/*-------------------------------------------------------------*/ /*--- Public header file for the library. ---*/ /*--- bzlib.h ---*/ /*-------------------------------------------------------------*/ /*-- This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data compression. Copyright (C) 1996-2002 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK. jseward@acm.org bzip2/libbzip2 version 1.0 of 21 March 2000 This program is based on (at least) the work of: Mike Burrows David Wheeler Peter Fenwick Alistair Moffat Radford Neal Ian H. Witten Robert Sedgewick Jon L. Bentley For more information on these sources, see the manual. --*/ #ifndef _BZLIB_H #define _BZLIB_H #ifdef __cplusplus extern "C" { #endif #define BZ_RUN 0 #define BZ_FLUSH 1 #define BZ_FINISH 2 #define BZ_OK 0 #define BZ_RUN_OK 1 #define BZ_FLUSH_OK 2 #define BZ_FINISH_OK 3 #define BZ_STREAM_END 4 #define BZ_SEQUENCE_ERROR (-1) #define BZ_PARAM_ERROR (-2) #define BZ_MEM_ERROR (-3) #define BZ_DATA_ERROR (-4) #define BZ_DATA_ERROR_MAGIC (-5) #define BZ_IO_ERROR (-6) #define BZ_UNEXPECTED_EOF (-7) #define BZ_OUTBUFF_FULL (-8) #define BZ_CONFIG_ERROR (-9) typedef struct { char *next_in; unsigned int avail_in; unsigned int total_in_lo32; unsigned int total_in_hi32; char *next_out; unsigned int avail_out; unsigned int total_out_lo32; unsigned int total_out_hi32; void *state; void *(*bzalloc)(void *,int,int); void (*bzfree)(void *,void *); void *opaque; } bz_stream; #ifndef BZ_IMPORT #define BZ_EXPORT #endif /* Need a definitition for FILE */ #include #ifdef _WIN32 # include # ifdef small /* windows.h define small to char */ # undef small # endif # ifdef BZ_EXPORT # define BZ_API(func) WINAPI func # define BZ_EXTERN extern # else /* import windows dll dynamically */ # define BZ_API(func) (WINAPI * func) # define BZ_EXTERN # endif #else # define BZ_API(func) func # define BZ_EXTERN extern #endif /*-- Core (low-level) library functions --*/ BZ_EXTERN int BZ_API(BZ2_bzCompressInit) ( bz_stream* strm, int blockSize100k, int verbosity, int workFactor ); BZ_EXTERN int BZ_API(BZ2_bzCompress) ( bz_stream* strm, int action ); BZ_EXTERN int BZ_API(BZ2_bzCompressEnd) ( bz_stream* strm ); BZ_EXTERN int BZ_API(BZ2_bzDecompressInit) ( bz_stream *strm, int verbosity, int small ); BZ_EXTERN int BZ_API(BZ2_bzDecompress) ( bz_stream* strm ); BZ_EXTERN int BZ_API(BZ2_bzDecompressEnd) ( bz_stream *strm ); /*-- High(er) level library functions --*/ #ifndef BZ_NO_STDIO #define BZ_MAX_UNUSED 5000 typedef void BZFILE; BZ_EXTERN BZFILE* BZ_API(BZ2_bzReadOpen) ( int* bzerror, FILE* f, int verbosity, int small, void* unused, int nUnused ); BZ_EXTERN void BZ_API(BZ2_bzReadClose) ( int* bzerror, BZFILE* b ); BZ_EXTERN void BZ_API(BZ2_bzReadGetUnused) ( int* bzerror, BZFILE* b, void** unused, int* nUnused ); BZ_EXTERN int BZ_API(BZ2_bzRead) ( int* bzerror, BZFILE* b, void* buf, int len ); BZ_EXTERN BZFILE* BZ_API(BZ2_bzWriteOpen) ( int* bzerror, FILE* f, int blockSize100k, int verbosity, int workFactor ); BZ_EXTERN void BZ_API(BZ2_bzWrite) ( int* bzerror, BZFILE* b, void* buf, int len ); BZ_EXTERN void BZ_API(BZ2_bzWriteClose) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in, unsigned int* nbytes_out ); BZ_EXTERN void BZ_API(BZ2_bzWriteClose64) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in_lo32, unsigned int* nbytes_in_hi32, unsigned int* nbytes_out_lo32, unsigned int* nbytes_out_hi32 ); #endif /*-- Utility functions --*/ BZ_EXTERN int BZ_API(BZ2_bzBuffToBuffCompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int blockSize100k, int verbosity, int workFactor ); BZ_EXTERN int BZ_API(BZ2_bzBuffToBuffDecompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int small, int verbosity ); /*-- Code contributed by Yoshioka Tsuneo (QWF00133@niftyserve.or.jp/tsuneo-y@is.aist-nara.ac.jp), to support better zlib compatibility. This code is not _officially_ part of libbzip2 (yet); I haven't tested it, documented it, or considered the threading-safeness of it. If this code breaks, please contact both Yoshioka and me. --*/ BZ_EXTERN const char * BZ_API(BZ2_bzlibVersion) ( void ); #ifndef BZ_NO_STDIO BZ_EXTERN BZFILE * BZ_API(BZ2_bzopen) ( const char *path, const char *mode ); BZ_EXTERN BZFILE * BZ_API(BZ2_bzdopen) ( int fd, const char *mode ); BZ_EXTERN int BZ_API(BZ2_bzread) ( BZFILE* b, void* buf, int len ); BZ_EXTERN int BZ_API(BZ2_bzwrite) ( BZFILE* b, void* buf, int len ); BZ_EXTERN int BZ_API(BZ2_bzflush) ( BZFILE* b ); BZ_EXTERN void BZ_API(BZ2_bzclose) ( BZFILE* b ); BZ_EXTERN const char * BZ_API(BZ2_bzerror) ( BZFILE *b, int *errnum ); #endif #ifdef __cplusplus } #endif #endif /*-------------------------------------------------------------*/ /*--- end bzlib.h ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Private header file for the library. ---*/ /*--- bzlib_private.h ---*/ /*-------------------------------------------------------------*/ #ifndef _BZLIB_PRIVATE_H #define _BZLIB_PRIVATE_H #include #ifndef BZ_NO_STDIO #include #include #include #endif /*-- General stuff. --*/ #define BZ_VERSION "1.0.2, 30-Dec-2001" typedef char Char; typedef unsigned char Bool; typedef unsigned char UChar; typedef int Int32; typedef unsigned int UInt32; typedef short Int16; typedef unsigned short UInt16; #define True ((Bool)1) #define False ((Bool)0) #ifndef __GNUC__ #define __inline__ /* */ #endif #ifndef BZ_NO_STDIO extern void BZ2_bz__AssertH__fail ( int errcode ); #define AssertH(cond,errcode) \ { if (!(cond)) BZ2_bz__AssertH__fail ( errcode ); } #if BZ_DEBUG #define AssertD(cond,msg) \ { if (!(cond)) { \ fprintf ( stderr, \ "\n\nlibbzip2(debug build): internal error\n\t%s\n", msg );\ exit(1); \ }} #else #define AssertD(cond,msg) /* */ #endif #define VPrintf0(zf) \ fprintf(stderr,zf) #define VPrintf1(zf,za1) \ fprintf(stderr,zf,za1) #define VPrintf2(zf,za1,za2) \ fprintf(stderr,zf,za1,za2) #define VPrintf3(zf,za1,za2,za3) \ fprintf(stderr,zf,za1,za2,za3) #define VPrintf4(zf,za1,za2,za3,za4) \ fprintf(stderr,zf,za1,za2,za3,za4) #define VPrintf5(zf,za1,za2,za3,za4,za5) \ fprintf(stderr,zf,za1,za2,za3,za4,za5) #else extern void bz_internal_error ( int errcode ); #define AssertH(cond,errcode) \ { if (!(cond)) bz_internal_error ( errcode ); } #define AssertD(cond,msg) /* */ #define VPrintf0(zf) /* */ #define VPrintf1(zf,za1) /* */ #define VPrintf2(zf,za1,za2) /* */ #define VPrintf3(zf,za1,za2,za3) /* */ #define VPrintf4(zf,za1,za2,za3,za4) /* */ #define VPrintf5(zf,za1,za2,za3,za4,za5) /* */ #endif #define BZALLOC(nnn) (strm->bzalloc)(strm->opaque,(nnn),1) #define BZFREE(ppp) (strm->bzfree)(strm->opaque,(ppp)) /*-- Header bytes. --*/ #define BZ_HDR_B 0x42 /* 'B' */ #define BZ_HDR_Z 0x5a /* 'Z' */ #define BZ_HDR_h 0x68 /* 'h' */ #define BZ_HDR_0 0x30 /* '0' */ /*-- Constants for the back end. --*/ #define BZ_MAX_ALPHA_SIZE 258 #define BZ_MAX_CODE_LEN 23 #define BZ_RUNA 0 #define BZ_RUNB 1 #define BZ_N_GROUPS 6 #define BZ_G_SIZE 50 #define BZ_N_ITERS 4 #define BZ_MAX_SELECTORS (2 + (900000 / BZ_G_SIZE)) /*-- Stuff for randomising repetitive blocks. --*/ extern Int32 BZ2_rNums[512]; #define BZ_RAND_DECLS \ Int32 rNToGo; \ Int32 rTPos \ #define BZ_RAND_INIT_MASK \ s->rNToGo = 0; \ s->rTPos = 0 \ #define BZ_RAND_MASK ((s->rNToGo == 1) ? 1 : 0) #define BZ_RAND_UPD_MASK \ if (s->rNToGo == 0) { \ s->rNToGo = BZ2_rNums[s->rTPos]; \ s->rTPos++; \ if (s->rTPos == 512) s->rTPos = 0; \ } \ s->rNToGo--; /*-- Stuff for doing CRCs. --*/ extern UInt32 BZ2_crc32Table[256]; #define BZ_INITIALISE_CRC(crcVar) \ { \ crcVar = 0xffffffffL; \ } #define BZ_FINALISE_CRC(crcVar) \ { \ crcVar = ~(crcVar); \ } #define BZ_UPDATE_CRC(crcVar,cha) \ { \ crcVar = (crcVar << 8) ^ \ BZ2_crc32Table[(crcVar >> 24) ^ \ ((UChar)cha)]; \ } /*-- States and modes for compression. --*/ #define BZ_M_IDLE 1 #define BZ_M_RUNNING 2 #define BZ_M_FLUSHING 3 #define BZ_M_FINISHING 4 #define BZ_S_OUTPUT 1 #define BZ_S_INPUT 2 #define BZ_N_RADIX 2 #define BZ_N_QSORT 12 #define BZ_N_SHELL 18 #define BZ_N_OVERSHOOT (BZ_N_RADIX + BZ_N_QSORT + BZ_N_SHELL + 2) /*-- Structure holding all the compression-side stuff. --*/ typedef struct { /* pointer back to the struct bz_stream */ bz_stream* strm; /* mode this stream is in, and whether inputting */ /* or outputting data */ Int32 mode; Int32 state; /* remembers avail_in when flush/finish requested */ UInt32 avail_in_expect; /* for doing the block sorting */ UInt32* arr1; UInt32* arr2; UInt32* ftab; Int32 origPtr; /* aliases for arr1 and arr2 */ UInt32* ptr; UChar* block; UInt16* mtfv; UChar* zbits; /* for deciding when to use the fallback sorting algorithm */ Int32 workFactor; /* run-length-encoding of the input */ UInt32 state_in_ch; Int32 state_in_len; BZ_RAND_DECLS; /* input and output limits and current posns */ Int32 nblock; Int32 nblockMAX; Int32 numZ; Int32 state_out_pos; /* map of bytes used in block */ Int32 nInUse; Bool inUse[256]; UChar unseqToSeq[256]; /* the buffer for bit stream creation */ UInt32 bsBuff; Int32 bsLive; /* block and combined CRCs */ UInt32 blockCRC; UInt32 combinedCRC; /* misc administratium */ Int32 verbosity; Int32 blockNo; Int32 blockSize100k; /* stuff for coding the MTF values */ Int32 nMTF; Int32 mtfFreq [BZ_MAX_ALPHA_SIZE]; UChar selector [BZ_MAX_SELECTORS]; UChar selectorMtf[BZ_MAX_SELECTORS]; UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 code [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 rfreq [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; /* second dimension: only 3 needed; 4 makes index calculations faster */ UInt32 len_pack[BZ_MAX_ALPHA_SIZE][4]; } EState; /*-- externs for compression. --*/ extern void BZ2_blockSort ( EState* ); extern void BZ2_compressBlock ( EState*, Bool ); extern void BZ2_bsInitWrite ( EState* ); extern void BZ2_hbAssignCodes ( Int32*, UChar*, Int32, Int32, Int32 ); extern void BZ2_hbMakeCodeLengths ( UChar*, Int32*, Int32, Int32 ); /*-- states for decompression. --*/ #define BZ_X_IDLE 1 #define BZ_X_OUTPUT 2 #define BZ_X_MAGIC_1 10 #define BZ_X_MAGIC_2 11 #define BZ_X_MAGIC_3 12 #define BZ_X_MAGIC_4 13 #define BZ_X_BLKHDR_1 14 #define BZ_X_BLKHDR_2 15 #define BZ_X_BLKHDR_3 16 #define BZ_X_BLKHDR_4 17 #define BZ_X_BLKHDR_5 18 #define BZ_X_BLKHDR_6 19 #define BZ_X_BCRC_1 20 #define BZ_X_BCRC_2 21 #define BZ_X_BCRC_3 22 #define BZ_X_BCRC_4 23 #define BZ_X_RANDBIT 24 #define BZ_X_ORIGPTR_1 25 #define BZ_X_ORIGPTR_2 26 #define BZ_X_ORIGPTR_3 27 #define BZ_X_MAPPING_1 28 #define BZ_X_MAPPING_2 29 #define BZ_X_SELECTOR_1 30 #define BZ_X_SELECTOR_2 31 #define BZ_X_SELECTOR_3 32 #define BZ_X_CODING_1 33 #define BZ_X_CODING_2 34 #define BZ_X_CODING_3 35 #define BZ_X_MTF_1 36 #define BZ_X_MTF_2 37 #define BZ_X_MTF_3 38 #define BZ_X_MTF_4 39 #define BZ_X_MTF_5 40 #define BZ_X_MTF_6 41 #define BZ_X_ENDHDR_2 42 #define BZ_X_ENDHDR_3 43 #define BZ_X_ENDHDR_4 44 #define BZ_X_ENDHDR_5 45 #define BZ_X_ENDHDR_6 46 #define BZ_X_CCRC_1 47 #define BZ_X_CCRC_2 48 #define BZ_X_CCRC_3 49 #define BZ_X_CCRC_4 50 /*-- Constants for the fast MTF decoder. --*/ #define MTFA_SIZE 4096 #define MTFL_SIZE 16 /*-- Structure holding all the decompression-side stuff. --*/ typedef struct { /* pointer back to the struct bz_stream */ bz_stream* strm; /* state indicator for this stream */ Int32 state; /* for doing the final run-length decoding */ UChar state_out_ch; Int32 state_out_len; Bool blockRandomised; BZ_RAND_DECLS; /* the buffer for bit stream reading */ UInt32 bsBuff; Int32 bsLive; /* misc administratium */ Int32 blockSize100k; Bool smallDecompress; Int32 currBlockNo; Int32 verbosity; /* for undoing the Burrows-Wheeler transform */ Int32 origPtr; UInt32 tPos; Int32 k0; Int32 unzftab[256]; Int32 nblock_used; Int32 cftab[257]; Int32 cftabCopy[257]; /* for undoing the Burrows-Wheeler transform (FAST) */ UInt32 *tt; /* for undoing the Burrows-Wheeler transform (SMALL) */ UInt16 *ll16; UChar *ll4; /* stored and calculated CRCs */ UInt32 storedBlockCRC; UInt32 storedCombinedCRC; UInt32 calculatedBlockCRC; UInt32 calculatedCombinedCRC; /* map of bytes used in block */ Int32 nInUse; Bool inUse[256]; Bool inUse16[16]; UChar seqToUnseq[256]; /* for decoding the MTF values */ UChar mtfa [MTFA_SIZE]; Int32 mtfbase[256 / MTFL_SIZE]; UChar selector [BZ_MAX_SELECTORS]; UChar selectorMtf[BZ_MAX_SELECTORS]; UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 limit [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 base [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 perm [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 minLens[BZ_N_GROUPS]; /* save area for scalars in the main decompress code */ Int32 save_i; Int32 save_j; Int32 save_t; Int32 save_alphaSize; Int32 save_nGroups; Int32 save_nSelectors; Int32 save_EOB; Int32 save_groupNo; Int32 save_groupPos; Int32 save_nextSym; Int32 save_nblockMAX; Int32 save_nblock; Int32 save_es; Int32 save_N; Int32 save_curr; Int32 save_zt; Int32 save_zn; Int32 save_zvec; Int32 save_zj; Int32 save_gSel; Int32 save_gMinlen; Int32* save_gLimit; Int32* save_gBase; Int32* save_gPerm; } DState; /*-- Macros for decompression. --*/ #define BZ_GET_FAST(cccc) \ s->tPos = s->tt[s->tPos]; \ cccc = (UChar)(s->tPos & 0xff); \ s->tPos >>= 8; #define BZ_GET_FAST_C(cccc) \ c_tPos = c_tt[c_tPos]; \ cccc = (UChar)(c_tPos & 0xff); \ c_tPos >>= 8; #define SET_LL4(i,n) \ { if (((i) & 0x1) == 0) \ s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0xf0) | (n); else \ s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0x0f) | ((n) << 4); \ } #define GET_LL4(i) \ ((((UInt32)(s->ll4[(i) >> 1])) >> (((i) << 2) & 0x4)) & 0xF) #define SET_LL(i,n) \ { s->ll16[i] = (UInt16)(n & 0x0000ffff); \ SET_LL4(i, n >> 16); \ } #define GET_LL(i) \ (((UInt32)s->ll16[i]) | (GET_LL4(i) << 16)) #define BZ_GET_SMALL(cccc) \ cccc = BZ2_indexIntoF ( s->tPos, s->cftab ); \ s->tPos = GET_LL(s->tPos); /*-- externs for decompression. --*/ extern Int32 BZ2_indexIntoF ( Int32, Int32* ); extern Int32 BZ2_decompress ( DState* ); extern void BZ2_hbCreateDecodeTables ( Int32*, Int32*, Int32*, UChar*, Int32, Int32, Int32 ); #endif /*-- BZ_NO_STDIO seems to make NULL disappear on some platforms. --*/ #ifdef BZ_NO_STDIO #ifndef NULL #define NULL 0 #endif #endif /*-------------------------------------------------------------*/ /*--- end bzlib_private.h ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Block sorting machinery ---*/ /*--- blocksort.c ---*/ /*-------------------------------------------------------------*/ /*---------------------------------------------*/ /*--- Fallback O(N log(N)^2) sorting ---*/ /*--- algorithm, for repetitive blocks ---*/ /*---------------------------------------------*/ /*---------------------------------------------*/ static __inline__ void fallbackSimpleSort ( UInt32* fmap, UInt32* eclass, Int32 lo, Int32 hi ) { Int32 i, j, tmp; UInt32 ec_tmp; if (lo == hi) return; if (hi - lo > 3) { for ( i = hi-4; i >= lo; i-- ) { tmp = fmap[i]; ec_tmp = eclass[tmp]; for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 ) fmap[j-4] = fmap[j]; fmap[j-4] = tmp; } } for ( i = hi-1; i >= lo; i-- ) { tmp = fmap[i]; ec_tmp = eclass[tmp]; for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ ) fmap[j-1] = fmap[j]; fmap[j-1] = tmp; } } /*---------------------------------------------*/ #define fswap(zz1, zz2) \ { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } #define fvswap(zzp1, zzp2, zzn) \ { \ Int32 yyp1 = (zzp1); \ Int32 yyp2 = (zzp2); \ Int32 yyn = (zzn); \ while (yyn > 0) { \ fswap(fmap[yyp1], fmap[yyp2]); \ yyp1++; yyp2++; yyn--; \ } \ } #define fmin(a,b) ((a) < (b)) ? (a) : (b) #define fpush(lz,hz) { stackLo[sp] = lz; \ stackHi[sp] = hz; \ sp++; } #define fpop(lz,hz) { sp--; \ lz = stackLo[sp]; \ hz = stackHi[sp]; } #define FALLBACK_QSORT_SMALL_THRESH 10 #define FALLBACK_QSORT_STACK_SIZE 100 static void fallbackQSort3 ( UInt32* fmap, UInt32* eclass, Int32 loSt, Int32 hiSt ) { Int32 unLo, unHi, ltLo, gtHi, n, m; Int32 sp, lo, hi; UInt32 med, r, r3; Int32 stackLo[FALLBACK_QSORT_STACK_SIZE]; Int32 stackHi[FALLBACK_QSORT_STACK_SIZE]; r = 0; sp = 0; fpush ( loSt, hiSt ); while (sp > 0) { AssertH ( sp < FALLBACK_QSORT_STACK_SIZE, 1004 ); fpop ( lo, hi ); if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) { fallbackSimpleSort ( fmap, eclass, lo, hi ); continue; } /* Random partitioning. Median of 3 sometimes fails to avoid bad cases. Median of 9 seems to help but looks rather expensive. This too seems to work but is cheaper. Guidance for the magic constants 7621 and 32768 is taken from Sedgewick's algorithms book, chapter 35. */ r = ((r * 7621) + 1) % 32768; r3 = r % 3; if (r3 == 0) med = eclass[fmap[lo]]; else if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else med = eclass[fmap[hi]]; unLo = ltLo = lo; unHi = gtHi = hi; while (1) { while (1) { if (unLo > unHi) break; n = (Int32)eclass[fmap[unLo]] - (Int32)med; if (n == 0) { fswap(fmap[unLo], fmap[ltLo]); ltLo++; unLo++; continue; }; if (n > 0) break; unLo++; } while (1) { if (unLo > unHi) break; n = (Int32)eclass[fmap[unHi]] - (Int32)med; if (n == 0) { fswap(fmap[unHi], fmap[gtHi]); gtHi--; unHi--; continue; }; if (n < 0) break; unHi--; } if (unLo > unHi) break; fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--; } AssertD ( unHi == unLo-1, "fallbackQSort3(2)" ); if (gtHi < ltLo) continue; n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n); m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m); n = lo + unLo - ltLo - 1; m = hi - (gtHi - unHi) + 1; if (n - lo > hi - m) { fpush ( lo, n ); fpush ( m, hi ); } else { fpush ( m, hi ); fpush ( lo, n ); } } } #undef fmin #undef fpush #undef fpop #undef fswap #undef fvswap #undef FALLBACK_QSORT_SMALL_THRESH #undef FALLBACK_QSORT_STACK_SIZE /*---------------------------------------------*/ /* Pre: nblock > 0 eclass exists for [0 .. nblock-1] ((UChar*)eclass) [0 .. nblock-1] holds block ptr exists for [0 .. nblock-1] Post: ((UChar*)eclass) [0 .. nblock-1] holds block All other areas of eclass destroyed fmap [0 .. nblock-1] holds sorted order bhtab [ 0 .. 2+(nblock/32) ] destroyed */ #define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31)) #define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31)) #define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31))) #define WORD_BH(zz) bhtab[(zz) >> 5] #define UNALIGNED_BH(zz) ((zz) & 0x01f) static void fallbackSort ( UInt32* fmap, UInt32* eclass, UInt32* bhtab, Int32 nblock, Int32 verb ) { Int32 ftab[257]; Int32 ftabCopy[256]; Int32 H, i, j, k, l, r, cc, cc1; Int32 nNotDone; Int32 nBhtab; UChar* eclass8 = (UChar*)eclass; /*-- Initial 1-char radix sort to generate initial fmap and initial BH bits. --*/ if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); for (i = 0; i < 257; i++) ftab[i] = 0; for (i = 0; i < nblock; i++) ftab[eclass8[i]]++; for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i]; for (i = 1; i < 257; i++) ftab[i] += ftab[i-1]; for (i = 0; i < nblock; i++) { j = eclass8[i]; k = ftab[j] - 1; ftab[j] = k; fmap[k] = i; } nBhtab = 2 + (nblock / 32); for (i = 0; i < nBhtab; i++) bhtab[i] = 0; for (i = 0; i < 256; i++) SET_BH(ftab[i]); /*-- Inductively refine the buckets. Kind-of an "exponential radix sort" (!), inspired by the Manber-Myers suffix array construction algorithm. --*/ /*-- set sentinel bits for block-end detection --*/ for (i = 0; i < 32; i++) { SET_BH(nblock + 2*i); CLEAR_BH(nblock + 2*i + 1); } /*-- the log(N) loop --*/ H = 1; while (1) { if (verb >= 4) VPrintf1 ( " depth %6d has ", H ); j = 0; for (i = 0; i < nblock; i++) { if (ISSET_BH(i)) j = i; k = fmap[i] - H; if (k < 0) k += nblock; eclass[k] = j; } nNotDone = 0; r = -1; while (1) { /*-- find the next non-singleton bucket --*/ k = r + 1; while (ISSET_BH(k) && UNALIGNED_BH(k)) k++; if (ISSET_BH(k)) { while (WORD_BH(k) == 0xffffffff) k += 32; while (ISSET_BH(k)) k++; } l = k - 1; if (l >= nblock) break; while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++; if (!ISSET_BH(k)) { while (WORD_BH(k) == 0x00000000) k += 32; while (!ISSET_BH(k)) k++; } r = k - 1; if (r >= nblock) break; /*-- now [l, r] bracket current bucket --*/ if (r > l) { nNotDone += (r - l + 1); fallbackQSort3 ( fmap, eclass, l, r ); /*-- scan bucket and generate header bits-- */ cc = -1; for (i = l; i <= r; i++) { cc1 = eclass[fmap[i]]; if (cc != cc1) { SET_BH(i); cc = cc1; }; } } } if (verb >= 4) VPrintf1 ( "%6d unresolved strings\n", nNotDone ); H *= 2; if (H > nblock || nNotDone == 0) break; } /*-- Reconstruct the original block in eclass8 [0 .. nblock-1], since the previous phase destroyed it. --*/ if (verb >= 4) VPrintf0 ( " reconstructing block ...\n" ); j = 0; for (i = 0; i < nblock; i++) { while (ftabCopy[j] == 0) j++; ftabCopy[j]--; eclass8[fmap[i]] = (UChar)j; } AssertH ( j < 256, 1005 ); } #undef SET_BH #undef CLEAR_BH #undef ISSET_BH #undef WORD_BH #undef UNALIGNED_BH /*---------------------------------------------*/ /*--- The main, O(N^2 log(N)) sorting ---*/ /*--- algorithm. Faster for "normal" ---*/ /*--- non-repetitive blocks. ---*/ /*---------------------------------------------*/ /*---------------------------------------------*/ static __inline__ Bool mainGtU ( UInt32 i1, UInt32 i2, UChar* block, UInt16* quadrant, UInt32 nblock, Int32* budget ) { Int32 k; UChar c1, c2; UInt16 s1, s2; AssertD ( i1 != i2, "mainGtU" ); /* 1 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 2 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 3 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 4 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 5 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 6 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 7 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 8 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 9 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 10 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 11 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 12 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; k = nblock + 8; do { /* 1 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 2 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 3 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 4 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 5 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 6 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 7 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 8 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; if (i1 >= nblock) i1 -= nblock; if (i2 >= nblock) i2 -= nblock; k -= 8; (*budget)--; } while (k >= 0); return False; } /*---------------------------------------------*/ /*-- Knuth's increments seem to work better than Incerpi-Sedgewick here. Possibly because the number of elems to sort is usually small, typically <= 20. --*/ static Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484 }; static void mainSimpleSort ( UInt32* ptr, UChar* block, UInt16* quadrant, Int32 nblock, Int32 lo, Int32 hi, Int32 d, Int32* budget ) { Int32 i, j, h, bigN, hp; UInt32 v; bigN = hi - lo + 1; if (bigN < 2) return; hp = 0; while (incs[hp] < bigN) hp++; hp--; for (; hp >= 0; hp--) { h = incs[hp]; i = lo + h; while (True) { /*-- copy 1 --*/ if (i > hi) break; v = ptr[i]; j = i; while ( mainGtU ( ptr[j-h]+d, v+d, block, quadrant, nblock, budget ) ) { ptr[j] = ptr[j-h]; j = j - h; if (j <= (lo + h - 1)) break; } ptr[j] = v; i++; /*-- copy 2 --*/ if (i > hi) break; v = ptr[i]; j = i; while ( mainGtU ( ptr[j-h]+d, v+d, block, quadrant, nblock, budget ) ) { ptr[j] = ptr[j-h]; j = j - h; if (j <= (lo + h - 1)) break; } ptr[j] = v; i++; /*-- copy 3 --*/ if (i > hi) break; v = ptr[i]; j = i; while ( mainGtU ( ptr[j-h]+d, v+d, block, quadrant, nblock, budget ) ) { ptr[j] = ptr[j-h]; j = j - h; if (j <= (lo + h - 1)) break; } ptr[j] = v; i++; if (*budget < 0) return; } } } /*---------------------------------------------*/ /*-- The following is an implementation of an elegant 3-way quicksort for strings, described in a paper "Fast Algorithms for Sorting and Searching Strings", by Robert Sedgewick and Jon L. Bentley. --*/ #define mswap(zz1, zz2) \ { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } #define mvswap(zzp1, zzp2, zzn) \ { \ Int32 yyp1 = (zzp1); \ Int32 yyp2 = (zzp2); \ Int32 yyn = (zzn); \ while (yyn > 0) { \ mswap(ptr[yyp1], ptr[yyp2]); \ yyp1++; yyp2++; yyn--; \ } \ } static __inline__ UChar mmed3 ( UChar a, UChar b, UChar c ) { UChar t; if (a > b) { t = a; a = b; b = t; }; if (b > c) { b = c; if (a > b) b = a; } return b; } #define mmin(a,b) ((a) < (b)) ? (a) : (b) #define mpush(lz,hz,dz) { stackLo[sp] = lz; \ stackHi[sp] = hz; \ stackD [sp] = dz; \ sp++; } #define mpop(lz,hz,dz) { sp--; \ lz = stackLo[sp]; \ hz = stackHi[sp]; \ dz = stackD [sp]; } #define mnextsize(az) (nextHi[az]-nextLo[az]) #define mnextswap(az,bz) \ { Int32 tz; \ tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \ tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \ tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; } #define MAIN_QSORT_SMALL_THRESH 20 #define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT) #define MAIN_QSORT_STACK_SIZE 100 static void mainQSort3 ( UInt32* ptr, UChar* block, UInt16* quadrant, Int32 nblock, Int32 loSt, Int32 hiSt, Int32 dSt, Int32* budget ) { Int32 unLo, unHi, ltLo, gtHi, n, m, med; Int32 sp, lo, hi, d; Int32 stackLo[MAIN_QSORT_STACK_SIZE]; Int32 stackHi[MAIN_QSORT_STACK_SIZE]; Int32 stackD [MAIN_QSORT_STACK_SIZE]; Int32 nextLo[3]; Int32 nextHi[3]; Int32 nextD [3]; sp = 0; mpush ( loSt, hiSt, dSt ); while (sp > 0) { AssertH ( sp < MAIN_QSORT_STACK_SIZE, 1001 ); mpop ( lo, hi, d ); if (hi - lo < MAIN_QSORT_SMALL_THRESH || d > MAIN_QSORT_DEPTH_THRESH) { mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget ); if (*budget < 0) return; continue; } med = (Int32) mmed3 ( block[ptr[ lo ]+d], block[ptr[ hi ]+d], block[ptr[ (lo+hi)>>1 ]+d] ); unLo = ltLo = lo; unHi = gtHi = hi; while (True) { while (True) { if (unLo > unHi) break; n = ((Int32)block[ptr[unLo]+d]) - med; if (n == 0) { mswap(ptr[unLo], ptr[ltLo]); ltLo++; unLo++; continue; }; if (n > 0) break; unLo++; } while (True) { if (unLo > unHi) break; n = ((Int32)block[ptr[unHi]+d]) - med; if (n == 0) { mswap(ptr[unHi], ptr[gtHi]); gtHi--; unHi--; continue; }; if (n < 0) break; unHi--; } if (unLo > unHi) break; mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--; } AssertD ( unHi == unLo-1, "mainQSort3(2)" ); if (gtHi < ltLo) { mpush(lo, hi, d+1 ); continue; } n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n); m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m); n = lo + unLo - ltLo - 1; m = hi - (gtHi - unHi) + 1; nextLo[0] = lo; nextHi[0] = n; nextD[0] = d; nextLo[1] = m; nextHi[1] = hi; nextD[1] = d; nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1; if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); if (mnextsize(1) < mnextsize(2)) mnextswap(1,2); if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" ); AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" ); mpush (nextLo[0], nextHi[0], nextD[0]); mpush (nextLo[1], nextHi[1], nextD[1]); mpush (nextLo[2], nextHi[2], nextD[2]); } } #undef mswap #undef mvswap #undef mpush #undef mpop #undef mmin #undef mnextsize #undef mnextswap #undef MAIN_QSORT_SMALL_THRESH #undef MAIN_QSORT_DEPTH_THRESH #undef MAIN_QSORT_STACK_SIZE /*---------------------------------------------*/ /* Pre: nblock > N_OVERSHOOT block32 exists for [0 .. nblock-1 +N_OVERSHOOT] ((UChar*)block32) [0 .. nblock-1] holds block ptr exists for [0 .. nblock-1] Post: ((UChar*)block32) [0 .. nblock-1] holds block All other areas of block32 destroyed ftab [0 .. 65536 ] destroyed ptr [0 .. nblock-1] holds sorted order if (*budget < 0), sorting was abandoned */ #define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8]) #define SETMASK (1 << 21) #define CLEARMASK (~(SETMASK)) static void mainSort ( UInt32* ptr, UChar* block, UInt16* quadrant, UInt32* ftab, Int32 nblock, Int32 verb, Int32* budget ) { Int32 i, j, k, ss, sb; Int32 runningOrder[256]; Bool bigDone[256]; Int32 copyStart[256]; Int32 copyEnd [256]; UChar c1; Int32 numQSorted; UInt16 s; if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" ); /*-- set up the 2-byte frequency table --*/ for (i = 65536; i >= 0; i--) ftab[i] = 0; j = block[0] << 8; i = nblock-1; for (; i >= 3; i -= 4) { quadrant[i] = 0; j = (j >> 8) | ( ((UInt16)block[i]) << 8); ftab[j]++; quadrant[i-1] = 0; j = (j >> 8) | ( ((UInt16)block[i-1]) << 8); ftab[j]++; quadrant[i-2] = 0; j = (j >> 8) | ( ((UInt16)block[i-2]) << 8); ftab[j]++; quadrant[i-3] = 0; j = (j >> 8) | ( ((UInt16)block[i-3]) << 8); ftab[j]++; } for (; i >= 0; i--) { quadrant[i] = 0; j = (j >> 8) | ( ((UInt16)block[i]) << 8); ftab[j]++; } /*-- (emphasises close relationship of block & quadrant) --*/ for (i = 0; i < BZ_N_OVERSHOOT; i++) { block [nblock+i] = block[i]; quadrant[nblock+i] = 0; } if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); /*-- Complete the initial radix sort --*/ for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1]; s = block[0] << 8; i = nblock-1; for (; i >= 3; i -= 4) { s = (s >> 8) | (block[i] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i; s = (s >> 8) | (block[i-1] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i-1; s = (s >> 8) | (block[i-2] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i-2; s = (s >> 8) | (block[i-3] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i-3; } for (; i >= 0; i--) { s = (s >> 8) | (block[i] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i; } /*-- Now ftab contains the first loc of every small bucket. Calculate the running order, from smallest to largest big bucket. --*/ for (i = 0; i <= 255; i++) { bigDone [i] = False; runningOrder[i] = i; } { Int32 vv; Int32 h = 1; do h = 3 * h + 1; while (h <= 256); do { h = h / 3; for (i = h; i <= 255; i++) { vv = runningOrder[i]; j = i; while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) { runningOrder[j] = runningOrder[j-h]; j = j - h; if (j <= (h - 1)) goto zero; } zero: runningOrder[j] = vv; } } while (h != 1); } /*-- The main sorting loop. --*/ numQSorted = 0; for (i = 0; i <= 255; i++) { /*-- Process big buckets, starting with the least full. Basically this is a 3-step process in which we call mainQSort3 to sort the small buckets [ss, j], but also make a big effort to avoid the calls if we can. --*/ ss = runningOrder[i]; /*-- Step 1: Complete the big bucket [ss] by quicksorting any unsorted small buckets [ss, j], for j != ss. Hopefully previous pointer-scanning phases have already completed many of the small buckets [ss, j], so we don't have to sort them at all. --*/ for (j = 0; j <= 255; j++) { if (j != ss) { sb = (ss << 8) + j; if ( ! (ftab[sb] & SETMASK) ) { Int32 lo = ftab[sb] & CLEARMASK; Int32 hi = (ftab[sb+1] & CLEARMASK) - 1; if (hi > lo) { if (verb >= 4) VPrintf4 ( " qsort [0x%x, 0x%x] " "done %d this %d\n", ss, j, numQSorted, hi - lo + 1 ); mainQSort3 ( ptr, block, quadrant, nblock, lo, hi, BZ_N_RADIX, budget ); numQSorted += (hi - lo + 1); if (*budget < 0) return; } } ftab[sb] |= SETMASK; } } AssertH ( !bigDone[ss], 1006 ); /*-- Step 2: Now scan this big bucket [ss] so as to synthesise the sorted order for small buckets [t, ss] for all t, including, magically, the bucket [ss,ss] too. This will avoid doing Real Work in subsequent Step 1's. --*/ { for (j = 0; j <= 255; j++) { copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK; copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1; } for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) { k = ptr[j]-1; if (k < 0) k += nblock; c1 = block[k]; if (!bigDone[c1]) ptr[ copyStart[c1]++ ] = k; } for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) { k = ptr[j]-1; if (k < 0) k += nblock; c1 = block[k]; if (!bigDone[c1]) ptr[ copyEnd[c1]-- ] = k; } } AssertH ( (copyStart[ss]-1 == copyEnd[ss]) || /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1. Necessity for this case is demonstrated by compressing a sequence of approximately 48.5 million of character 251; 1.0.0/1.0.1 will then die here. */ (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), 1007 ) for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK; /*-- Step 3: The [ss] big bucket is now done. Record this fact, and update the quadrant descriptors. Remember to update quadrants in the overshoot area too, if necessary. The "if (i < 255)" test merely skips this updating for the last bucket processed, since updating for the last bucket is pointless. The quadrant array provides a way to incrementally cache sort orderings, as they appear, so as to make subsequent comparisons in fullGtU() complete faster. For repetitive blocks this makes a big difference (but not big enough to be able to avoid the fallback sorting mechanism, exponential radix sort). The precise meaning is: at all times: for 0 <= i < nblock and 0 <= j <= nblock if block[i] != block[j], then the relative values of quadrant[i] and quadrant[j] are meaningless. else { if quadrant[i] < quadrant[j] then the string starting at i lexicographically precedes the string starting at j else if quadrant[i] > quadrant[j] then the string starting at j lexicographically precedes the string starting at i else the relative ordering of the strings starting at i and j has not yet been determined. } --*/ bigDone[ss] = True; if (i < 255) { Int32 bbStart = ftab[ss << 8] & CLEARMASK; Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart; Int32 shifts = 0; while ((bbSize >> shifts) > 65534) shifts++; for (j = bbSize-1; j >= 0; j--) { Int32 a2update = ptr[bbStart + j]; UInt16 qVal = (UInt16)(j >> shifts); quadrant[a2update] = qVal; if (a2update < BZ_N_OVERSHOOT) quadrant[a2update + nblock] = qVal; } AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 ); } } if (verb >= 4) VPrintf3 ( " %d pointers, %d sorted, %d scanned\n", nblock, numQSorted, nblock - numQSorted ); } #undef BIGFREQ #undef SETMASK #undef CLEARMASK /*---------------------------------------------*/ /* Pre: nblock > 0 arr2 exists for [0 .. nblock-1 +N_OVERSHOOT] ((UChar*)arr2) [0 .. nblock-1] holds block arr1 exists for [0 .. nblock-1] Post: ((UChar*)arr2) [0 .. nblock-1] holds block All other areas of block destroyed ftab [ 0 .. 65536 ] destroyed arr1 [0 .. nblock-1] holds sorted order */ void BZ2_blockSort ( EState* s ) { UInt32* ptr = s->ptr; UChar* block = s->block; UInt32* ftab = s->ftab; Int32 nblock = s->nblock; Int32 verb = s->verbosity; Int32 wfact = s->workFactor; UInt16* quadrant; Int32 budget; Int32 budgetInit; Int32 i; if (nblock < 10000) { fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); } else { /* Calculate the location for quadrant, remembering to get the alignment right. Assumes that &(block[0]) is at least 2-byte aligned -- this should be ok since block is really the first section of arr2. */ i = nblock+BZ_N_OVERSHOOT; if (i & 1) i++; quadrant = (UInt16*)(&(block[i])); /* (wfact-1) / 3 puts the default-factor-30 transition point at very roughly the same place as with v0.1 and v0.9.0. Not that it particularly matters any more, since the resulting compressed stream is now the same regardless of whether or not we use the main sort or fallback sort. */ if (wfact < 1 ) wfact = 1; if (wfact > 100) wfact = 100; budgetInit = nblock * ((wfact-1) / 3); budget = budgetInit; mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget ); if (verb >= 3) VPrintf3 ( " %d work, %d block, ratio %5.2f\n", budgetInit - budget, nblock, (float)(budgetInit - budget) / (float)(nblock==0 ? 1 : nblock) ); if (budget < 0) { if (verb >= 2) VPrintf0 ( " too repetitive; using fallback" " sorting algorithm\n" ); fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); } } s->origPtr = -1; for (i = 0; i < s->nblock; i++) if (ptr[i] == 0) { s->origPtr = i; break; }; AssertH( s->origPtr != -1, 1003 ); } /*-------------------------------------------------------------*/ /*--- end blocksort.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Huffman coding low-level stuff ---*/ /*--- huffman.c ---*/ /*-------------------------------------------------------------*/ /*---------------------------------------------------*/ #define WEIGHTOF(zz0) ((zz0) & 0xffffff00) #define DEPTHOF(zz1) ((zz1) & 0x000000ff) #define MYMAX(zz2,zz3) ((zz2) > (zz3) ? (zz2) : (zz3)) #define ADDWEIGHTS(zw1,zw2) \ (WEIGHTOF(zw1)+WEIGHTOF(zw2)) | \ (1 + MYMAX(DEPTHOF(zw1),DEPTHOF(zw2))) #define UPHEAP(z) \ { \ Int32 zz, tmp; \ zz = z; tmp = heap[zz]; \ while (weight[tmp] < weight[heap[zz >> 1]]) { \ heap[zz] = heap[zz >> 1]; \ zz >>= 1; \ } \ heap[zz] = tmp; \ } #define DOWNHEAP(z) \ { \ Int32 zz, yy, tmp; \ zz = z; tmp = heap[zz]; \ while (True) { \ yy = zz << 1; \ if (yy > nHeap) break; \ if (yy < nHeap && \ weight[heap[yy+1]] < weight[heap[yy]]) \ yy++; \ if (weight[tmp] < weight[heap[yy]]) break; \ heap[zz] = heap[yy]; \ zz = yy; \ } \ heap[zz] = tmp; \ } /*---------------------------------------------------*/ void BZ2_hbMakeCodeLengths ( UChar *len, Int32 *freq, Int32 alphaSize, Int32 maxLen ) { /*-- Nodes and heap entries run from 1. Entry 0 for both the heap and nodes is a sentinel. --*/ Int32 nNodes, nHeap, n1, n2, i, j, k; Bool tooLong; Int32 heap [ BZ_MAX_ALPHA_SIZE + 2 ]; Int32 weight [ BZ_MAX_ALPHA_SIZE * 2 ]; Int32 parent [ BZ_MAX_ALPHA_SIZE * 2 ]; for (i = 0; i < alphaSize; i++) weight[i+1] = (freq[i] == 0 ? 1 : freq[i]) << 8; while (True) { nNodes = alphaSize; nHeap = 0; heap[0] = 0; weight[0] = 0; parent[0] = -2; for (i = 1; i <= alphaSize; i++) { parent[i] = -1; nHeap++; heap[nHeap] = i; UPHEAP(nHeap); } AssertH( nHeap < (BZ_MAX_ALPHA_SIZE+2), 2001 ); while (nHeap > 1) { n1 = heap[1]; heap[1] = heap[nHeap]; nHeap--; DOWNHEAP(1); n2 = heap[1]; heap[1] = heap[nHeap]; nHeap--; DOWNHEAP(1); nNodes++; parent[n1] = parent[n2] = nNodes; weight[nNodes] = ADDWEIGHTS(weight[n1], weight[n2]); parent[nNodes] = -1; nHeap++; heap[nHeap] = nNodes; UPHEAP(nHeap); } AssertH( nNodes < (BZ_MAX_ALPHA_SIZE * 2), 2002 ); tooLong = False; for (i = 1; i <= alphaSize; i++) { j = 0; k = i; while (parent[k] >= 0) { k = parent[k]; j++; } len[i-1] = j; if (j > maxLen) tooLong = True; } if (! tooLong) break; for (i = 1; i < alphaSize; i++) { j = weight[i] >> 8; j = 1 + (j / 2); weight[i] = j << 8; } } } /*---------------------------------------------------*/ void BZ2_hbAssignCodes ( Int32 *code, UChar *length, Int32 minLen, Int32 maxLen, Int32 alphaSize ) { Int32 n, vec, i; vec = 0; for (n = minLen; n <= maxLen; n++) { for (i = 0; i < alphaSize; i++) if (length[i] == n) { code[i] = vec; vec++; }; vec <<= 1; } } /*---------------------------------------------------*/ void BZ2_hbCreateDecodeTables ( Int32 *limit, Int32 *base, Int32 *perm, UChar *length, Int32 minLen, Int32 maxLen, Int32 alphaSize ) { Int32 pp, i, j, vec; pp = 0; for (i = minLen; i <= maxLen; i++) for (j = 0; j < alphaSize; j++) if (length[j] == i) { perm[pp] = j; pp++; }; for (i = 0; i < BZ_MAX_CODE_LEN; i++) base[i] = 0; for (i = 0; i < alphaSize; i++) base[length[i]+1]++; for (i = 1; i < BZ_MAX_CODE_LEN; i++) base[i] += base[i-1]; for (i = 0; i < BZ_MAX_CODE_LEN; i++) limit[i] = 0; vec = 0; for (i = minLen; i <= maxLen; i++) { vec += (base[i+1] - base[i]); limit[i] = vec-1; vec <<= 1; } for (i = minLen + 1; i <= maxLen; i++) base[i] = ((limit[i-1] + 1) << 1) - base[i]; } /*-------------------------------------------------------------*/ /*--- end huffman.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Table for doing CRCs ---*/ /*--- crctable.c ---*/ /*-------------------------------------------------------------*/ /*-- I think this is an implementation of the AUTODIN-II, Ethernet & FDDI 32-bit CRC standard. Vaguely derived from code by Rob Warnock, in Section 51 of the comp.compression FAQ. --*/ UInt32 BZ2_crc32Table[256] = { /*-- Ugly, innit? --*/ 0x00000000L, 0x04c11db7L, 0x09823b6eL, 0x0d4326d9L, 0x130476dcL, 0x17c56b6bL, 0x1a864db2L, 0x1e475005L, 0x2608edb8L, 0x22c9f00fL, 0x2f8ad6d6L, 0x2b4bcb61L, 0x350c9b64L, 0x31cd86d3L, 0x3c8ea00aL, 0x384fbdbdL, 0x4c11db70L, 0x48d0c6c7L, 0x4593e01eL, 0x4152fda9L, 0x5f15adacL, 0x5bd4b01bL, 0x569796c2L, 0x52568b75L, 0x6a1936c8L, 0x6ed82b7fL, 0x639b0da6L, 0x675a1011L, 0x791d4014L, 0x7ddc5da3L, 0x709f7b7aL, 0x745e66cdL, 0x9823b6e0L, 0x9ce2ab57L, 0x91a18d8eL, 0x95609039L, 0x8b27c03cL, 0x8fe6dd8bL, 0x82a5fb52L, 0x8664e6e5L, 0xbe2b5b58L, 0xbaea46efL, 0xb7a96036L, 0xb3687d81L, 0xad2f2d84L, 0xa9ee3033L, 0xa4ad16eaL, 0xa06c0b5dL, 0xd4326d90L, 0xd0f37027L, 0xddb056feL, 0xd9714b49L, 0xc7361b4cL, 0xc3f706fbL, 0xceb42022L, 0xca753d95L, 0xf23a8028L, 0xf6fb9d9fL, 0xfbb8bb46L, 0xff79a6f1L, 0xe13ef6f4L, 0xe5ffeb43L, 0xe8bccd9aL, 0xec7dd02dL, 0x34867077L, 0x30476dc0L, 0x3d044b19L, 0x39c556aeL, 0x278206abL, 0x23431b1cL, 0x2e003dc5L, 0x2ac12072L, 0x128e9dcfL, 0x164f8078L, 0x1b0ca6a1L, 0x1fcdbb16L, 0x018aeb13L, 0x054bf6a4L, 0x0808d07dL, 0x0cc9cdcaL, 0x7897ab07L, 0x7c56b6b0L, 0x71159069L, 0x75d48ddeL, 0x6b93dddbL, 0x6f52c06cL, 0x6211e6b5L, 0x66d0fb02L, 0x5e9f46bfL, 0x5a5e5b08L, 0x571d7dd1L, 0x53dc6066L, 0x4d9b3063L, 0x495a2dd4L, 0x44190b0dL, 0x40d816baL, 0xaca5c697L, 0xa864db20L, 0xa527fdf9L, 0xa1e6e04eL, 0xbfa1b04bL, 0xbb60adfcL, 0xb6238b25L, 0xb2e29692L, 0x8aad2b2fL, 0x8e6c3698L, 0x832f1041L, 0x87ee0df6L, 0x99a95df3L, 0x9d684044L, 0x902b669dL, 0x94ea7b2aL, 0xe0b41de7L, 0xe4750050L, 0xe9362689L, 0xedf73b3eL, 0xf3b06b3bL, 0xf771768cL, 0xfa325055L, 0xfef34de2L, 0xc6bcf05fL, 0xc27dede8L, 0xcf3ecb31L, 0xcbffd686L, 0xd5b88683L, 0xd1799b34L, 0xdc3abdedL, 0xd8fba05aL, 0x690ce0eeL, 0x6dcdfd59L, 0x608edb80L, 0x644fc637L, 0x7a089632L, 0x7ec98b85L, 0x738aad5cL, 0x774bb0ebL, 0x4f040d56L, 0x4bc510e1L, 0x46863638L, 0x42472b8fL, 0x5c007b8aL, 0x58c1663dL, 0x558240e4L, 0x51435d53L, 0x251d3b9eL, 0x21dc2629L, 0x2c9f00f0L, 0x285e1d47L, 0x36194d42L, 0x32d850f5L, 0x3f9b762cL, 0x3b5a6b9bL, 0x0315d626L, 0x07d4cb91L, 0x0a97ed48L, 0x0e56f0ffL, 0x1011a0faL, 0x14d0bd4dL, 0x19939b94L, 0x1d528623L, 0xf12f560eL, 0xf5ee4bb9L, 0xf8ad6d60L, 0xfc6c70d7L, 0xe22b20d2L, 0xe6ea3d65L, 0xeba91bbcL, 0xef68060bL, 0xd727bbb6L, 0xd3e6a601L, 0xdea580d8L, 0xda649d6fL, 0xc423cd6aL, 0xc0e2d0ddL, 0xcda1f604L, 0xc960ebb3L, 0xbd3e8d7eL, 0xb9ff90c9L, 0xb4bcb610L, 0xb07daba7L, 0xae3afba2L, 0xaafbe615L, 0xa7b8c0ccL, 0xa379dd7bL, 0x9b3660c6L, 0x9ff77d71L, 0x92b45ba8L, 0x9675461fL, 0x8832161aL, 0x8cf30badL, 0x81b02d74L, 0x857130c3L, 0x5d8a9099L, 0x594b8d2eL, 0x5408abf7L, 0x50c9b640L, 0x4e8ee645L, 0x4a4ffbf2L, 0x470cdd2bL, 0x43cdc09cL, 0x7b827d21L, 0x7f436096L, 0x7200464fL, 0x76c15bf8L, 0x68860bfdL, 0x6c47164aL, 0x61043093L, 0x65c52d24L, 0x119b4be9L, 0x155a565eL, 0x18197087L, 0x1cd86d30L, 0x029f3d35L, 0x065e2082L, 0x0b1d065bL, 0x0fdc1becL, 0x3793a651L, 0x3352bbe6L, 0x3e119d3fL, 0x3ad08088L, 0x2497d08dL, 0x2056cd3aL, 0x2d15ebe3L, 0x29d4f654L, 0xc5a92679L, 0xc1683bceL, 0xcc2b1d17L, 0xc8ea00a0L, 0xd6ad50a5L, 0xd26c4d12L, 0xdf2f6bcbL, 0xdbee767cL, 0xe3a1cbc1L, 0xe760d676L, 0xea23f0afL, 0xeee2ed18L, 0xf0a5bd1dL, 0xf464a0aaL, 0xf9278673L, 0xfde69bc4L, 0x89b8fd09L, 0x8d79e0beL, 0x803ac667L, 0x84fbdbd0L, 0x9abc8bd5L, 0x9e7d9662L, 0x933eb0bbL, 0x97ffad0cL, 0xafb010b1L, 0xab710d06L, 0xa6322bdfL, 0xa2f33668L, 0xbcb4666dL, 0xb8757bdaL, 0xb5365d03L, 0xb1f740b4L }; /*-------------------------------------------------------------*/ /*--- end crctable.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Table for randomising repetitive blocks ---*/ /*--- randtable.c ---*/ /*-------------------------------------------------------------*/ /*---------------------------------------------*/ Int32 BZ2_rNums[512] = { 619, 720, 127, 481, 931, 816, 813, 233, 566, 247, 985, 724, 205, 454, 863, 491, 741, 242, 949, 214, 733, 859, 335, 708, 621, 574, 73, 654, 730, 472, 419, 436, 278, 496, 867, 210, 399, 680, 480, 51, 878, 465, 811, 169, 869, 675, 611, 697, 867, 561, 862, 687, 507, 283, 482, 129, 807, 591, 733, 623, 150, 238, 59, 379, 684, 877, 625, 169, 643, 105, 170, 607, 520, 932, 727, 476, 693, 425, 174, 647, 73, 122, 335, 530, 442, 853, 695, 249, 445, 515, 909, 545, 703, 919, 874, 474, 882, 500, 594, 612, 641, 801, 220, 162, 819, 984, 589, 513, 495, 799, 161, 604, 958, 533, 221, 400, 386, 867, 600, 782, 382, 596, 414, 171, 516, 375, 682, 485, 911, 276, 98, 553, 163, 354, 666, 933, 424, 341, 533, 870, 227, 730, 475, 186, 263, 647, 537, 686, 600, 224, 469, 68, 770, 919, 190, 373, 294, 822, 808, 206, 184, 943, 795, 384, 383, 461, 404, 758, 839, 887, 715, 67, 618, 276, 204, 918, 873, 777, 604, 560, 951, 160, 578, 722, 79, 804, 96, 409, 713, 940, 652, 934, 970, 447, 318, 353, 859, 672, 112, 785, 645, 863, 803, 350, 139, 93, 354, 99, 820, 908, 609, 772, 154, 274, 580, 184, 79, 626, 630, 742, 653, 282, 762, 623, 680, 81, 927, 626, 789, 125, 411, 521, 938, 300, 821, 78, 343, 175, 128, 250, 170, 774, 972, 275, 999, 639, 495, 78, 352, 126, 857, 956, 358, 619, 580, 124, 737, 594, 701, 612, 669, 112, 134, 694, 363, 992, 809, 743, 168, 974, 944, 375, 748, 52, 600, 747, 642, 182, 862, 81, 344, 805, 988, 739, 511, 655, 814, 334, 249, 515, 897, 955, 664, 981, 649, 113, 974, 459, 893, 228, 433, 837, 553, 268, 926, 240, 102, 654, 459, 51, 686, 754, 806, 760, 493, 403, 415, 394, 687, 700, 946, 670, 656, 610, 738, 392, 760, 799, 887, 653, 978, 321, 576, 617, 626, 502, 894, 679, 243, 440, 680, 879, 194, 572, 640, 724, 926, 56, 204, 700, 707, 151, 457, 449, 797, 195, 791, 558, 945, 679, 297, 59, 87, 824, 713, 663, 412, 693, 342, 606, 134, 108, 571, 364, 631, 212, 174, 643, 304, 329, 343, 97, 430, 751, 497, 314, 983, 374, 822, 928, 140, 206, 73, 263, 980, 736, 876, 478, 430, 305, 170, 514, 364, 692, 829, 82, 855, 953, 676, 246, 369, 970, 294, 750, 807, 827, 150, 790, 288, 923, 804, 378, 215, 828, 592, 281, 565, 555, 710, 82, 896, 831, 547, 261, 524, 462, 293, 465, 502, 56, 661, 821, 976, 991, 658, 869, 905, 758, 745, 193, 768, 550, 608, 933, 378, 286, 215, 979, 792, 961, 61, 688, 793, 644, 986, 403, 106, 366, 905, 644, 372, 567, 466, 434, 645, 210, 389, 550, 919, 135, 780, 773, 635, 389, 707, 100, 626, 958, 165, 504, 920, 176, 193, 713, 857, 265, 203, 50, 668, 108, 645, 990, 626, 197, 510, 357, 358, 850, 858, 364, 936, 638 }; /*-------------------------------------------------------------*/ /*--- end randtable.