/* Copyright (C) 2017 Fortanix, Inc. This file is part of Graphene Library OS. Graphene Library OS is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Graphene Library OS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include #include #include #include #include "api.h" #include "pal.h" #include "pal_crypto.h" #include "pal_error.h" #include "pal_debug.h" #include "assert.h" #include "mbedtls/aes.h" #include "mbedtls/cmac.h" #include "mbedtls/error.h" #include "mbedtls/net_sockets.h" #include "mbedtls/rsa.h" #include "mbedtls/sha256.h" int mbedtls_to_pal_error(int error) { switch(error) { case 0: return 0; case MBEDTLS_ERR_AES_INVALID_KEY_LENGTH: return -PAL_ERROR_CRYPTO_INVALID_KEY_LENGTH; case MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH: case MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED: return -PAL_ERROR_CRYPTO_INVALID_INPUT_LENGTH; case MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE: case MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE: return -PAL_ERROR_CRYPTO_FEATURE_UNAVAILABLE; case MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA: case MBEDTLS_ERR_DHM_BAD_INPUT_DATA: case MBEDTLS_ERR_MD_BAD_INPUT_DATA: case MBEDTLS_ERR_MPI_BAD_INPUT_DATA: case MBEDTLS_ERR_RSA_BAD_INPUT_DATA: case MBEDTLS_ERR_RSA_PUBLIC_FAILED: // see mbedtls_rsa_public() case MBEDTLS_ERR_RSA_PRIVATE_FAILED: // see mbedtls_rsa_private() return -PAL_ERROR_CRYPTO_BAD_INPUT_DATA; case MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE: return -PAL_ERROR_CRYPTO_INVALID_OUTPUT_LENGTH; case MBEDTLS_ERR_CIPHER_ALLOC_FAILED: case MBEDTLS_ERR_DHM_ALLOC_FAILED: case MBEDTLS_ERR_MD_ALLOC_FAILED: return -PAL_ERROR_NOMEM; case MBEDTLS_ERR_CIPHER_INVALID_PADDING: case MBEDTLS_ERR_RSA_INVALID_PADDING: return -PAL_ERROR_CRYPTO_INVALID_PADDING; case MBEDTLS_ERR_CIPHER_AUTH_FAILED: return -PAL_ERROR_CRYPTO_AUTH_FAILED; case MBEDTLS_ERR_CIPHER_INVALID_CONTEXT: return -PAL_ERROR_CRYPTO_INVALID_CONTEXT; case MBEDTLS_ERR_DHM_READ_PARAMS_FAILED: case MBEDTLS_ERR_DHM_MAKE_PARAMS_FAILED: case MBEDTLS_ERR_DHM_READ_PUBLIC_FAILED: case MBEDTLS_ERR_DHM_MAKE_PUBLIC_FAILED: case MBEDTLS_ERR_DHM_CALC_SECRET_FAILED: return -PAL_ERROR_CRYPTO_INVALID_DH_STATE; case MBEDTLS_ERR_DHM_INVALID_FORMAT: return -PAL_ERROR_CRYPTO_INVALID_FORMAT; case MBEDTLS_ERR_DHM_FILE_IO_ERROR: case MBEDTLS_ERR_MD_FILE_IO_ERROR: return -PAL_ERROR_CRYPTO_IO_ERROR; case MBEDTLS_ERR_RSA_KEY_GEN_FAILED: return -PAL_ERROR_CRYPTO_KEY_GEN_FAILED; case MBEDTLS_ERR_RSA_KEY_CHECK_FAILED: return -PAL_ERROR_CRYPTO_INVALID_KEY; case MBEDTLS_ERR_RSA_VERIFY_FAILED: return -PAL_ERROR_CRYPTO_VERIFY_FAILED; case MBEDTLS_ERR_RSA_RNG_FAILED: return -PAL_ERROR_CRYPTO_RNG_FAILED; default: return -PAL_ERROR_DENIED; } } #define BITS_PER_BYTE 8 /* This is declared in pal_internal.h, but that can't be included here. */ size_t _DkRandomBitsRead(void *buffer, size_t size); /* Wrapper to provide mbedtls the RNG interface it expects. It passes an * extra context parameter, and expects