|
@@ -1,10 +1,9 @@
|
|
|
use crate::{BridgeInfo, BridgeInfoType};
|
|
|
use lox_library::proto::trust_promotion::UNTRUSTED_INTERVAL;
|
|
|
-use nalgebra::{Cholesky, DMatrix, DVector};
|
|
|
-use rand::Rng;
|
|
|
-use statrs::distribution::{ContinuousCDF, MultivariateNormal, Normal};
|
|
|
+use nalgebra::DVector;
|
|
|
+use statrs::distribution::{Continuous, ContinuousCDF, MultivariateNormal, Normal};
|
|
|
use std::{
|
|
|
- cmp::{max, min},
|
|
|
+ cmp::min,
|
|
|
collections::{BTreeMap, HashSet},
|
|
|
};
|
|
|
|
|
@@ -234,39 +233,21 @@ impl NormalAnalyzer {
|
|
|
|
|
|
fn mean_and_std_dev(data: &[u32]) -> (f64, f64) {
|
|
|
let mean = Self::mean(data);
|
|
|
- let std = Self::std_dev(data, mean);
|
|
|
- (mean, std)
|
|
|
+ let std_dev = Self::std_dev(data, mean);
|
|
|
+ (mean, std_dev)
|
|
|
}
|
|
|
|
|
|
- // Returns the mean vector, vector of individual standard deviations, and
|
|
|
- // covariance matrix. If the standard deviation for a variable is 0 and/or
|
|
|
- // the covariance matrix is not positive definite, add some noise to the
|
|
|
- // data and recompute.
|
|
|
- fn stats(data: &[&[u32]]) -> (Vec<f64>, Vec<f64>, Vec<f64>) {
|
|
|
+ // Returns the mean vector and covariance matrix
|
|
|
+ fn stats(data: &[&[u32]]) -> (Vec<f64>, Vec<f64>) {
|
|
|
let n = data.len();
|
|
|
|
|
|
- // Compute mean and standard deviation vectors
|
|
|
- let (mean_vec, sd_vec) = {
|
|
|
+ // Compute mean vector
|
|
|
+ let mean_vec = {
|
|
|
let mut mean_vec = Vec::<f64>::new();
|
|
|
- let mut sd_vec = Vec::<f64>::new();
|
|
|
for var in data {
|
|
|
- // Compute mean
|
|
|
- let mut sum = 0.0;
|
|
|
- for count in *var {
|
|
|
- sum += *count as f64;
|
|
|
- }
|
|
|
- let mean = sum / var.len() as f64;
|
|
|
-
|
|
|
- // Compute standard deviation
|
|
|
- let mut sum = 0.0;
|
|
|
- for count in *var {
|
|
|
- sum += (*count as f64 - mean).powi(2);
|
|
|
- }
|
|
|
- let sd = (sum / var.len() as f64).sqrt();
|
|
|
- mean_vec.push(mean);
|
|
|
- sd_vec.push(sd);
|
|
|
+ mean_vec.push(Self::mean(var));
|
|
|
}
|
|
|
- (mean_vec, sd_vec)
|
|
|
+ mean_vec
|
|
|
};
|
|
|
|
|
|
// Compute covariance matrix
|
|
@@ -296,33 +277,7 @@ impl NormalAnalyzer {
|
|
|
cov_mat
|
|
|
};
|
|
|
|
|
|
- // If any standard deviation is 0 or the covariance matrix is not
|
|
|
- // positive definite, add some noise and recompute.
|
|
|
- let mut recompute = false;
|
|
|
- for sd in &sd_vec {
|
|
|
- if *sd <= 0.0 {
|
|
|
- recompute = true;
|
|
|
- }
|
|
|
- }
|
|
|
- if Cholesky::new(DMatrix::from_vec(n, n, cov_mat.clone())).is_none() {
|
|
|
- recompute = true;
|
|
|
- }
|
|
|
-
|
|
|
- if !recompute {
|
|
|
- (mean_vec, sd_vec, cov_mat)
|
|
|
- } else {
|
|
|
- // Add random noise and recompute
|
|
|
- let mut new_data = vec![vec![0; data[0].len()]; n];
|
|
|
- let mut rng = rand::thread_rng();
|
|
|
- for i in 0..n {
|
|
|
- for j in 0..data[i].len() {
|
|
|
- // Add 1 to some randomly selected values
|
|
|
- new_data[i][j] = data[i][j] + rng.gen_range(0..=1);
|
|
|
- }
|
|
|
- }
|
|
|
- // Compute stats on modified data
|
|
|
- Self::stats(&new_data.iter().map(Vec::as_slice).collect::<Vec<&[u32]>>())
|
|
|
- }
|
|
|
+ (mean_vec, cov_mat)
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -357,7 +312,7 @@ impl Analyzer for NormalAnalyzer {
|
|
|
let (bridge_ips_mean, bridge_ips_sd) = Self::mean_and_std_dev(bridge_ips);
|
|
|
let (negative_reports_mean, negative_reports_sd) = Self::mean_and_std_dev(negative_reports);
|
|
|
|
|
|
- // Model each variable with a normal distribution.