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Compression machinery (not incl block sorting) ---*/ /*--- compress.c ---*/ /*-------------------------------------------------------------*/ /*---------------------------------------------------*/ /*--- Bit stream I/O ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ void BZ2_bsInitWrite ( EState* s ) { s->bsLive = 0; s->bsBuff = 0; } /*---------------------------------------------------*/ static void bsFinishWrite ( EState* s ) { while (s->bsLive > 0) { s->zbits[s->numZ] = (UChar)(s->bsBuff >> 24); s->numZ++; s->bsBuff <<= 8; s->bsLive -= 8; } } /*---------------------------------------------------*/ #define bsNEEDW(nz) \ { \ while (s->bsLive >= 8) { \ s->zbits[s->numZ] \ = (UChar)(s->bsBuff >> 24); \ s->numZ++; \ s->bsBuff <<= 8; \ s->bsLive -= 8; \ } \ } /*---------------------------------------------------*/ static __inline__ void bsW ( EState* s, Int32 n, UInt32 v ) { bsNEEDW ( n ); s->bsBuff |= (v << (32 - s->bsLive - n)); s->bsLive += n; } /*---------------------------------------------------*/ static void bsPutUInt32 ( EState* s, UInt32 u ) { bsW ( s, 8, (u >> 24) & 0xffL ); bsW ( s, 8, (u >> 16) & 0xffL ); bsW ( s, 8, (u >> 8) & 0xffL ); bsW ( s, 8, u & 0xffL ); } /*---------------------------------------------------*/ static void bsPutUChar ( EState* s, UChar c ) { bsW( s, 8, (UInt32)c ); } /*---------------------------------------------------*/ /*--- The back end proper ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ static void makeMaps_e ( EState* s ) { Int32 i; s->nInUse = 0; for (i = 0; i < 256; i++) if (s->inUse[i]) { s->unseqToSeq[i] = s->nInUse; s->nInUse++; } } /*---------------------------------------------------*/ static void generateMTFValues ( EState* s ) { UChar yy[256]; Int32 i, j; Int32 zPend; Int32 wr; Int32 EOB; /* After sorting (eg, here), s->arr1 [ 0 .. s->nblock-1 ] holds sorted order, and ((UChar*)s->arr2) [ 0 .. s->nblock-1 ] holds the original block data. The first thing to do is generate the MTF values, and put them in ((UInt16*)s->arr1) [ 0 .. s->nblock-1 ]. Because there are strictly fewer or equal MTF values than block values, ptr values in this area are overwritten with MTF values only when they are no longer needed. The final compressed bitstream is generated into the area starting at (UChar*) (&((UChar*)s->arr2)[s->nblock]) These storage aliases are set up in bzCompressInit(), except for the last one, which is arranged in compressBlock(). */ UInt32* ptr = s->ptr; UChar* block = s->block; UInt16* mtfv = s->mtfv; makeMaps_e ( s ); EOB = s->nInUse+1; for (i = 0; i <= EOB; i++) s->mtfFreq[i] = 0; wr = 0; zPend = 0; for (i = 0; i < s->nInUse; i++) yy[i] = (UChar) i; for (i = 0; i < s->nblock; i++) { UChar ll_i; AssertD ( wr <= i, "generateMTFValues(1)" ); j = ptr[i]-1; if (j < 0) j += s->nblock; ll_i = s->unseqToSeq[block[j]]; AssertD ( ll_i < s->nInUse, "generateMTFValues(2a)" ); if (yy[0] == ll_i) { zPend++; } else { if (zPend > 0) { zPend--; while (True) { if (zPend & 1) { mtfv[wr] = BZ_RUNB; wr++; s->mtfFreq[BZ_RUNB]++; } else { mtfv[wr] = BZ_RUNA; wr++; s->mtfFreq[BZ_RUNA]++; } if (zPend < 2) break; zPend = (zPend - 2) / 2; }; zPend = 0; } { register UChar rtmp; register UChar* ryy_j; register UChar rll_i; rtmp = yy[1]; yy[1] = yy[0]; ryy_j = &(yy[1]); rll_i = ll_i; while ( rll_i != rtmp ) { register UChar rtmp2; ryy_j++; rtmp2 = rtmp; rtmp = *ryy_j; *ryy_j = rtmp2; }; yy[0] = rtmp; j = ryy_j - &(yy[0]); mtfv[wr] = j+1; wr++; s->mtfFreq[j+1]++; } } } if (zPend > 0) { zPend--; while (True) { if (zPend & 1) { mtfv[wr] = BZ_RUNB; wr++; s->mtfFreq[BZ_RUNB]++; } else { mtfv[wr] = BZ_RUNA; wr++; s->mtfFreq[BZ_RUNA]++; } if (zPend < 2) break; zPend = (zPend - 2) / 2; }; zPend = 0; } mtfv[wr] = EOB; wr++; s->mtfFreq[EOB]++; s->nMTF = wr; } /*---------------------------------------------------*/ #define BZ_LESSER_ICOST 0 #define BZ_GREATER_ICOST 15 static void sendMTFValues ( EState* s ) { Int32 v, t, i, j, gs, ge, totc, bt, bc, iter; Int32 nSelectors, alphaSize, minLen, maxLen, selCtr; Int32 nGroups, nBytes; /*-- UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; is a global since the decoder also needs it. Int32 code[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 rfreq[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; are also globals only used in this proc. Made global to keep stack frame size small. --*/ UInt16 cost[BZ_N_GROUPS]; Int32 fave[BZ_N_GROUPS]; UInt16* mtfv = s->mtfv; if (s->verbosity >= 3) VPrintf3( " %d in block, %d after MTF & 1-2 coding, " "%d+2 syms in use\n", s->nblock, s->nMTF, s->nInUse ); alphaSize = s->nInUse+2; for (t = 0; t < BZ_N_GROUPS; t++) for (v = 0; v < alphaSize; v++) s->len[t][v] = BZ_GREATER_ICOST; /*--- Decide how many coding tables to use ---*/ AssertH ( s->nMTF > 0, 3001 ); if (s->nMTF < 200) nGroups = 2; else if (s->nMTF < 600) nGroups = 3; else if (s->nMTF < 1200) nGroups = 4; else if (s->nMTF < 2400) nGroups = 5; else nGroups = 6; /*--- Generate an initial set of coding tables ---*/ { Int32 nPart, remF, tFreq, aFreq; nPart = nGroups; remF = s->nMTF; gs = 0; while (nPart > 0) { tFreq = remF / nPart; ge = gs-1; aFreq = 0; while (aFreq < tFreq && ge < alphaSize-1) { ge++; aFreq += s->mtfFreq[ge]; } if (ge > gs && nPart != nGroups && nPart != 1 && ((nGroups-nPart) % 2 == 1)) { aFreq -= s->mtfFreq[ge]; ge--; } if (s->verbosity >= 3) VPrintf5( " initial group %d, [%d .. %d], " "has %d syms (%4.1f%%)\n", nPart, gs, ge, aFreq, (100.0 * (float)aFreq) / (float)(s->nMTF) ); for (v = 0; v < alphaSize; v++) if (v >= gs && v <= ge) s->len[nPart-1][v] = BZ_LESSER_ICOST; else s->len[nPart-1][v] = BZ_GREATER_ICOST; nPart--; gs = ge+1; remF -= aFreq; } } /*--- Iterate up to BZ_N_ITERS times to improve the tables. ---*/ for (iter = 0; iter < BZ_N_ITERS; iter++) { for (t = 0; t < nGroups; t++) fave[t] = 0; for (t = 0; t < nGroups; t++) for (v = 0; v < alphaSize; v++) s->rfreq[t][v] = 0; /*--- Set up an auxiliary length table which is used to fast-track the common case (nGroups == 6). ---*/ if (nGroups == 6) { for (v = 0; v < alphaSize; v++) { s->len_pack[v][0] = (s->len[1][v] << 16) | s->len[0][v]; s->len_pack[v][1] = (s->len[3][v] << 16) | s->len[2][v]; s->len_pack[v][2] = (s->len[5][v] << 16) | s->len[4][v]; } } nSelectors = 0; totc = 0; gs = 0; while (True) { /*--- Set group start & end marks. --*/ if (gs >= s->nMTF) break; ge = gs + BZ_G_SIZE - 1; if (ge >= s->nMTF) ge = s->nMTF-1; /*-- Calculate the cost of this group as coded by each of the coding tables. --*/ for (t = 0; t < nGroups; t++) cost[t] = 0; if (nGroups == 6 && 50 == ge-gs+1) { /*--- fast track the common case ---*/ register UInt32 cost01, cost23, cost45; register UInt16 icv; cost01 = cost23 = cost45 = 0; # define BZ_ITER(nn) \ icv = mtfv[gs+(nn)]; \ cost01 += s->len_pack[icv][0]; \ cost23 += s->len_pack[icv][1]; \ cost45 += s->len_pack[icv][2]; \ BZ_ITER(0); BZ_ITER(1); BZ_ITER(2); BZ_ITER(3); BZ_ITER(4); BZ_ITER(5); BZ_ITER(6); BZ_ITER(7); BZ_ITER(8); BZ_ITER(9); BZ_ITER(10); BZ_ITER(11); BZ_ITER(12); BZ_ITER(13); BZ_ITER(14); BZ_ITER(15); BZ_ITER(16); BZ_ITER(17); BZ_ITER(18); BZ_ITER(19); BZ_ITER(20); BZ_ITER(21); BZ_ITER(22); BZ_ITER(23); BZ_ITER(24); BZ_ITER(25); BZ_ITER(26); BZ_ITER(27); BZ_ITER(28); BZ_ITER(29); BZ_ITER(30); BZ_ITER(31); BZ_ITER(32); BZ_ITER(33); BZ_ITER(34); BZ_ITER(35); BZ_ITER(36); BZ_ITER(37); BZ_ITER(38); BZ_ITER(39); BZ_ITER(40); BZ_ITER(41); BZ_ITER(42); BZ_ITER(43); BZ_ITER(44); BZ_ITER(45); BZ_ITER(46); BZ_ITER(47); BZ_ITER(48); BZ_ITER(49); # undef BZ_ITER cost[0] = cost01 & 0xffff; cost[1] = cost01 >> 16; cost[2] = cost23 & 0xffff; cost[3] = cost23 >> 16; cost[4] = cost45 & 0xffff; cost[5] = cost45 >> 16; } else { /*--- slow version which correctly handles all situations ---*/ for (i = gs; i <= ge; i++) { UInt16 icv = mtfv[i]; for (t = 0; t < nGroups; t++) cost[t] += s->len[t][icv]; } } /*-- Find the coding table which is best for this group, and record its identity in the selector table. --*/ bc = 999999999; bt = -1; for (t = 0; t < nGroups; t++) if (cost[t] < bc) { bc = cost[t]; bt = t; }; totc += bc; fave[bt]++; s->selector[nSelectors] = bt; nSelectors++; /*-- Increment the symbol frequencies for the selected table. --*/ if (nGroups == 6 && 50 == ge-gs+1) { /*--- fast track the common case ---*/ # define BZ_ITUR(nn) s->rfreq[bt][ mtfv[gs+(nn)] ]++ BZ_ITUR(0); BZ_ITUR(1); BZ_ITUR(2); BZ_ITUR(3); BZ_ITUR(4); BZ_ITUR(5); BZ_ITUR(6); BZ_ITUR(7); BZ_ITUR(8); BZ_ITUR(9); BZ_ITUR(10); BZ_ITUR(11); BZ_ITUR(12); BZ_ITUR(13); BZ_ITUR(14); BZ_ITUR(15); BZ_ITUR(16); BZ_ITUR(17); BZ_ITUR(18); BZ_ITUR(19); BZ_ITUR(20); BZ_ITUR(21); BZ_ITUR(22); BZ_ITUR(23); BZ_ITUR(24); BZ_ITUR(25); BZ_ITUR(26); BZ_ITUR(27); BZ_ITUR(28); BZ_ITUR(29); BZ_ITUR(30); BZ_ITUR(31); BZ_ITUR(32); BZ_ITUR(33); BZ_ITUR(34); BZ_ITUR(35); BZ_ITUR(36); BZ_ITUR(37); BZ_ITUR(38); BZ_ITUR(39); BZ_ITUR(40); BZ_ITUR(41); BZ_ITUR(42); BZ_ITUR(43); BZ_ITUR(44); BZ_ITUR(45); BZ_ITUR(46); BZ_ITUR(47); BZ_ITUR(48); BZ_ITUR(49); # undef BZ_ITUR } else { /*--- slow version which correctly handles all situations ---*/ for (i = gs; i <= ge; i++) s->rfreq[bt][ mtfv[i] ]++; } gs = ge+1; } if (s->verbosity >= 3) { VPrintf2 ( " pass %d: size is %d, grp uses are ", iter+1, totc/8 ); for (t = 0; t < nGroups; t++) VPrintf1 ( "%d ", fave[t] ); VPrintf0 ( "\n" ); } /*-- Recompute the tables based on the accumulated frequencies. --*/ for (t = 0; t < nGroups; t++) BZ2_hbMakeCodeLengths ( &(s->len[t][0]), &(s->rfreq[t][0]), alphaSize, 20 ); } AssertH( nGroups < 8, 3002 ); AssertH( nSelectors < 32768 && nSelectors <= (2 + (900000 / BZ_G_SIZE)), 3003 ); /*--- Compute MTF values for the selectors. ---*/ { UChar pos[BZ_N_GROUPS], ll_i, tmp2, tmp; for (i = 0; i < nGroups; i++) pos[i] = i; for (i = 0; i < nSelectors; i++) { ll_i = s->selector[i]; j = 0; tmp = pos[j]; while ( ll_i != tmp ) { j++; tmp2 = tmp; tmp = pos[j]; pos[j] = tmp2; }; pos[0] = tmp; s->selectorMtf[i] = j; } }; /*--- Assign actual codes for the tables. --*/ for (t = 0; t < nGroups; t++) { minLen = 32; maxLen = 0; for (i = 0; i < alphaSize; i++) { if (s->len[t][i] > maxLen) maxLen = s->len[t][i]; if (s->len[t][i] < minLen) minLen = s->len[t][i]; } AssertH ( !(maxLen > 20), 3004 ); AssertH ( !(minLen < 1), 3005 ); BZ2_hbAssignCodes ( &(s->code[t][0]), &(s->len[t][0]), minLen, maxLen, alphaSize ); } /*--- Transmit the mapping table. ---*/ { Bool inUse16[16]; for (i = 0; i < 16; i++) { inUse16[i] = False; for (j = 0; j < 16; j++) if (s->inUse[i * 16 + j]) inUse16[i] = True; } nBytes = s->numZ; for (i = 0; i < 16; i++) if (inUse16[i]) bsW(s,1,1); else bsW(s,1,0); for (i = 0; i < 16; i++) if (inUse16[i]) for (j = 0; j < 16; j++) { if (s->inUse[i * 16 + j]) bsW(s,1,1); else bsW(s,1,0); } if (s->verbosity >= 3) VPrintf1( " bytes: mapping %d, ", s->numZ-nBytes ); } /*--- Now the selectors. ---*/ nBytes = s->numZ; bsW ( s, 3, nGroups ); bsW ( s, 15, nSelectors ); for (i = 0; i < nSelectors; i++) { for (j = 0; j < s->selectorMtf[i]; j++) bsW(s,1,1); bsW(s,1,0); } if (s->verbosity >= 3) VPrintf1( "selectors %d, ", s->numZ-nBytes ); /*--- Now the coding tables. ---*/ nBytes = s->numZ; for (t = 0; t < nGroups; t++) { Int32 curr = s->len[t][0]; bsW ( s, 5, curr ); for (i = 0; i < alphaSize; i++) { while (curr < s->len[t][i]) { bsW(s,2,2); curr++; /* 10 */ }; while (curr > s->len[t][i]) { bsW(s,2,3); curr--; /* 11 */ }; bsW ( s, 1, 0 ); } } if (s->verbosity >= 3) VPrintf1 ( "code lengths %d, ", s->numZ-nBytes ); /*--- And finally, the block data proper ---*/ nBytes = s->numZ; selCtr = 0; gs = 0; while (True) { if (gs >= s->nMTF) break; ge = gs + BZ_G_SIZE - 1; if (ge >= s->nMTF) ge = s->nMTF-1; AssertH ( s->selector[selCtr] < nGroups, 3006 ); if (nGroups == 6 && 50 == ge-gs+1) { /*--- fast track the common case ---*/ UInt16 mtfv_i; UChar* s_len_sel_selCtr = &(s->len[s->selector[selCtr]][0]); Int32* s_code_sel_selCtr = &(s->code[s->selector[selCtr]][0]); # define BZ_ITAH(nn) \ mtfv_i = mtfv[gs+(nn)]; \ bsW ( s, \ s_len_sel_selCtr[mtfv_i], \ s_code_sel_selCtr[mtfv_i] ) BZ_ITAH(0); BZ_ITAH(1); BZ_ITAH(2); BZ_ITAH(3); BZ_ITAH(4); BZ_ITAH(5); BZ_ITAH(6); BZ_ITAH(7); BZ_ITAH(8); BZ_ITAH(9); BZ_ITAH(10); BZ_ITAH(11); BZ_ITAH(12); BZ_ITAH(13); BZ_ITAH(14); BZ_ITAH(15); BZ_ITAH(16); BZ_ITAH(17); BZ_ITAH(18); BZ_ITAH(19); BZ_ITAH(20); BZ_ITAH(21); BZ_ITAH(22); BZ_ITAH(23); BZ_ITAH(24); BZ_ITAH(25); BZ_ITAH(26); BZ_ITAH(27); BZ_ITAH(28); BZ_ITAH(29); BZ_ITAH(30); BZ_ITAH(31); BZ_ITAH(32); BZ_ITAH(33); BZ_ITAH(34); BZ_ITAH(35); BZ_ITAH(36); BZ_ITAH(37); BZ_ITAH(38); BZ_ITAH(39); BZ_ITAH(40); BZ_ITAH(41); BZ_ITAH(42); BZ_ITAH(43); BZ_ITAH(44); BZ_ITAH(45); BZ_ITAH(46); BZ_ITAH(47); BZ_ITAH(48); BZ_ITAH(49); # undef BZ_ITAH } else { /*--- slow version which correctly handles all situations ---*/ for (i = gs; i <= ge; i++) { bsW ( s, s->len [s->selector[selCtr]] [mtfv[i]], s->code [s->selector[selCtr]] [mtfv[i]] ); } } gs = ge+1; selCtr++; } AssertH( selCtr == nSelectors, 3007 ); if (s->verbosity >= 3) VPrintf1( "codes %d\n", s->numZ-nBytes ); } /*---------------------------------------------------*/ void BZ2_compressBlock ( EState* s, Bool is_last_block ) { if (s->nblock > 0) { BZ_FINALISE_CRC ( s->blockCRC ); s->combinedCRC = (s->combinedCRC << 1) | (s->combinedCRC >> 31); s->combinedCRC ^= s->blockCRC; if (s->blockNo > 1) s->numZ = 0; if (s->verbosity >= 2) VPrintf4( " block %d: crc = 0x%8x, " "combined CRC = 0x%8x, size = %d\n", s->blockNo, s->blockCRC, s->combinedCRC, s->nblock ); BZ2_blockSort ( s ); } s->zbits = (UChar*) (&((UChar*)s->arr2)[s->nblock]); /*-- If this is the first block, create the stream header. --*/ if (s->blockNo == 1) { BZ2_bsInitWrite ( s ); bsPutUChar ( s, BZ_HDR_B ); bsPutUChar ( s, BZ_HDR_Z ); bsPutUChar ( s, BZ_HDR_h ); bsPutUChar ( s, (UChar)(BZ_HDR_0 + s->blockSize100k) ); } if (s->nblock > 0) { bsPutUChar ( s, 0x31 ); bsPutUChar ( s, 0x41 ); bsPutUChar ( s, 0x59 ); bsPutUChar ( s, 0x26 ); bsPutUChar ( s, 0x53 ); bsPutUChar ( s, 0x59 ); /*-- Now the block's CRC, so it is in a known place. --*/ bsPutUInt32 ( s, s->blockCRC ); /*-- Now a single bit indicating (non-)randomisation. As of version 0.9.5, we use a better sorting algorithm which makes randomisation unnecessary. So always set the randomised bit to 'no'. Of course, the decoder still needs to be able to handle randomised blocks so as to maintain backwards compatibility with older versions of bzip2. --*/ bsW(s,1,0); bsW ( s, 24, s->origPtr ); generateMTFValues ( s ); sendMTFValues ( s ); } /*-- If this is the last block, add the stream trailer. --*/ if (is_last_block) { bsPutUChar ( s, 0x17 ); bsPutUChar ( s, 0x72 ); bsPutUChar ( s, 0x45 ); bsPutUChar ( s, 0x38 ); bsPutUChar ( s, 0x50 ); bsPutUChar ( s, 0x90 ); bsPutUInt32 ( s, s->combinedCRC ); if (s->verbosity >= 2) VPrintf1( " final combined CRC = 0x%x\n ", s->combinedCRC ); bsFinishWrite ( s ); } } /*-------------------------------------------------------------*/ /*--- end compress.