a return value of 0 for success * and nonzero for failure. */ static int RandomWrapper(void *private, unsigned char *data, size_t size) { __UNUSED(private); return _DkRandomBitsRead(data, size); } #define BITS_PER_BYTE 8 int lib_SHA256Init(LIB_SHA256_CONTEXT *context) { mbedtls_sha256_init(context); mbedtls_sha256_starts(context, 0 /* 0 = use SSH256 */); return 0; } int lib_SHA256Update(LIB_SHA256_CONTEXT *context, const uint8_t *data, uint64_t len) { /* For compatibility with other SHA256 providers, don't support * large lengths. */ if (len > UINT32_MAX) { return -PAL_ERROR_INVAL; } mbedtls_sha256_update(context, data, len); return 0; } int lib_SHA256Final(LIB_SHA256_CONTEXT *context, uint8_t *output) { mbedtls_sha256_finish(context, output); /* This function is called free, but it doesn't actually free the memory. * It zeroes out the context to avoid potentially leaking information * about the hash that was just performed. */ mbedtls_sha256_free(context); return 0; } int lib_AESCMAC(const uint8_t *key, uint64_t key_len, const uint8_t *input, uint64_t input_len, uint8_t *mac, uint64_t mac_len) { mbedtls_cipher_type_t cipher; switch (key_len) { case 16: cipher = MBEDTLS_CIPHER_AES_128_ECB; break; case 24: cipher = MBEDTLS_CIPHER_AES_192_ECB; break; case 32: cipher = MBEDTLS_CIPHER_AES_256_ECB; break; default: return -PAL_ERROR_INVAL; } const mbedtls_cipher_info_t *cipher_info = mbedtls_cipher_info_from_type(cipher); if (mac_len < cipher_info->block_size) { return -PAL_ERROR_INVAL; } int ret = mbedtls_cipher_cmac(cipher_info, key, key_len * BITS_PER_BYTE, input, input_len, mac); return mbedtls_to_pal_error(ret); } int lib_AESCMACInit(LIB_AESCMAC_CONTEXT * context, const uint8_t *key, uint64_t key_len) { switch (key_len) { case 16: context->cipher = MBEDTLS_CIPHER_AES_128_ECB; break; case 24: context->cipher = MBEDTLS_CIPHER_AES_192_ECB; break; case 32: context->cipher = MBEDTLS_CIPHER_AES_256_ECB; break; default: return -PAL_ERROR_INVAL; } const mbedtls_cipher_info_t *cipher_info = mbedtls_cipher_info_from_type(context->cipher); int ret = mbedtls_cipher_setup(&context->ctx, cipher_info); if (ret != 0) return mbedtls_to_pal_error(ret); ret = mbedtls_cipher_cmac_starts(&context->ctx, key, key_len * BITS_PER_BYTE); return mbedtls_to_pal_error(ret); } int lib_AESCMACUpdate(LIB_AESCMAC_CONTEXT * context, const uint8_t * input, uint64_t input_len) { int ret = mbedtls_cipher_cmac_update(&context->ctx, input, input_len); return mbedtls_to_pal_error(ret); } int lib_AESCMACFinish(LIB_AESCMAC_CONTEXT * context, uint8_t * mac, uint64_t mac_len) { const mbedtls_cipher_info_t *cipher_info = mbedtls_cipher_info_from_type(context->cipher); int ret = -PAL_ERROR_INVAL; if (mac_len < cipher_info->block_size) goto exit; ret = mbedtls_cipher_cmac_finish(&context->ctx, mac); ret = mbedtls_to_pal_error(ret); exit: mbedtls_cipher_free( &context->ctx ); return ret; } int lib_RSAInitKey(LIB_RSA_KEY *key) { /* For now, we only need PKCS_V15 type padding. If we