|
|
|
+ // Model negative reports separately
|
|
|
let bip_normal = Normal::new(bridge_ips_mean, bridge_ips_sd);
|
|
|
let nr_normal = Normal::new(negative_reports_mean, negative_reports_sd);
|
|
|
|
|
@@ -402,35 +357,50 @@ impl Analyzer for NormalAnalyzer {
|
|
|
|
|
|
let alpha = 1.0 - confidence;
|
|
|
|
|
|
- let (mean_vec, sd_vec, cov_mat) =
|
|
|
- Self::stats(&[bridge_ips, negative_reports, positive_reports]);
|
|
|
- let bridge_ips_mean = mean_vec[0];
|
|
|
- let negative_reports_mean = mean_vec[1];
|
|
|
- let positive_reports_mean = mean_vec[2];
|
|
|
- let bridge_ips_sd = sd_vec[0];
|
|
|
- let negative_reports_sd = sd_vec[1];
|
|
|
- let positive_reports_sd = sd_vec[2];
|
|
|
-
|
|
|
- /*
|
|
|
- let mvn = MultivariateNormal::new(mean_vec, cov_mat).unwrap();
|
|
|
- let pdf = mvn.pdf(&DVector::from_vec(vec![
|
|
|
- bridge_ips_today as f64,
|
|
|
- negative_reports_today as f64,
|
|
|
- positive_reports_today as f64,
|
|
|
- ]));
|
|
|
- */
|
|
|
-
|
|
|
- // Model each variable in isolation. We use the CCDF for
|
|
|
- // negative reports because more negative reports is worse.
|
|
|
- let bip_normal = Normal::new(bridge_ips_mean, bridge_ips_sd).unwrap();
|
|
|
- let bip_cdf = bip_normal.cdf(bridge_ips_today as f64);
|
|
|
- let nr_normal = Normal::new(negative_reports_mean, negative_reports_sd).unwrap();
|
|
|
- let nr_ccdf = 1.0 - nr_normal.cdf(negative_reports_today as f64);
|
|
|
- let pr_normal = Normal::new(positive_reports_mean, positive_reports_sd).unwrap();
|
|
|
- let pr_cdf = pr_normal.cdf(positive_reports_today as f64);
|
|
|
-
|
|
|
- // For now, just look at each variable in isolation
|
|
|
- // TODO: How do we do a multivariate normal CDF?
|
|
|
- bip_cdf < alpha || nr_ccdf < alpha || pr_cdf < alpha
|
|
|
+ // Model bridge IPs and positive reports with multivariate
|
|
|
+ // normal distribution
|
|
|
+ let (mean_vec, cov_mat) = Self::stats(&[bridge_ips, positive_reports]);
|
|
|
+ let mvn = MultivariateNormal::new(mean_vec, cov_mat);
|
|
|
+
|
|
|
+ // Model negative reports separately
|
|
|
+ let (negative_reports_mean, negative_reports_sd) = Self::mean_and_std_dev(negative_reports);
|
|
|
+ let nr_normal = Normal::new(negative_reports_mean, negative_reports_sd);
|
|
|
+
|
|
|
+ // If we have 0 standard deviation or a covariance matrix that
|
|
|
+ // is not positive definite, we need another way to evaluate
|
|
|
+ // each variable
|
|
|
+ let positive_test = if mvn.is_ok() {
|
|
|
+ let mvn = mvn.unwrap();
|
|
|
+
|
|
|
+ // Estimate the CDF by integrating the PDF by hand with step
|
|
|
+ // size 1
|
|
|
+ let mut cdf = 0.0;
|
|
|
+ for bip in 0..bridge_ips_today {
|
|
|
+ for pr in 0..positive_reports_today {
|
|
|
+ cdf += mvn.pdf(&DVector::from_vec(vec![bip as f64, pr as f64]));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ cdf < alpha
|
|
|
+ } else {
|
|
|
+ // Ignore positive reports and compute as in stage 2
|
|
|
+ self.stage_two(
|
|
|
+ confidence,
|
|
|
+ bridge_ips,
|
|
|
+ bridge_ips_today,
|
|
|
+ negative_reports,
|
|
|
+ negative_reports_today,
|
|
|
+ )
|
|
|
+ };
|
|
|
+ let nr_test = if negative_reports_sd > 0.0 {
|
|
|
+ // We use CCDF because more negative reports is worse.
|
|
|
+ (1.0 - nr_normal.unwrap().cdf(negative_reports_today as f64)) < alpha
|
|
|
+ } else {
|
|
|
+ // Consider the bridge blocked negative reports increase by
|
|
|
+ // more than 1 after a long static period. (Note that the
|
|
|
+ // mean is the exact value because we had no deviation.)
|
|
|
+ (negative_reports_today as f64) > negative_reports_mean + 1.0
|
|
|
+ };
|
|
|
+
|
|
|
+ positive_test || nr_test
|
|
|
}
|
|
|
}
|