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Decompression machinery ---*/ /*--- decompress.c ---*/ /*-------------------------------------------------------------*/ /*---------------------------------------------------*/ static void makeMaps_d ( DState* s ) { Int32 i; s->nInUse = 0; for (i = 0; i < 256; i++) if (s->inUse[i]) { s->seqToUnseq[s->nInUse] = i; s->nInUse++; } } /*---------------------------------------------------*/ #define RETURN(rrr) \ { retVal = rrr; goto save_state_and_return; }; #define GET_BITS(lll,vvv,nnn) \ case lll: s->state = lll; \ while (True) { \ if (s->bsLive >= nnn) { \ UInt32 v; \ v = (s->bsBuff >> \ (s->bsLive-nnn)) & ((1 << nnn)-1); \ s->bsLive -= nnn; \ vvv = v; \ break; \ } \ if (s->strm->avail_in == 0) RETURN(BZ_OK); \ s->bsBuff \ = (s->bsBuff << 8) | \ ((UInt32) \ (*((UChar*)(s->strm->next_in)))); \ s->bsLive += 8; \ s->strm->next_in++; \ s->strm->avail_in--; \ s->strm->total_in_lo32++; \ if (s->strm->total_in_lo32 == 0) \ s->strm->total_in_hi32++; \ } #define GET_UCHAR(lll,uuu) \ GET_BITS(lll,uuu,8) #define GET_BIT(lll,uuu) \ GET_BITS(lll,uuu,1) /*---------------------------------------------------*/ #define GET_MTF_VAL(label1,label2,lval) \ { \ if (groupPos == 0) { \ groupNo++; \ if (groupNo >= nSelectors) \ RETURN(BZ_DATA_ERROR); \ groupPos = BZ_G_SIZE; \ gSel = s->selector[groupNo]; \ gMinlen = s->minLens[gSel]; \ gLimit = &(s->limit[gSel][0]); \ gPerm = &(s->perm[gSel][0]); \ gBase = &(s->base[gSel][0]); \ } \ groupPos--; \ zn = gMinlen; \ GET_BITS(label1, zvec, zn); \ while (1) { \ if (zn > 20 /* the longest code */) \ RETURN(BZ_DATA_ERROR); \ if (zvec <= gLimit[zn]) break; \ zn++; \ GET_BIT(label2, zj); \ zvec = (zvec << 1) | zj; \ }; \ if (zvec - gBase[zn] < 0 \ || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) \ RETURN(BZ_DATA_ERROR); \ lval = gPerm[zvec - gBase[zn]]; \ } /*---------------------------------------------------*/ Int32 BZ2_decompress ( DState* s ) { UChar uc; Int32 retVal; Int32 minLen, maxLen; bz_stream* strm = s->strm; /* stuff that needs to be saved/restored */ Int32 i; Int32 j; Int32 t; Int32 alphaSize; Int32 nGroups; Int32 nSelectors; Int32 EOB; Int32 groupNo; Int32 groupPos; Int32 nextSym; Int32 nblockMAX; Int32 nblock; Int32 es; Int32 N; Int32 curr; Int32 zt; Int32 zn; Int32 zvec; Int32 zj; Int32 gSel; Int32 gMinlen; Int32* gLimit; Int32* gBase; Int32* gPerm; if (s->state == BZ_X_MAGIC_1) { /*initialise the save area*/ s->save_i = 0; s->save_j = 0; s->save_t = 0; s->save_alphaSize = 0; s->save_nGroups = 0; s->save_nSelectors = 0; s->save_EOB = 0; s->save_groupNo = 0; s->save_groupPos = 0; s->save_nextSym = 0; s->save_nblockMAX = 0; s->save_nblock = 0; s->save_es = 0; s->save_N = 0; s->save_curr = 0; s->save_zt = 0; s->save_zn = 0; s->save_zvec = 0; s->save_zj = 0; s->save_gSel = 0; s->save_gMinlen = 0; s->save_gLimit = NULL; s->save_gBase = NULL; s->save_gPerm = NULL; } /*restore from the save area*/ i = s->save_i; j = s->save_j; t = s->save_t; alphaSize = s->save_alphaSize; nGroups = s->save_nGroups; nSelectors = s->save_nSelectors; EOB = s->save_EOB; groupNo = s->save_groupNo; groupPos = s->save_groupPos; nextSym = s->save_nextSym; nblockMAX = s->save_nblockMAX; nblock = s->save_nblock; es = s->save_es; N = s->save_N; curr = s->save_curr; zt = s->save_zt; zn = s->save_zn; zvec = s->save_zvec; zj = s->save_zj; gSel = s->save_gSel; gMinlen = s->save_gMinlen; gLimit = s->save_gLimit; gBase = s->save_gBase; gPerm = s->save_gPerm; retVal = BZ_OK; switch (s->state) { GET_UCHAR(BZ_X_MAGIC_1, uc); if (uc != BZ_HDR_B) RETURN(BZ_DATA_ERROR_MAGIC); GET_UCHAR(BZ_X_MAGIC_2, uc); if (uc != BZ_HDR_Z) RETURN(BZ_DATA_ERROR_MAGIC); GET_UCHAR(BZ_X_MAGIC_3, uc) if (uc != BZ_HDR_h) RETURN(BZ_DATA_ERROR_MAGIC); GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8) if (s->blockSize100k < (BZ_HDR_0 + 1) || s->blockSize100k > (BZ_HDR_0 + 9)) RETURN(BZ_DATA_ERROR_MAGIC); s->blockSize100k -= BZ_HDR_0; if (s->smallDecompress) { s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) ); s->ll4 = BZALLOC( ((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar) ); if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR); } else { s->tt = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) ); if (s->tt == NULL) RETURN(BZ_MEM_ERROR); } GET_UCHAR(BZ_X_BLKHDR_1, uc); if (uc == 0x17) goto endhdr_2; if (uc != 0x31) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_2, uc); if (uc != 0x41) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_3, uc); if (uc != 0x59) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_4, uc); if (uc != 0x26) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_5, uc); if (uc != 0x53) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_6, uc); if (uc != 0x59) RETURN(BZ_DATA_ERROR); s->currBlockNo++; if (s->verbosity >= 2) VPrintf1 ( "\n [%d: huff+mtf ", s->currBlockNo ); s->storedBlockCRC = 0; GET_UCHAR(BZ_X_BCRC_1, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_BCRC_2, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_BCRC_3, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_BCRC_4, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1); s->origPtr = 0; GET_UCHAR(BZ_X_ORIGPTR_1, uc); s->origPtr = (s->origPtr << 8) | ((Int32)uc); GET_UCHAR(BZ_X_ORIGPTR_2, uc); s->origPtr = (s->origPtr << 8) | ((Int32)uc); GET_UCHAR(BZ_X_ORIGPTR_3, uc); s->origPtr = (s->origPtr << 8) | ((Int32)uc); if (s->origPtr < 0) RETURN(BZ_DATA_ERROR); if (s->origPtr > 10 + 100000*s->blockSize100k) RETURN(BZ_DATA_ERROR); /*--- Receive the mapping table ---*/ for (i = 0; i < 16; i++) { GET_BIT(BZ_X_MAPPING_1, uc); if (uc == 1) s->inUse16[i] = True; else s->inUse16[i] = False; } for (i = 0; i < 256; i++) s->inUse[i] = False; for (i = 0; i < 16; i++) if (s->inUse16[i]) for (j = 0; j < 16; j++) { GET_BIT(BZ_X_MAPPING_2, uc); if (uc == 1) s->inUse[i * 16 + j] = True; } makeMaps_d ( s ); if (s->nInUse == 0) RETURN(BZ_DATA_ERROR); alphaSize = s->nInUse+2; /*--- Now the selectors ---*/ GET_BITS(BZ_X_SELECTOR_1, nGroups, 3); if (nGroups < 2 || nGroups > 6) RETURN(BZ_DATA_ERROR); GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15); if (nSelectors < 1) RETURN(BZ_DATA_ERROR); for (i = 0; i < nSelectors; i++) { j = 0; while (True) { GET_BIT(BZ_X_SELECTOR_3, uc); if (uc == 0) break; j++; if (j >= nGroups) RETURN(BZ_DATA_ERROR); } s->selectorMtf[i] = j; } /*--- Undo the MTF values for the selectors. ---*/ { UChar pos[BZ_N_GROUPS], tmp, v; for (v = 0; v < nGroups; v++) pos[v] = v; for (i = 0; i < nSelectors; i++) { v = s->selectorMtf[i]; tmp = pos[v]; while (v > 0) { pos[v] = pos[v-1]; v--; } pos[0] = tmp; s->selector[i] = tmp; } } /*--- Now the coding tables ---*/ for (t = 0; t < nGroups; t++) { GET_BITS(BZ_X_CODING_1, curr, 5); for (i = 0; i < alphaSize; i++) { while (True) { if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR); GET_BIT(BZ_X_CODING_2, uc); if (uc == 0) break; GET_BIT(BZ_X_CODING_3, uc); if (uc == 0) curr++; else curr--; } s->len[t][i] = curr; } } /*--- Create the Huffman decoding tables ---*/ for (t = 0; t < nGroups; t++) { minLen = 32; maxLen = 0; for (i = 0; i < alphaSize; i++) { if (s->len[t][i] > maxLen) maxLen = s->len[t][i]; if (s->len[t][i] < minLen) minLen = s->len[t][i]; } BZ2_hbCreateDecodeTables ( &(s->limit[t][0]), &(s->base[t][0]), &(s->perm[t][0]), &(s->len[t][0]), minLen, maxLen, alphaSize ); s->minLens[t] = minLen; } /*--- Now the MTF values ---*/ EOB = s->nInUse+1; nblockMAX = 100000 * s->blockSize100k; groupNo = -1; groupPos = 0; for (i = 0; i <= 255; i++) s->unzftab[i] = 0; /*-- MTF init --*/ { Int32 ii, jj, kk; kk = MTFA_SIZE-1; for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) { for (jj = MTFL_SIZE-1; jj >= 0; jj--) { s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj); kk--; } s->mtfbase[ii] = kk + 1; } } /*-- end MTF init --*/ nblock = 0; GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym); while (True) { if (nextSym == EOB) break; if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) { es = -1; N = 1; do { if (nextSym == BZ_RUNA) es = es + (0+1) * N; else if (nextSym == BZ_RUNB) es = es + (1+1) * N; N = N * 2; GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym); } while (nextSym == BZ_RUNA || nextSym == BZ_RUNB); es++; uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ]; s->unzftab[uc] += es; if (s->smallDecompress) while (es > 0) { if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); s->ll16[nblock] = (UInt16)uc; nblock++; es--; } else while (es > 0) { if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); s->tt[nblock] = (UInt32)uc; nblock++; es--; }; continue; } else { if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); /*-- uc = MTF ( nextSym-1 ) --*/ { Int32 ii, jj, kk, pp, lno, off; UInt32 nn; nn = (UInt32)(nextSym - 1); if (nn < MTFL_SIZE) { /* avoid general-case expense */ pp = s->mtfbase[0]; uc = s->mtfa[pp+nn]; while (nn > 3) { Int32 z = pp+nn; s->mtfa[(z) ] = s->mtfa[(z)-1]; s->mtfa[(z)-1] = s->mtfa[(z)-2]; s->mtfa[(z)-2] = s->mtfa[(z)-3]; s->mtfa[(z)-3] = s->mtfa[(z)-4]; nn -= 4; } while (nn > 0) { s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--; }; s->mtfa[pp] = uc; } else { /* general case */ lno = nn / MTFL_SIZE; off = nn % MTFL_SIZE; pp = s->mtfbase[lno] + off; uc = s->mtfa[pp]; while (pp > s->mtfbase[lno]) { s->mtfa[pp] = s->mtfa[pp-1]; pp--; }; s->mtfbase[lno]++; while (lno > 0) { s->mtfbase[lno]--; s->mtfa[s->mtfbase[lno]] = s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1]; lno--; } s->mtfbase[0]--; s->mtfa[s->mtfbase[0]] = uc; if (s->mtfbase[0] == 0) { kk = MTFA_SIZE-1; for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) { for (jj = MTFL_SIZE-1; jj >= 0; jj--) { s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj]; kk--; } s->mtfbase[ii] = kk + 1; } } } } /*-- end uc = MTF ( nextSym-1 ) --*/ s->unzftab[s->seqToUnseq[uc]]++; if (s->smallDecompress) s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else s->tt[nblock] = (UInt32)(s->seqToUnseq[uc]); nblock++; GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym); continue; } } /* Now we know what nblock is, we can do a better sanity check on s->origPtr. */ if (s->origPtr < 0 || s->origPtr >= nblock) RETURN(BZ_DATA_ERROR); s->state_out_len = 0; s->state_out_ch = 0; BZ_INITIALISE_CRC ( s->calculatedBlockCRC ); s->state = BZ_X_OUTPUT; if (s->verbosity >= 2) VPrintf0 ( "rt+rld" ); /*-- Set up cftab to facilitate generation of T^(-1) --*/ s->cftab[0] = 0; for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1]; for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1]; if (s->smallDecompress) { /*-- Make a copy of cftab, used in generation of T --*/ for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i]; /*-- compute the T vector --*/ for (i = 0; i < nblock; i++) { uc = (UChar)(s->ll16[i]); SET_LL(i, s->cftabCopy[uc]); s->cftabCopy[uc]++; } /*-- Compute T^(-1) by pointer reversal on T --*/ i = s->origPtr; j = GET_LL(i); do { Int32 tmp = GET_LL(j); SET_LL(j, i); i = j; j = tmp; } while (i != s->origPtr); s->tPos = s->origPtr; s->nblock_used = 0; if (s->blockRandomised) { BZ_RAND_INIT_MASK; BZ_GET_SMALL(s->k0); s->nblock_used++; BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; } else { BZ_GET_SMALL(s->k0); s->nblock_used++; } } else { /*-- compute the T^(-1) vector --*/ for (i = 0; i < nblock; i++) { uc = (UChar)(s->tt[i] & 0xff); s->tt[s->cftab[uc]] |= (i << 8); s->cftab[uc]++; } s->tPos = s->tt[s->origPtr] >> 8; s->nblock_used = 0; if (s->blockRandomised) { BZ_RAND_INIT_MASK; BZ_GET_FAST(s->k0); s->nblock_used++; BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; } else { BZ_GET_FAST(s->k0); s->nblock_used++; } } RETURN(BZ_OK); endhdr_2: GET_UCHAR(BZ_X_ENDHDR_2, uc); if (uc != 0x72) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_3, uc); if (uc != 0x45) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_4, uc); if (uc != 0x38) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_5, uc); if (uc != 0x50) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_6, uc); if (uc != 0x90) RETURN(BZ_DATA_ERROR); s->storedCombinedCRC = 0; GET_UCHAR(BZ_X_CCRC_1, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_CCRC_2, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_CCRC_3, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_CCRC_4, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); s->state = BZ_X_IDLE; RETURN(BZ_STREAM_END); default: AssertH ( False, 4001 ); } AssertH ( False, 4002 ); save_state_and_return: s->save_i = i; s->save_j = j; s->save_t = t; s->save_alphaSize = alphaSize; s->save_nGroups = nGroups; s->save_nSelectors = nSelectors; s->save_EOB = EOB; s->save_groupNo = groupNo; s->save_groupPos = groupPos; s->save_nextSym = nextSym; s->save_nblockMAX = nblockMAX; s->save_nblock = nblock; s->save_es = es; s->save_N = N; s->save_curr = curr; s->save_zt = zt; s->save_zn = zn; s->save_zvec = zvec; s->save_zj = zj; s->save_gSel = gSel; s->save_gMinlen = gMinlen; s->save_gLimit = gLimit; s->save_gBase = gBase; s->save_gPerm = gPerm; return retVal; } /*-------------------------------------------------------------*/ /*--- end decompress.c ---*/ /*-------------------------------------------------------------*/ /*-------------------------------------------------------------*/ /*--- Library top-level functions. ---*/ /*--- bzlib.c ---*/ /*-------------------------------------------------------------*/ /*---------------------------------------------------*/ /*--- Compression stuff ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ #ifndef BZ_NO_STDIO void BZ2_bz__AssertH__fail ( int errcode ) { fprintf(stderr, "\n\nbzip2/libbzip2: internal error number %d.\n" "This is a bug in bzip2/libbzip2, %s.