need to support * multiple padding types, I guess we'll need to add the padding type * to this API. We might need to add a wrapper type around the crypto * library's key/context type, since not all crypto providers store this * in the conext, and instead require you to pass it on each call. */ /* Last parameter here is the hash type, which is only used for * PKCS padding type 2.0. */ mbedtls_rsa_init(key, MBEDTLS_RSA_PKCS_V15, 0); return 0; } int lib_RSAGenerateKey(LIB_RSA_KEY *key, uint64_t length_in_bits, uint64_t exponent) { if (length_in_bits > UINT_MAX) return -PAL_ERROR_INVAL; if (exponent > UINT_MAX || (int) exponent < 0) return -PAL_ERROR_INVAL; int ret = mbedtls_rsa_gen_key(key, RandomWrapper, NULL, length_in_bits, exponent); return mbedtls_to_pal_error(ret); } int lib_RSAExportPublicKey(LIB_RSA_KEY *key, uint8_t *e, uint64_t *e_size, uint8_t *n, uint64_t *n_size) { /* Public exponent. */ int ret = mbedtls_mpi_write_binary(&key->E, e, *e_size); if (ret != 0) return mbedtls_to_pal_error(ret); /* Modulus. */ ret = mbedtls_mpi_write_binary(&key->N, n, *n_size); return mbedtls_to_pal_error(ret); } int lib_RSAImportPublicKey(LIB_RSA_KEY *key, const uint8_t *e, uint64_t e_size, const uint8_t *n, uint64_t n_size) { int ret; /* Public exponent. */ ret = mbedtls_mpi_read_binary(&key->E, e, e_size); if (ret != 0) return mbedtls_to_pal_error(ret); /* Modulus. */ ret = mbedtls_mpi_read_binary(&key->N, n, n_size); if (ret != 0) return mbedtls_to_pal_error(ret); /* This length is in bytes. */ key->len = (mbedtls_mpi_bitlen(&key->N) + 7) >> 3; return 0; } int lib_RSAVerifySHA256(LIB_RSA_KEY* key, const uint8_t* hash, uint64_t hash_len, const uint8_t* signature, uint64_t signature_len) { /* The mbedtls decrypt API assumes that you have a memory buffer that * is as large as the key size and take the length as a parameter. We * check, so that in the event the caller makes a mistake, you'll get * an error instead of reading off the end of the buffer. */ if (signature_len != key->len) return -PAL_ERROR_INVAL; int ret = mbedtls_rsa_pkcs1_verify(key, NULL, NULL, MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA256, hash_len, hash, signature); return mbedtls_to_pal_error(ret); } int lib_RSAFreeKey(LIB_RSA_KEY *key) { mbedtls_rsa_free(key); return 0; } int mbedtls_hardware_poll(void* data, unsigned char* output, size_t len, size_t* olen) { __UNUSED(data); assert(output && olen); *olen = 0; unsigned long long rand64; for (size_t i = 0; i < len; i += sizeof(rand64)) { while (__builtin_ia32_rdrand64_step(&rand64) == 0) /*nop*/; size_t over = i + sizeof(rand64) < len ? 