal::new(mean_vec, cov_mat).unwrap();
|
|
|
- let pdf = mvn.pdf(&DVector::from_vec(vec![
|
|
|
- bridge_ips_today as f64,
|
|
|
- negative_reports_today as f64,
|
|
|
- positive_reports_today as f64,
|
|
|
- ]));
|
|
|
-
|
|
|
- let mvn_blocked = MultivariateNormal::new(mean_vec_blocked, cov_mat_blocked).unwrap();
|
|
|
- let pdf_blocked = mvn_blocked.pdf(&DVector::from_vec(vec![
|
|
|
- bridge_ips_today as f64,
|
|
|
- negative_reports_today as f64,
|
|
|
- positive_reports_today as f64,
|
|
|
- ]));
|
|
|
-
|
|
|
- // Also model negative reports in isolation
|
|
|
+ /*
|
|
|
+ let mvn = MultivariateNormal::new(mean_vec, cov_mat).unwrap();
|
|
|
+ let pdf = mvn.pdf(&DVector::from_vec(vec![
|
|
|
+ bridge_ips_today as f64,
|
|
|
+ negative_reports_today as f64,
|
|
|
+ positive_reports_today as f64,
|
|
|
+ ]));
|
|
|
+ */
|
|
|
+
|
|
|
+ // Model each variable in isolation. We use 1 - the CDF for
|
|
|
+ // negative reports because more negative reports is worse.
|
|
|
+ let bip_normal = Normal::new(bridge_ips_mean, bridge_ips_sd).unwrap();
|
|
|
+ let bip_cdf = bip_normal.cdf(bridge_ips_today as f64);
|
|
|
let nr_normal = Normal::new(negative_reports_mean, negative_reports_sd).unwrap();
|
|
|
- let nr_pdf = nr_normal.pdf(negative_reports_today as f64);
|
|
|
- // Note we do NOT make this a function of positive signals
|
|
|
- let nr_normal_blocked = Normal::new(
|
|
|
- negative_reports_mean + 2.0 * negative_reports_sd,
|
|
|
- negative_reports_sd,
|
|
|
- )
|
|
|
- .unwrap();
|
|
|
- let nr_pdf_blocked = nr_normal_blocked.pdf(negative_reports_today as f64);
|
|
|
-
|
|
|
- (pdf / pdf_blocked).ln() < alpha || (nr_pdf / nr_pdf_blocked).ln() < alpha
|
|
|
+ let nr_cdf = 1.0 - nr_normal.cdf(negative_reports_today as f64);
|
|
|
+ let pr_normal = Normal::new(positive_reports_mean, positive_reports_sd).unwrap();
|
|
|
+ let pr_cdf = pr_normal.cdf(positive_reports_today as f64);
|
|
|
+
|
|
|
+ // For now, just look at each variable in isolation
|
|
|
+ // TODO: How do we do a multivariate normal CDF?
|
|
|
+ bip_cdf < alpha || nr_cdf < alpha || pr_cdf < alpha
|
|
|
}
|
|
|
}
|