\n" "Please report it to me at: jseward@acm.org. If this happened\n" "when you were using some program which uses libbzip2 as a\n" "component, you should also report this bug to the author(s)\n" "of that program. Please make an effort to report this bug;\n" "timely and accurate bug reports eventually lead to higher\n" "quality software. Thanks. Julian Seward, 30 December 2001.\n\n", errcode, BZ2_bzlibVersion() ); if (errcode == 1007) { fprintf(stderr, "\n*** A special note about internal error number 1007 ***\n" "\n" "Experience suggests that a common cause of i.e. 1007\n" "is unreliable memory or other hardware. The 1007 assertion\n" "just happens to cross-check the results of huge numbers of\n" "memory reads/writes, and so acts (unintendedly) as a stress\n" "test of your memory system.\n" "\n" "I suggest the following: try compressing the file again,\n" "possibly monitoring progress in detail with the -vv flag.\n" "\n" "* If the error cannot be reproduced, and/or happens at different\n" " points in compression, you may have a flaky memory system.\n" " Try a memory-test program. I have used Memtest86\n" " (www.memtest86.com). At the time of writing it is free (GPLd).\n" " Memtest86 tests memory much more thorougly than your BIOSs\n" " power-on test, and may find failures that the BIOS doesn't.\n" "\n" "* If the error can be repeatably reproduced, this is a bug in\n" " bzip2, and I would very much like to hear about it. Please\n" " let me know, and, ideally, save a copy of the file causing the\n" " problem -- without which I will be unable to investigate it.\n" "\n" ); } exit(3); } #endif /*---------------------------------------------------*/ static int bz_config_ok ( void ) { if (sizeof(int) != 4) return 0; if (sizeof(short) != 2) return 0; if (sizeof(char) != 1) return 0; return 1; } /*---------------------------------------------------*/ static void* default_bzalloc ( void* opaque, Int32 items, Int32 size ) { void* v = malloc ( items * size ); return v; } static void default_bzfree ( void* opaque, void* addr ) { if (addr != NULL) free ( addr ); } /*---------------------------------------------------*/ static void prepare_new_block ( EState* s ) { Int32 i; s->nblock = 0; s->numZ = 0; s->state_out_pos = 0; BZ_INITIALISE_CRC ( s->blockCRC ); for (i = 0; i < 256; i++) s->inUse[i] = False; s->blockNo++; } /*---------------------------------------------------*/ static void init_RL ( EState* s ) { s->state_in_ch = 256; s->state_in_len = 0; } static Bool isempty_RL ( EState* s ) { if (s->state_in_ch < 256 && s->state_in_len > 0) return False; else return True; } /*---------------------------------------------------*/ int BZ_API(BZ2_bzCompressInit) ( bz_stream* strm, int blockSize100k, int verbosity, int workFactor ) { Int32 n; EState* s; if (!bz_config_ok()) return BZ_CONFIG_ERROR; if (strm == NULL || blockSize100k < 1 || blockSize100k > 9 || workFactor < 0 || workFactor > 250) return BZ_PARAM_ERROR; if (workFactor == 0) workFactor = 30; if (strm->bzalloc == NULL) strm->bzalloc = default_bzalloc; if (strm->bzfree == NULL) strm->bzfree = default_bzfree; s = BZALLOC( sizeof(EState) ); if (s == NULL) return BZ_MEM_ERROR; s->strm = strm; s->arr1 = NULL; s->arr2 = NULL; s->ftab = NULL; n = 100000 * blockSize100k; s->arr1 = BZALLOC( n * sizeof(UInt32) ); s->arr2 = BZALLOC( (n+BZ_N_OVERSHOOT) * sizeof(UInt32) ); s->ftab = BZALLOC( 65537 * sizeof(UInt32) ); if (s->arr1 == NULL || s->arr2 == NULL || s->ftab == NULL) { if (s->arr1 != NULL) BZFREE(s->arr1); if (s->arr2 != NULL) BZFREE(s->arr2); if (s->ftab != NULL) BZFREE(s->ftab); if (s != NULL) BZFREE(s); return BZ_MEM_ERROR; } s->blockNo = 0; s->state = BZ_S_INPUT; s->mode = BZ_M_RUNNING; s->combinedCRC = 0; s->blockSize100k = blockSize100k; s->nblockMAX = 100000 * blockSize100k - 19; s->verbosity = verbosity; s->workFactor = workFactor; s->block = (UChar*)s->arr2; s->mtfv = (UInt16*)s->arr1; s->zbits = NULL; s->ptr = (UInt32*)s->arr1; strm->state = s; strm->total_in_lo32 = 0; strm->total_in_hi32 = 0; strm->total_out_lo32 = 0; strm->total_out_hi32 = 0; init_RL ( s ); prepare_new_block ( s ); return BZ_OK; } /*---------------------------------------------------*/ static void add_pair_to_block ( EState* s ) { Int32 i; UChar ch = (UChar)(s->state_in_ch); for (i = 0; i < s->state_in_len; i++) { BZ_UPDATE_CRC( s->blockCRC, ch ); } s->inUse[s->state_in_ch] = True; switch (s->state_in_len) { case 1: s->block[s->nblock] = (UChar)ch; s->nblock++; break; case 2: s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; break; case 3: s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; break; default: s->inUse[s->state_in_len-4] = True; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = ((UChar)(s->state_in_len-4)); s->nblock++; break; } } /*---------------------------------------------------*/ static void flush_RL ( EState* s ) { if (s->state_in_ch < 256) add_pair_to_block ( s ); init_RL ( s ); } /*---------------------------------------------------*/ #define ADD_CHAR_TO_BLOCK(zs,zchh0) \ { \ UInt32 zchh = (UInt32)(zchh0); \ /*-- fast track the common case --*/ \ if (zchh != zs->state_in_ch && \ zs->state_in_len == 1) { \ UChar ch = (UChar)(zs->state_in_ch); \ BZ_UPDATE_CRC( zs->blockCRC, ch ); \ zs->inUse[zs->state_in_ch] = True; \ zs->block[zs->nblock] = (UChar)ch; \ zs->nblock++; \ zs->state_in_ch = zchh; \ } \ else \ /*-- general, uncommon cases --*/ \ if (zchh != zs->state_in_ch || \ zs->state_in_len == 255) { \ if (zs->state_in_ch < 256) \ add_pair_to_block ( zs ); \ zs->state_in_ch = zchh; \ zs->state_in_len = 1; \ } else { \ zs->state_in_len++; \ } \ } /*---------------------------------------------------*/ static Bool copy_input_until_stop ( EState* s ) { Bool progress_in = False; if (s->mode == BZ_M_RUNNING) { /*-- fast track the common case --*/ while (True) { /*-- block full? --*/ if (s->nblock >= s->nblockMAX) break; /*-- no input? --*/ if (s->strm->avail_in == 0) break; progress_in = True; ADD_CHAR_TO_BLOCK ( s, (UInt32)(*((UChar*)(s->strm->next_in))) ); s->strm->next_in++; s->strm->avail_in--; s->strm->total_in_lo32++; if (s->strm->total_in_lo32 == 0) s->strm->total_in_hi32++; } } else { /*-- general, uncommon case --*/ while (True) { /*-- block full? --*/ if (s->nblock >= s->nblockMAX) break; /*-- no input? --*/ if (s->strm->avail_in == 0) break; /*-- flush/finish end? --*/ if (s->avail_in_expect == 0) break; progress_in = True; ADD_CHAR_TO_BLOCK ( s, (UInt32)(*((UChar*)(s->strm->next_in))) ); s->strm->next_in++; s->strm->avail_in--; s->strm->total_in_lo32++; if (s->strm->total_in_lo32 == 0) s->strm->total_in_hi32++; s->avail_in_expect--; } } return progress_in; } /*---------------------------------------------------*/ static Bool copy_output_until_stop ( EState* s ) { Bool progress_out = False; while (True) { /*-- no output space? --*/ if (s->strm->avail_out == 0) break; /*-- block done? --*/ if (s->state_out_pos >= s->numZ) break; progress_out = True; *(s->strm->next_out) = s->zbits[s->state_out_pos]; s->state_out_pos++; s->strm->avail_out--; s->strm->next_out++; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } return progress_out; } /*---------------------------------------------------*/ static Bool handle_compress ( bz_stream* strm ) { Bool progress_in = False; Bool progress_out = False; EState* s = strm->state; while (True) { if (s->state == BZ_S_OUTPUT) { progress_out |= copy_output_until_stop ( s ); if (s->state_out_pos < s->numZ) break; if (s->mode == BZ_M_FINISHING && s->avail_in_expect == 0 && isempty_RL(s)) break; prepare_new_block ( s ); s->state = BZ_S_INPUT; if (s->mode == BZ_M_FLUSHING && s->avail_in_expect == 0 && isempty_RL(s)) break; } if (s->state == BZ_S_INPUT) { progress_in |= copy_input_until_stop ( s ); if (s->mode != BZ_M_RUNNING && s->avail_in_expect == 0) { flush_RL ( s ); BZ2_compressBlock ( s, (Bool)(s->mode == BZ_M_FINISHING) ); s->state = BZ_S_OUTPUT; } else if (s->nblock >= s->nblockMAX) { BZ2_compressBlock ( s, False ); s->state = BZ_S_OUTPUT; } else if (s->strm->avail_in == 0) { break; } } } return progress_in || progress_out; } /*---------------------------------------------------*/ int BZ_API(BZ2_bzCompress) ( bz_stream *strm, int action ) { Bool progress; EState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; preswitch: switch (s->mode) { case BZ_M_IDLE: return BZ_SEQUENCE_ERROR; case BZ_M_RUNNING: if (action == BZ_RUN) { progress = handle_compress ( strm ); return progress ? BZ_RUN_OK : BZ_PARAM_ERROR; } else if (action == BZ_FLUSH) { s->avail_in_expect = strm->avail_in; s->mode = BZ_M_FLUSHING; goto preswitch; } else if (action == BZ_FINISH) { s->avail_in_expect = strm->avail_in; s->mode = BZ_M_FINISHING; goto preswitch; } else return BZ_PARAM_ERROR; case BZ_M_FLUSHING: if (action != BZ_FLUSH) return BZ_SEQUENCE_ERROR; if (s->avail_in_expect != s->strm->avail_in) return BZ_SEQUENCE_ERROR; progress = handle_compress ( strm ); if (s->avail_in_expect > 0 || !isempty_RL(s) || s->state_out_pos < s->numZ) return BZ_FLUSH_OK; s->mode = BZ_M_RUNNING; return BZ_RUN_OK; case BZ_M_FINISHING: if (action != BZ_FINISH) return BZ_SEQUENCE_ERROR; if (s->avail_in_expect != s->strm->avail_in) return BZ_SEQUENCE_ERROR; progress = handle_compress ( strm ); if (!progress) return BZ_SEQUENCE_ERROR; if (s->avail_in_expect > 0 || !isempty_RL(s) || s->state_out_pos < s->numZ) return BZ_FINISH_OK; s->mode = BZ_M_IDLE; return BZ_STREAM_END; } return BZ_OK; /*--not reached--*/ } /*---------------------------------------------------*/ int BZ_API(BZ2_bzCompressEnd) ( bz_stream *strm ) { EState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; if (s->arr1 != NULL) BZFREE(s->arr1); if (s->arr2 != NULL) BZFREE(s->arr2); if (s->ftab != NULL) BZFREE(s->ftab); BZFREE(strm->state); strm->state = NULL; return BZ_OK; } /*---------------------------------------------------*/ /*--- Decompression stuff ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ int BZ_API(BZ2_bzDecompressInit) ( bz_stream* strm, int verbosity, int small ) { DState* s; if (!bz_config_ok()) return BZ_CONFIG_ERROR; if (strm == NULL) return BZ_PARAM_ERROR; if (small != 0 && small != 1) return BZ_PARAM_ERROR; if (verbosity < 0 || verbosity > 4) return BZ_PARAM_ERROR; if (strm->bzalloc == NULL) strm->bzalloc = default_bzalloc; if (strm->bzfree == NULL) strm->bzfree = default_bzfree; s = BZALLOC( sizeof(DState) ); if (s == NULL) return BZ_MEM_ERROR; s->strm = strm; strm->state = s; s->state = BZ_X_MAGIC_1; s->bsLive = 0; s->bsBuff = 0; s->calculatedCombinedCRC = 0; strm->total_in_lo32 = 0; strm->total_in_hi32 = 0; strm->total_out_lo32 = 0; strm->total_out_hi32 = 0; s->smallDecompress = (Bool)small; s->ll4 = NULL; s->ll16 = NULL; s->tt = NULL; s->currBlockNo = 0; s->verbosity = verbosity; return BZ_OK; } /*---------------------------------------------------*/ static void unRLE_obuf_to_output_FAST ( DState* s ) { UChar k1; if (s->blockRandomised) { while (True) { /* try to finish existing run */ while (True) { if (s->strm->avail_out == 0) return; if (s->state_out_len == 0) break; *( (UChar*)(s->strm->next_out) ) = s->state_out_ch; BZ_UPDATE_CRC ( s->calculatedBlockCRC, s->state_out_ch ); s->state_out_len--; s->strm->next_out++; s->strm->avail_out--; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } /* can a new run be started? */ if (s->nblock_used == s->save_nblock+1) return; s->state_out_len = 1; s->state_out_ch = s->k0; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 2; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 3; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; s->state_out_len = ((Int32)k1) + 4; BZ_GET_FAST(s->k0); BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; s->nblock_used++; } } else { /* restore */ UInt32 c_calculatedBlockCRC = s->calculatedBlockCRC; UChar c_state_out_ch = s->state_out_ch; Int32 c_state_out_len = s->state_out_len; Int32 c_nblock_used = s->nblock_used; Int32 c_k0 = s->k0; UInt32* c_tt = s->tt; UInt32 c_tPos = s->tPos; char* cs_next_out = s->strm->next_out; unsigned int cs_avail_out = s->strm->avail_out; /* end restore */ UInt32 avail_out_INIT = cs_avail_out; Int32 s_save_nblockPP = s->save_nblock+1; unsigned int total_out_lo32_old; while (True) { /* try to finish existing run */ if (c_state_out_len > 0) { while (True) { if (cs_avail_out == 0) goto return_notr; if (c_state_out_len == 1) break; *( (UChar*)(cs_next_out) ) = c_state_out_ch; BZ_UPDATE_CRC ( c_calculatedBlockCRC, c_state_out_ch ); c_state_out_len--; cs_next_out++; cs_avail_out--; } s_state_out_len_eq_one: { if (cs_avail_out == 0) { c_state_out_len = 1; goto return_notr; }; *( (UChar*)(cs_next_out) ) = c_state_out_ch; BZ_UPDATE_CRC ( c_calculatedBlockCRC, c_state_out_ch ); cs_next_out++; cs_avail_out--; } } /* can a new run be started? */ if (c_nblock_used == s_save_nblockPP) { c_state_out_len = 0; goto return_notr; }; c_state_out_ch = c_k0; BZ_GET_FAST_C(k1); c_nblock_used++; if (k1 != c_k0) { c_k0 = k1; goto s_state_out_len_eq_one; }; if (c_nblock_used == s_save_nblockPP) goto s_state_out_len_eq_one; c_state_out_len = 2; BZ_GET_FAST_C(k1); c_nblock_used++; if (c_nblock_used == s_save_nblockPP) continue; if (k1 != c_k0) { c_k0 = k1; continue; }; c_state_out_len = 3; BZ_GET_FAST_C(k1); c_nblock_used++; if (c_nblock_used == s_save_nblockPP) continue; if (k1 != c_k0) { c_k0 = k1; continue; }; BZ_GET_FAST_C(k1); c_nblock_used++; c_state_out_len = ((Int32)k1) + 4; BZ_GET_FAST_C(c_k0); c_nblock_used++; } return_notr: total_out_lo32_old = s->strm->total_out_lo32; s->strm->total_out_lo32 += (avail_out_INIT - cs_avail_out); if (s->strm->total_out_lo32 < total_out_lo32_old) s->strm->total_out_hi32++; /* save */ s->calculatedBlockCRC = c_calculatedBlockCRC; s->state_out_ch = c_state_out_ch; s->state_out_len = c_state_out_len; s->nblock_used = c_nblock_used; s->k0 = c_k0; s->tt = c_tt; s->tPos = c_tPos; s->strm->next_out = cs_next_out; s->strm->avail_out = cs_avail_out; /* end save */ } } /*---------------------------------------------------*/ Int32 BZ2_indexIntoF ( Int32 indx, Int32 *cftab ) { Int32 nb, na, mid; nb = 0; na = 256; do { mid = (nb + na) >> 1; if (indx >= cftab[mid]) nb = mid; else na = mid; } while (na - nb != 1); return nb; } /*---------------------------------------------------*/ static void unRLE_obuf_to_output_SMALL ( DState* s ) { UChar k1; if (s->blockRandomised) { while (True) { /* try to finish existing run */ while (True) { if (s->strm->avail_out == 0) return; if (s->state_out_len == 0) break; *( (UChar*)(s->strm->next_out) ) = s->state_out_ch; BZ_UPDATE_CRC ( s->calculatedBlockCRC, s->state_out_ch ); s->state_out_len--; s->strm->next_out++; s->strm->avail_out--; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } /* can a new run be started? */ if (s->nblock_used == s->save_nblock+1) return; s->state_out_len = 1; s->state_out_ch = s->k0; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 2; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 3; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; s->state_out_len = ((Int32)k1) + 4; BZ_GET_SMALL(s->k0); BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; s->nblock_used++; } } else { while (True) { /* try to finish existing run */ while (True) { if (s->strm->avail_out == 0) return; if (s->state_out_len == 0) break; *( (UChar*)(s->strm->next_out) ) = s->state_out_ch; BZ_UPDATE_CRC ( s->calculatedBlockCRC, s->state_out_ch ); s->state_out_len--; s->strm->next_out++; s->strm->avail_out--; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } /* can a new run be started? */ if (s->nblock_used == s->save_nblock+1) return; s->state_out_len = 1; s->state_out_ch = s->k0; BZ_GET_SMALL(k1); s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 2; BZ_GET_SMALL(k1); s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 3; BZ_GET_SMALL(k1); s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; BZ_GET_SMALL(k1); s->nblock_used++; s->state_out_len = ((Int32)k1) + 4; BZ_GET_SMALL(s->k0); s->nblock_used++; } } } /*---------------------------------------------------*/ int BZ_API(BZ2_bzDecompress) ( bz_stream *strm ) { DState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; while (True) { if (s->state == BZ_X_IDLE) return BZ_SEQUENCE_ERROR; if (s->state == BZ_X_OUTPUT) { if (s->smallDecompress) unRLE_obuf_to_output_SMALL ( s ); else unRLE_obuf_to_output_FAST ( s ); if (s->nblock_used == s->save_nblock+1 && s->state_out_len == 0) { BZ_FINALISE_CRC ( s->calculatedBlockCRC ); if (s->verbosity >= 3) VPrintf2 ( " {0x%x, 0x%x}", s->storedBlockCRC, s->calculatedBlockCRC ); if (s->verbosity >= 2) VPrintf0 ( "]" ); if (s->calculatedBlockCRC != s->storedBlockCRC) return BZ_DATA_ERROR; s->calculatedCombinedCRC = (s->calculatedCombinedCRC << 1) | (s->calculatedCombinedCRC >> 31); s->calculatedCombinedCRC ^= s->calculatedBlockCRC; s->state = BZ_X_BLKHDR_1; } else { return BZ_OK; } } if (s->state >= BZ_X_MAGIC_1) { Int32 r = BZ2_decompress ( s ); if (r == BZ_STREAM_END) { if (s->verbosity >= 3) VPrintf2 ( "\n combined CRCs: stored = 0x%x, computed = 0x%x", s->storedCombinedCRC, s->calculatedCombinedCRC ); if (s->calculatedCombinedCRC != s->storedCombinedCRC) return BZ_DATA_ERROR; return r; } if (s->state != BZ_X_OUTPUT) return r; } } AssertH ( 0, 6001 ); return 0; /*NOTREACHED*/ } /*---------------------------------------------------*/ int BZ_API(BZ2_bzDecompressEnd) ( bz_stream *strm ) { DState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; if (s->tt != NULL) BZFREE(s->tt); if (s->ll16 != NULL) BZFREE(s->ll16); if (s->ll4 != NULL) BZFREE(s->ll4); BZFREE(strm->state); strm->state = NULL; return BZ_OK; } #ifndef BZ_NO_STDIO /*---------------------------------------------------*/ /*--- File I/O stuff ---*/ /*---------------------------------------------------*/ #define BZ_SETERR(eee) \ { \ if (bzerror != NULL) *bzerror = eee; \ if (bzf != NULL) bzf->lastErr = eee; \ } typedef struct { FILE* handle; Char buf[BZ_MAX_UNUSED]; Int32 bufN; Bool writing; bz_stream strm; Int32 lastErr; Bool initialisedOk; } bzFile; /*---------------------------------------------*/ static Bool myfeof ( FILE* f ) { Int32 c = fgetc ( f ); if (c == EOF) return True; ungetc ( c, f ); return False; } /*---------------------------------------------------*/ BZFILE* BZ_API(BZ2_bzWriteOpen) ( int* bzerror, FILE* f, int blockSize100k, int verbosity, int workFactor ) { Int32 ret; bzFile* bzf = NULL; BZ_SETERR(BZ_OK); if (f == NULL || (blockSize100k < 1 || blockSize100k > 9) || (workFactor < 0 || workFactor > 250) || (verbosity < 0 || verbosity > 4)) { BZ_SETERR(BZ_PARAM_ERROR); return NULL; }; if (ferror(f)) { BZ_SETERR(BZ_IO_ERROR); return NULL; }; bzf = malloc ( sizeof(bzFile) ); if (bzf == NULL) { BZ_SETERR(BZ_MEM_ERROR); return NULL; }; BZ_SETERR(BZ_OK); bzf->initialisedOk = False; bzf->bufN = 0; bzf->handle = f; bzf->writing = True; bzf->strm.bzalloc = NULL; bzf->strm.bzfree = NULL; bzf->strm.opaque = NULL; if (workFactor == 0) workFactor = 30; ret = BZ2_bzCompressInit ( &(bzf->strm), blockSize100k, verbosity, workFactor ); if (ret != BZ_OK) { BZ_SETERR(ret); free(bzf); return NULL; }; bzf->strm.avail_in = 0; bzf->initialisedOk = True; return bzf; } /*---------------------------------------------------*/ void BZ_API(BZ2_bzWrite) ( int* bzerror, BZFILE* b, void* buf, int len ) { Int32 n, n2, ret; bzFile* bzf = (bzFile*)b; BZ_SETERR(BZ_OK); if (bzf == NULL || buf == NULL || len < 0) { BZ_SETERR(BZ_PARAM_ERROR); return; }; if (!(bzf->writing)) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; if (len == 0) { BZ_SETERR(BZ_OK); return; }; bzf->strm.avail_in = len; bzf->strm.next_in = buf; while (True) { bzf->strm.avail_out = BZ_MAX_UNUSED; bzf->strm.next_out = bzf->buf; ret = BZ2_bzCompress ( &(bzf->strm), BZ_RUN ); if (ret != BZ_RUN_OK) { BZ_SETERR(ret); return; }; if (bzf->strm.avail_out < BZ_MAX_UNUSED) { n = BZ_MAX_UNUSED - bzf->strm.avail_out; n2 = fwrite ( (void*)(bzf->buf), sizeof(UChar), n, bzf->handle ); if (n != n2 || ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; } if (bzf->strm.avail_in == 0) { BZ_SETERR(BZ_OK); return; }; } } /*---------------------------------------------------*/ void BZ_API(BZ2_bzWriteClose) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in, unsigned int* nbytes_out ) { BZ2_bzWriteClose64 ( bzerror, b, abandon, nbytes_in, NULL, nbytes_out, NULL ); } void BZ_API(BZ2_bzWriteClose64) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in_lo32, unsigned int* nbytes_in_hi32, unsigned int* nbytes_out_lo32, unsigned int* nbytes_out_hi32 ) { Int32 n, n2, ret; bzFile* bzf = (bzFile*)b; if (bzf == NULL) { BZ_SETERR(BZ_OK); return; }; if (!(bzf->writing)) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; if (nbytes_in_lo32 != NULL) *nbytes_in_lo32 = 0; if (nbytes_in_hi32 != NULL) *nbytes_in_hi32 = 0; if (nbytes_out_lo32 != NULL) *nbytes_out_lo32 = 0; if (nbytes_out_hi32 != NULL) *nbytes_out_hi32 = 0; if ((!abandon) && bzf->lastErr == BZ_OK) { while (True) { bzf->strm.avail_out = BZ_MAX_UNUSED; bzf->strm.next_out = bzf->buf; ret = BZ2_bzCompress ( &(bzf->strm), BZ_FINISH ); if (ret != BZ_FINISH_OK && ret != BZ_STREAM_END) { BZ_SETERR(ret); return; }; if (bzf->strm.avail_out < BZ_MAX_UNUSED) { n = BZ_MAX_UNUSED - bzf->strm.avail_out; n2 = fwrite ( (void*)(bzf->buf), sizeof(UChar), n, bzf->handle ); if (n != n2 || ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; } if (ret == BZ_STREAM_END) break; } } if ( !abandon && !ferror ( bzf->handle ) ) { fflush ( bzf->handle ); if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; } if (nbytes_in_lo32 != NULL) *nbytes_in_lo32 = bzf->strm.total_in_lo32; if (nbytes_in_hi32 != NULL) *nbytes_in_hi32 = bzf->strm.total_in_hi32; if (nbytes_out_lo32 != NULL) *nbytes_out_lo32 = bzf->strm.total_out_lo32; if (nbytes_out_hi32 != NULL) *nbytes_out_hi32 = bzf->strm.total_out_hi32; BZ_SETERR(BZ_OK); BZ2_bzCompressEnd ( &(bzf->strm) ); free ( bzf ); } /*---------------------------------------------------*/ BZFILE* BZ_API(BZ2_bzReadOpen) ( int* bzerror, FILE* f, int verbosity, int small, void* unused, int nUnused ) { bzFile* bzf = NULL; int ret; BZ_SETERR(BZ_OK); if (f == NULL || (small != 0 && small != 1) || (verbosity < 0 || verbosity > 4) || (unused == NULL && nUnused != 0) || (unused != NULL && (nUnused < 0 || nUnused > BZ_MAX_UNUSED))) { BZ_SETERR(BZ_PARAM_ERROR); return NULL; }; if (ferror(f)) { BZ_SETERR(BZ_IO_ERROR); return NULL; }; bzf = malloc ( sizeof(bzFile) ); if (bzf == NULL) { BZ_SETERR(BZ_MEM_ERROR); return NULL; }; BZ_SETERR(BZ_OK); bzf->initialisedOk = False; bzf->handle = f; bzf->bufN = 0; bzf->writing = False; bzf->strm.bzalloc = NULL; bzf->strm.bzfree = NULL; bzf->strm.opaque = NULL; while (nUnused > 0) { bzf->buf[bzf->bufN] = *((UChar*)(unused)); bzf->bufN++; unused = ((void*)( 1 + ((UChar*)(unused)) )); nUnused--; } ret = BZ2_bzDecompressInit ( &(bzf->strm), verbosity, small ); if (ret != BZ_OK) { BZ_SETERR(ret); free(bzf); return NULL; }; bzf->strm.avail_in = bzf->bufN; bzf->strm.next_in = bzf->buf; bzf->initialisedOk = True; return bzf; } /*---------------------------------------------------*/ void BZ_API(BZ2_bzReadClose) ( int *bzerror, BZFILE *b ) { bzFile* bzf = (bzFile*)b; BZ_SETERR(BZ_OK); if (bzf == NULL) { BZ_SETERR(BZ_OK); return; }; if (bzf->writing) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (bzf->initialisedOk) (void)BZ2_bzDecompressEnd ( &(bzf->strm) ); free ( bzf ); } /*---------------------------------------------------*/ int BZ_API(BZ2_bzRead) ( int* bzerror, BZFILE* b, void* buf, int len ) { Int32 n, ret; bzFile* bzf = (bzFile*)b; BZ_SETERR(BZ_OK); if (bzf == NULL || buf == NULL || len < 0) { BZ_SETERR(BZ_PARAM_ERROR); return 0; }; if (bzf->writing) { BZ_SETERR(BZ_SEQUENCE_ERROR); return 0; }; if (len == 0) { BZ_SETERR(BZ_OK); return 0; }; bzf->strm.avail_out = len; bzf->strm.next_out = buf; while (True) { if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return 0; }; if (bzf->strm.avail_in == 0 && !myfeof(bzf->handle)) { n = fread ( bzf->buf, sizeof(UChar), BZ_MAX_UNUSED, bzf->handle ); if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return 0; }; bzf->bufN = n; bzf->strm.avail_in = bzf->bufN; bzf->strm.next_in = bzf->buf; } ret = BZ2_bzDecompress ( &(bzf->strm) ); if (ret != BZ_OK && ret != BZ_STREAM_END) { BZ_SETERR(ret); return 0; }; if (ret == BZ_OK && myfeof(bzf->handle) && bzf->strm.avail_in == 0 && bzf->strm.avail_out > 0) { BZ_SETERR(BZ_UNEXPECTED_EOF); return 0; }; if (ret == BZ_STREAM_END) { BZ_SETERR(BZ_STREAM_END); return len - bzf->strm.avail_out; }; if (bzf->strm.avail_out == 0) { BZ_SETERR(BZ_OK); return len; }; } return 0; /*not reached*/ } /*---------------------------------------------------*/ void BZ_API(BZ2_bzReadGetUnused) ( int* bzerror, BZFILE* b, void** unused, int* nUnused ) { bzFile* bzf = (bzFile*)b; if (bzf == NULL) { BZ_SETERR(BZ_PARAM_ERROR); return; }; if (bzf->lastErr != BZ_STREAM_END) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (unused == NULL || nUnused == NULL) { BZ_SETERR(BZ_PARAM_ERROR); return; }; BZ_SETERR(BZ_OK); *nUnused = bzf->strm.avail_in; *unused = bzf->strm.next_in; } #endif /*---------------------------------------------------*/ /*--- Misc convenience stuff ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ int BZ_API(BZ2_bzBuffToBuffCompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int blockSize100k, int verbosity, int workFactor ) { bz_stream strm; int ret; if (dest == NULL || destLen == NULL || source == NULL || blockSize100k < 1 || blockSize100k > 9 || verbosity < 0 || verbosity > 4 || workFactor < 0 || workFactor > 250) return BZ_PARAM_ERROR; if (workFactor == 0) workFactor = 30; strm.bzalloc = NULL; strm.bzfree = NULL; strm.opaque = NULL; ret = BZ2_bzCompressInit ( &strm, blockSize100k, verbosity, workFactor ); if (ret != BZ_OK) return ret; strm.next_in = source; strm.next_out = dest; strm.avail_in = sourceLen; strm.avail_out = *destLen; ret = BZ2_bzCompress ( &strm, BZ_FINISH ); if (ret == BZ_FINISH_OK) goto output_overflow; if (ret != BZ_STREAM_END) goto errhandler; /* normal termination */ *destLen -= strm.avail_out; BZ2_bzCompressEnd ( &strm ); return BZ_OK; output_overflow: BZ2_bzCompressEnd ( &strm ); return BZ_OUTBUFF_FULL; errhandler: BZ2_bzCompressEnd ( &strm ); return ret; } /*---------------------------------------------------*/ int BZ_API(BZ2_bzBuffToBuffDecompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int small, int verbosity ) { bz_stream strm; int ret; if (dest == NULL || destLen == NULL || source == NULL || (small != 0 && small != 1) || verbosity < 0 || verbosity > 4) return BZ_PARAM_ERROR; strm.bzalloc = NULL; strm.bzfree = NULL; strm.opaque = NULL; ret = BZ2_bzDecompressInit ( &strm, verbosity, small ); if (ret != BZ_OK) return ret; strm.next_in = source; strm.next_out = dest; strm.avail_in = sourceLen; strm.avail_out = *destLen; ret = BZ2_bzDecompress ( &strm ); if (ret == BZ_OK) goto output_overflow_or_eof; if (ret != BZ_STREAM_END) goto errhandler; /* normal termination */ *destLen -= strm.avail_out; BZ2_bzDecompressEnd ( &strm ); return BZ_OK; output_overflow_or_eof: if (strm.avail_out > 0) { BZ2_bzDecompressEnd ( &strm ); return BZ_UNEXPECTED_EOF; } else { BZ2_bzDecompressEnd ( &strm ); return BZ_OUTBUFF_FULL; }; errhandler: BZ2_bzDecompressEnd ( &strm ); return ret; } /*---------------------------------------------------*/ /*-- Code contributed by Yoshioka Tsuneo (QWF00133@niftyserve.or.jp/tsuneo-y@is.aist-nara.ac.jp), to support better zlib compatibility. This code is not _officially_ part of libbzip2 (yet); I haven't tested it, documented it, or considered the threading-safeness of it. If this code breaks, please contact both Yoshioka and me. --*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ /*-- return version like "0.9.0c". --*/ const char * BZ_API(BZ2_bzlibVersion)(void) { return BZ_VERSION; } #ifndef BZ_NO_STDIO /*---------------------------------------------------*/ static BZFILE * bzopen_or_bzdopen ( const char *path, /* no use when bzdopen */ int fd, /* no use when bzdopen */ const char *mode, int open_mode) /* bzopen: 0, bzdopen:1 */ { int bzerr; char unused[BZ_MAX_UNUSED]; int blockSize100k = 9; int writing = 0; char mode2[10] = ""; FILE *fp = NULL; BZFILE *bzfp = NULL; int verbosity = 0; int workFactor = 30; int smallMode = 0; int nUnused = 0; if (mode == NULL) return NULL; while (*mode) { switch (*mode) { case 'r': writing = 0; break; case 'w': writing = 1; break; case 's': smallMode = 1; break; default: if (isdigit((int)(*mode))) { blockSize100k = *mode-BZ_HDR_0; } } mode++; } strcat(mode2, writing ? "w" : "r" ); strcat(mode2,"b"); /* binary mode */ if (open_mode==0) { if (path==NULL || strcmp(path,"")==0) { fp = (writing ? stdout : stdin); } else { fp = fopen(path,mode2); } } else { #ifdef BZ_STRICT_ANSI fp = NULL; #else fp = fdopen(fd,mode2); #endif } if (fp == NULL) return NULL; if (writing) { /* Guard against total chaos and anarchy -- JRS */ if (blockSize100k < 1) blockSize100k = 1; if (blockSize100k > 9) blockSize100k = 9; bzfp = BZ2_bzWriteOpen(&bzerr,fp,blockSize100k, verbosity,workFactor); } else { bzfp = BZ2_bzReadOpen(&bzerr,fp,verbosity,smallMode, unused,nUnused); } if (bzfp == NULL) { if (fp != stdin && fp != stdout) fclose(fp); return NULL; } return bzfp; } /*---------------------------------------------------*/ /*-- open file for read or write. ex) bzopen("file","w9") case path="" or NULL => use stdin or stdout. --*/ BZFILE * BZ_API(BZ2_bzopen) ( const char *path, const char *mode ) { return bzopen_or_bzdopen(path,-1,mode,/*bzopen*/0); } /*---------------------------------------------------*/ BZFILE * BZ_API(BZ2_bzdopen) ( int fd, const char *mode ) { return bzopen_or_bzdopen(NULL,fd,mode,/*bzdopen*/1); } /*---------------------------------------------------*/ int BZ_API(BZ2_bzread) (BZFILE* b, void* buf, int len ) { int bzerr, nread; if (((bzFile*)b)->lastErr == BZ_STREAM_END) return 0; nread = BZ2_bzRead(&bzerr,b,buf,len); if (bzerr == BZ_OK || bzerr == BZ_STREAM_END) { return nread; } else { return -1; } } /*---------------------------------------------------*/ int BZ_API(BZ2_bzwrite) (BZFILE* b, void* buf, int len ) { int bzerr; BZ2_bzWrite(&bzerr,b,buf,len); if(bzerr == BZ_OK){ return len; }else{ return -1; } } /*---------------------------------------------------*/ int BZ_API(BZ2_bzflush) (BZFILE *b) { /* do nothing now... */ return 0; } /*---------------------------------------------------*/ void BZ_API(BZ2_bzclose) (BZFILE* b) { int bzerr; FILE *fp = ((bzFile *)b)->handle; if (b==NULL) {return;} if(((bzFile*)b)->writing){ BZ2_bzWriteClose(&bzerr,b,0,NULL,NULL); if(bzerr != BZ_OK){ BZ2_bzWriteClose(NULL,b,1,NULL,NULL); } }else{ BZ2_bzReadClose(&bzerr,b); } if(fp!