0 : i + sizeof(rand64) - len; memcpy(output + i, &rand64, sizeof(rand64) - over); } *olen = len; return 0; } static int recv_cb(void* ctx, uint8_t* buf, size_t len) { LIB_SSL_CONTEXT* ssl_ctx = (LIB_SSL_CONTEXT*)ctx; int fd = ssl_ctx->stream_fd; if (fd < 0) return MBEDTLS_ERR_NET_INVALID_CONTEXT; if (len > INT_MAX) { /* pal_recv_cb cannot receive more than 32-bit limit, trim len to fit in 32-bit */ len = INT_MAX; } ssize_t ret = ssl_ctx->pal_recv_cb(fd, buf, len); if (ret < 0) { if (ret == -EINTR) return MBEDTLS_ERR_SSL_WANT_READ; return MBEDTLS_ERR_NET_RECV_FAILED; } return ret; } static int send_cb(void* ctx, uint8_t const* buf, size_t len) { LIB_SSL_CONTEXT* ssl_ctx = (LIB_SSL_CONTEXT*)ctx; int fd = ssl_ctx->stream_fd; if (fd < 0) return MBEDTLS_ERR_NET_INVALID_CONTEXT; if (len > INT_MAX) { /* pal_send_cb cannot send more than 32-bit limit, trim len to fit in 32-bit */ len = INT_MAX; } ssize_t ret = ssl_ctx->pal_send_cb(fd, buf, len); if (ret < 0) { if (ret == -EINTR) return MBEDTLS_ERR_SSL_WANT_WRITE; return MBEDTLS_ERR_NET_SEND_FAILED; } return ret; } int lib_SSLInit(LIB_SSL_CONTEXT* ssl_ctx, int stream_fd, bool is_server, const uint8_t* psk, size_t psk_size, ssize_t (*pal_recv_cb)(int fd, void* buf, size_t len), ssize_t (*pal_send_cb)(int fd, const void* buf, size_t len)) { int ret; memset(ssl_ctx, 0, sizeof(*ssl_ctx)); ssl_ctx->ciphersuites[0] = MBEDTLS_TLS_PSK_WITH_AES_128_GCM_SHA256; memset(&ssl_ctx->ciphersuites[1], 0, sizeof(ssl_ctx->ciphersuites[1])); ssl_ctx->pal_recv_cb = pal_recv_cb; ssl_ctx->pal_send_cb = pal_send_cb; ssl_ctx->stream_fd = stream_fd; mbedtls_entropy_init(&ssl_ctx->entropy); mbedtls_ctr_drbg_init(&ssl_ctx->ctr_drbg); mbedtls_ssl_config_init(&ssl_ctx->conf); mbedtls_ssl_init(&ssl_ctx->ssl); ret = mbedtls_ctr_drbg_seed(&ssl_ctx->ctr_drbg, mbedtls_entropy_func, &ssl_ctx->entropy, NULL, 0); if (ret != 0) return -PAL_ERROR_DENIED; ret = mbedtls_ssl_config_defaults(&ssl_ctx->conf, is_server ? MBEDTLS_SSL_IS_SERVER : MBEDTLS_SSL_IS_CLIENT, MBEDTLS_SSL_TRANSPORT_STREAM, MBEDTLS_SSL_PRESET_DEFAULT); if (ret != 0) return -PAL_ERROR_DENIED; mbedtls_ssl_conf_rng(&ssl_ctx->conf, mbedtls_ctr_drbg_random, &ssl_ctx->ctr_drbg); mbedtls_ssl_conf_ciphersuites(&ssl_ctx->conf, ssl_ctx->ciphersuites); const unsigned char psk_identity[] = "dummy"; ret = mbedtls_ssl_conf_psk(&ssl_ctx->conf, psk, psk_size, psk_identity, sizeof(psk_identity) - 1); if (ret != 0) return -PAL_ERROR_DENIED; ret = mbedtls_ssl_setup(&ssl_ctx->ssl, &ssl_ctx->conf); if (ret != 0) return -PAL_ERROR_DENIED; mbedtls_ssl_set_bio(&ssl_ctx->ssl, ssl_ctx, send_cb, recv_cb, NULL); while ((ret = mbedtls_ssl_handshake(&ssl_ctx->ssl)) != 0) { if (ret != MBEDTLS_ERR_SSL_WANT_READ && ret != MBEDTLS_ERR_SSL_WANT_WRITE) break; } if (ret != 0) return -PAL_ERROR_DENIED; return 0; } int lib_SSLFree(LIB_SSL_CONTEXT* ssl_ctx) { mbedtls_ssl_free(&ssl_ctx->ssl); mbedtls_ssl_config_free(&ssl_ctx->conf); mbedtls_ctr_drbg_free(&ssl_ctx->ctr_drbg); mbedtls_entropy_free(&ssl_ctx->entropy); return 0; } int lib_SSLRead(LIB_SSL_CONTEXT* ssl_ctx, uint8_t* buf, size_t len) { int ret = mbedtls_ssl_read(&ssl_ctx->ssl, buf, len); if (ret <= 0) return -PAL_ERROR_DENIED; return ret; } int lib_SSLWrite(LIB_SSL_CONTEXT* ssl_ctx, const uint8_t* buf, size_t len) { int ret = mbedtls_ssl_write(&ssl_ctx->ssl, buf, len); if (ret <= 0) return -PAL_ERROR_DENIED; return ret; }