=stdin && fp!=stdout){ fclose(fp); } } /*---------------------------------------------------*/ /*-- return last error code --*/ static char *bzerrorstrings[] = { "OK" ,"SEQUENCE_ERROR" ,"PARAM_ERROR" ,"MEM_ERROR" ,"DATA_ERROR" ,"DATA_ERROR_MAGIC" ,"IO_ERROR" ,"UNEXPECTED_EOF" ,"OUTBUFF_FULL" ,"CONFIG_ERROR" ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ }; const char * BZ_API(BZ2_bzerror) (BZFILE *b, int *errnum) { int err = ((bzFile *)b)->lastErr; if(err>0) err = 0; *errnum = err; return bzerrorstrings[err*-1]; } #endif /*-------------------------------------------------------------*/ /*--- end bzlib.c ---*/ /*-------------------------------------------------------------*/ /*-----------------------------------------------------------*/ /*--- A block-sorting, lossless compressor bzip2.c ---*/ /*-----------------------------------------------------------*/ /*----------------------------------------------------*/ /*--- IMPORTANT ---*/ /*----------------------------------------------------*/ /*-- WARNING: This program and library (attempts to) compress data by performing several non-trivial transformations on it. Unless you are 100% familiar with *all* the algorithms contained herein, and with the consequences of modifying them, you should NOT meddle with the compression or decompression machinery. Incorrect changes can and very likely *will* lead to disasterous loss of data. DISCLAIMER: I TAKE NO RESPONSIBILITY FOR ANY LOSS OF DATA ARISING FROM THE USE OF THIS PROGRAM, HOWSOEVER CAUSED. Every compression of a file implies an assumption that the compressed file can be decompressed to reproduce the original. Great efforts in design, coding and testing have been made to ensure that this program works correctly. However, the complexity of the algorithms, and, in particular, the presence of various special cases in the code which occur with very low but non-zero probability make it impossible to rule out the possibility of bugs remaining in the program. DO NOT COMPRESS ANY DATA WITH THIS PROGRAM AND/OR LIBRARY UNLESS YOU ARE PREPARED TO ACCEPT THE POSSIBILITY, HOWEVER SMALL, THAT THE DATA WILL NOT BE RECOVERABLE. That is not to say this program is inherently unreliable. Indeed, I very much hope the opposite is true. bzip2/libbzip2 has been carefully constructed and extensively tested. PATENTS: To the best of my knowledge, bzip2/libbzip2 does not use any patented algorithms. However, I do not have the resources available to carry out a full patent search. Therefore I cannot give any guarantee of the above statement. --*/ /*----------------------------------------------------*/ /*--- and now for something much more pleasant :-) ---*/ /*----------------------------------------------------*/ /*---------------------------------------------*/ /*-- Place a 1 beside your platform, and 0 elsewhere. --*/ /*-- Generic 32-bit Unix. Also works on 64-bit Unix boxes. This is the default. --*/ #define BZ_UNIX 1 /*-- Win32, as seen by Jacob Navia's excellent port of (Chris Fraser & David Hanson)'s excellent lcc compiler. Or with MS Visual C. This is selected automatically if compiled by a compiler which defines _WIN32, not including the Cygwin GCC. --*/ #define BZ_LCCWIN32 0 #if defined(_WIN32) && !defined(__CYGWIN__) #undef BZ_LCCWIN32 #define BZ_LCCWIN32 1 #undef BZ_UNIX #define BZ_UNIX 0 #endif /*---------------------------------------------*/ /*-- Some stuff for all platforms. --*/ #include #include #include #include #include #include #include #define ERROR_IF_EOF(i) { if ((i) == EOF) ioError(); } #define ERROR_IF_NOT_ZERO(i) { if ((i) != 0) ioError(); } #define ERROR_IF_MINUS_ONE(i) { if ((i) == (-1)) ioError(); } /*---------------------------------------------*/ /*-- Platform-specific stuff. --*/ #if BZ_UNIX # include # include # include # include # include # include # define PATH_SEP '/' # define MY_LSTAT lstat # define MY_STAT stat # define MY_S_ISREG S_ISREG # define MY_S_ISDIR S_ISDIR # define APPEND_FILESPEC(root, name) \ root=snocString((root), (name)) # define APPEND_FLAG(root, name) \ root=snocString((root), (name)) # define SET_BINARY_MODE(fd) /**/ # ifdef __GNUC__ # define NORETURN __attribute__ ((noreturn)) # else # define NORETURN /**/ # endif # ifdef __DJGPP__ # include # include # undef MY_LSTAT # undef MY_STAT # define MY_LSTAT stat # define MY_STAT stat # undef SET_BINARY_MODE # define SET_BINARY_MODE(fd) \ do { \ int retVal = setmode ( fileno ( fd ), \ O_BINARY ); \ ERROR_IF_MINUS_ONE ( retVal ); \ } while ( 0 ) # endif # ifdef __CYGWIN__ # include # include # undef SET_BINARY_MODE # define SET_BINARY_MODE(fd) \ do { \ int retVal = setmode ( fileno ( fd ), \ O_BINARY ); \ ERROR_IF_MINUS_ONE ( retVal ); \ } while ( 0 ) # endif #endif /* BZ_UNIX */ #if BZ_LCCWIN32 # include # include # include # define NORETURN /**/ # define PATH_SEP '\\' # define MY_LSTAT _stat # define MY_STAT _stat # define MY_S_ISREG(x) ((x) & _S_IFREG) # define MY_S_ISDIR(x) ((x) & _S_IFDIR) # define APPEND_FLAG(root, name) \ root=snocString((root), (name)) # define APPEND_FILESPEC(root, name) \ root = snocString ((root), (name)) # define SET_BINARY_MODE(fd) \ do { \ int retVal = setmode ( fileno ( fd ), \ O_BINARY ); \ ERROR_IF_MINUS_ONE ( retVal ); \ } while ( 0 ) #endif /* BZ_LCCWIN32 */ /*---------------------------------------------*/ /*-- Some more stuff for all platforms :-) --*/ #define True ((Bool)1) #define False ((Bool)0) /*-- IntNative is your platform's `native' int size. Only here to avoid probs with 64-bit platforms. --*/ typedef int IntNative; /*---------------------------------------------------*/ /*--- Misc (file handling) data decls ---*/ /*---------------------------------------------------*/ Int32 verbosity; Bool keepInputFiles, smallMode, deleteOutputOnInterrupt; Bool forceOverwrite, testFailsExist, unzFailsExist, noisy; Int32 numFileNames, numFilesProcessed, blockSize100k; Int32 exitValue; /*-- source modes; F==file, I==stdin, O==stdout --*/ #define SM_I2O 1 #define SM_F2O 2 #define SM_F2F 3 /*-- operation modes --*/ #define OM_Z 1 #define OM_UNZ 2 #define OM_TEST 3 Int32 opMode; Int32 srcMode; #define FILE_NAME_LEN 1034 Int32 longestFileName; Char inName [FILE_NAME_LEN]; Char outName[FILE_NAME_LEN]; Char tmpName[FILE_NAME_LEN]; Char *progName; Char progNameReally[FILE_NAME_LEN]; FILE *outputHandleJustInCase; Int32 workFactor; static void panic ( Char* ) NORETURN; static void ioError ( void ) NORETURN; static void outOfMemory ( void ) NORETURN; static void configError ( void ) NORETURN; static void crcError ( void ) NORETURN; static void cleanUpAndFail ( Int32 ) NORETURN; static void compressedStreamEOF ( void ) NORETURN; static void copyFileName ( Char*, Char* ); static void* myMalloc ( Int32 ); /*---------------------------------------------------*/ /*--- An implementation of 64-bit ints. Sigh. ---*/ /*--- Roll on widespread deployment of ANSI C9X ! ---*/ /*---------------------------------------------------*/ typedef struct { UChar b[8]; } UInt64; static void uInt64_from_UInt32s ( UInt64* n, UInt32 lo32, UInt32 hi32 ) { n->b[7] = (UChar)((hi32 >> 24) & 0xFF); n->b[6] = (UChar)((hi32 >> 16) & 0xFF); n->b[5] = (UChar)((hi32 >> 8) & 0xFF); n->b[4] = (UChar) (hi32 & 0xFF); n->b[3] = (UChar)((lo32 >> 24) & 0xFF); n->b[2] = (UChar)((lo32 >> 16) & 0xFF); n->b[1] = (UChar)((lo32 >> 8) & 0xFF); n->b[0] = (UChar) (lo32 & 0xFF); } static double uInt64_to_double ( UInt64* n ) { Int32 i; double base = 1.0; double sum = 0.0; for (i = 0; i < 8; i++) { sum += base * (double)(n->b[i]); base *= 256.0; } return sum; } static Bool uInt64_isZero ( UInt64* n ) { Int32 i; for (i = 0; i < 8; i++) if (n->b[i] != 0) return 0; return 1; } /* Divide *n by 10, and return the remainder. */ static Int32 uInt64_qrm10 ( UInt64* n ) { UInt32 rem, tmp; Int32 i; rem = 0; for (i = 7; i >= 0; i--) { tmp = rem * 256 + n->b[i]; n->b[i] = tmp / 10; rem = tmp % 10; } return rem; } /* ... and the Whole Entire Point of all this UInt64 stuff is so that we can supply the following function. */ static void uInt64_toAscii ( char* outbuf, UInt64* n ) { Int32 i, q; UChar buf[32]; Int32 nBuf = 0; UInt64 n_copy = *n; do { q = uInt64_qrm10 ( &n_copy ); buf[nBuf] = q + '0'; nBuf++; } while (!uInt64_isZero(&n_copy)); outbuf[nBuf] = 0; for (i = 0; i < nBuf; i++) outbuf[i] = buf[nBuf-i-1]; } /*---------------------------------------------------*/ /*--- Processing of complete files and streams ---*/ /*---------------------------------------------------*/ /*---------------------------------------------*/ /*---------------------------------------------*/ static void compressStream ( FILE *stream, FILE *zStream ) { BZFILE* bzf = NULL; UChar ibuf[5000]; Int32 nIbuf; UInt32 nbytes_in_lo32, nbytes_in_hi32; UInt32 nbytes_out_lo32, nbytes_out_hi32; Int32 bzerr, bzerr_dummy, ret; SET_BINARY_MODE(stream); SET_BINARY_MODE(zStream); if (ferror(stream)) goto errhandler_io; if (ferror(zStream)) goto errhandler_io; bzf = BZ2_bzWriteOpen ( &bzerr, zStream, blockSize100k, verbosity, workFactor ); if (bzerr != BZ_OK) goto errhandler; if (verbosity >= 2) fprintf ( stderr, "\n" ); while (True) { if (myfeof(stream)) break; nIbuf = fread ( ibuf, sizeof(UChar), 5000, stream ); if (ferror(stream)) goto errhandler_io; if (nIbuf > 0) BZ2_bzWrite ( &bzerr, bzf, (void*)ibuf, nIbuf ); if (bzerr != BZ_OK) goto errhandler; } BZ2_bzWriteClose64 ( &bzerr, bzf, 0, &nbytes_in_lo32, &nbytes_in_hi32, &nbytes_out_lo32, &nbytes_out_hi32 ); if (bzerr != BZ_OK) goto errhandler; if (ferror(zStream)) goto errhandler_io; ret = fflush ( zStream ); if (ret == EOF) goto errhandler_io; if (zStream != stdout) { ret = fclose ( zStream ); outputHandleJustInCase = NULL; if (ret == EOF) goto errhandler_io; } outputHandleJustInCase = NULL; if (ferror(stream)) goto errhandler_io; ret = fclose ( stream ); if (ret == EOF) goto errhandler_io; if (verbosity >= 1) { if (nbytes_in_lo32 == 0 && nbytes_in_hi32 == 0) { fprintf ( stderr, " no data compressed.\n"); } else { Char buf_nin[32], buf_nout[32]; UInt64 nbytes_in, nbytes_out; double nbytes_in_d, nbytes_out_d; uInt64_from_UInt32s ( &nbytes_in, nbytes_in_lo32, nbytes_in_hi32 ); uInt64_from_UInt32s ( &nbytes_out, nbytes_out_lo32, nbytes_out_hi32 ); nbytes_in_d = uInt64_to_double ( &nbytes_in ); nbytes_out_d = uInt64_to_double ( &nbytes_out ); uInt64_toAscii ( buf_nin, &nbytes_in ); uInt64_toAscii ( buf_nout, &nbytes_out ); fprintf ( stderr, "%6.3f:1, %6.3f bits/byte, " "%5.2f%% saved, %s in, %s out.\n", nbytes_in_d / nbytes_out_d, (8.0 * nbytes_out_d) / nbytes_in_d, 100.0 * (1.0 - nbytes_out_d / nbytes_in_d), buf_nin, buf_nout ); } } return; errhandler: BZ2_bzWriteClose64 ( &bzerr_dummy, bzf, 1, &nbytes_in_lo32, &nbytes_in_hi32, &nbytes_out_lo32, &nbytes_out_hi32 ); switch (bzerr) { case BZ_CONFIG_ERROR: configError(); break; case BZ_MEM_ERROR: outOfMemory (); break; case BZ_IO_ERROR: errhandler_io: ioError(); break; default: panic ( "compress:unexpected error" ); } panic ( "compress:end" ); /*notreached*/ } /*---------------------------------------------*/ static Bool uncompressStream ( FILE *zStream, FILE *stream ) { BZFILE* bzf = NULL; Int32 bzerr, bzerr_dummy, ret, nread, streamNo, i; UChar obuf[5000]; UChar unused[BZ_MAX_UNUSED]; Int32 nUnused; UChar* unusedTmp; nUnused = 0; streamNo = 0; SET_BINARY_MODE(stream); SET_BINARY_MODE(zStream); if (ferror(stream)) goto errhandler_io; if (ferror(zStream)) goto errhandler_io; while (True) { bzf = BZ2_bzReadOpen ( &bzerr, zStream, verbosity, (int)smallMode, unused, nUnused ); if (bzf == NULL || bzerr != BZ_OK) goto errhandler; streamNo++; while (bzerr == BZ_OK) { nread = BZ2_bzRead ( &bzerr, bzf, obuf, 5000 ); if (bzerr == BZ_DATA_ERROR_MAGIC) goto trycat; if ((bzerr == BZ_OK || bzerr == BZ_STREAM_END) && nread > 0) fwrite ( obuf, sizeof(UChar), nread, stream ); if (ferror(stream)) goto errhandler_io; } if (bzerr != BZ_STREAM_END) goto errhandler; BZ2_bzReadGetUnused ( &bzerr, bzf, (void**)(&unusedTmp), &nUnused ); if (bzerr != BZ_OK) panic ( "decompress:bzReadGetUnused" ); for (i = 0; i < nUnused; i++) unused[i] = unusedTmp[i]; BZ2_bzReadClose ( &bzerr, bzf ); if (bzerr != BZ_OK) panic ( "decompress:bzReadGetUnused" ); if (nUnused == 0 && myfeof(zStream)) break; } closeok: if (ferror(zStream)) goto errhandler_io; ret = fclose ( zStream ); if (ret == EOF) goto errhandler_io; if (ferror(stream)) goto errhandler_io; ret = fflush ( stream ); if (ret != 0) goto errhandler_io; if (stream != stdout) { ret = fclose ( stream ); outputHandleJustInCase = NULL; if (ret == EOF) goto errhandler_io; } outputHandleJustInCase = NULL; if (verbosity >= 2) fprintf ( stderr, "\n " ); return True; trycat: if (forceOverwrite) { rewind(zStream); while (True) { if (myfeof(zStream)) break; nread = fread ( obuf, sizeof(UChar), 5000, zStream ); if (ferror(zStream)) goto errhandler_io; if (nread > 0) fwrite ( obuf, sizeof(UChar), nread, stream ); if (ferror(stream)) goto errhandler_io; } goto closeok; } errhandler: BZ2_bzReadClose ( &bzerr_dummy, bzf ); switch (bzerr) { case BZ_CONFIG_ERROR: configError(); break; case BZ_IO_ERROR: errhandler_io: ioError(); break; case BZ_DATA_ERROR: crcError(); case BZ_MEM_ERROR: outOfMemory(); case BZ_UNEXPECTED_EOF: compressedStreamEOF(); case BZ_DATA_ERROR_MAGIC: if (zStream != stdin) fclose(zStream); if (stream != stdout) fclose(stream); if (streamNo == 1) { return False; } else { if (noisy) fprintf ( stderr, "\n%s: %s: trailing garbage after EOF ignored\n", progName, inName ); return True; } default: panic ( "decompress:unexpected error" ); } panic ( "decompress:end" ); return True; /*notreached*/ } /*---------------------------------------------*/ static Bool testStream ( FILE *zStream ) { BZFILE* bzf = NULL; Int32 bzerr, bzerr_dummy, ret, nread, streamNo, i; UChar obuf[5000]; UChar unused[BZ_MAX_UNUSED]; Int32 nUnused; UChar* unusedTmp; nUnused = 0; streamNo = 0; SET_BINARY_MODE(zStream); if (ferror(zStream)) goto errhandler_io; while (True) { bzf = BZ2_bzReadOpen ( &bzerr, zStream, verbosity, (int)smallMode, unused, nUnused ); if (bzf == NULL || bzerr != BZ_OK) goto errhandler; streamNo++; while (bzerr == BZ_OK) { nread = BZ2_bzRead ( &bzerr, bzf, obuf, 5000 ); if (bzerr == BZ_DATA_ERROR_MAGIC) goto errhandler; } if (bzerr != BZ_STREAM_END) goto errhandler; BZ2_bzReadGetUnused ( &bzerr, bzf, (void**)(&unusedTmp), &nUnused ); if (bzerr != BZ_OK) panic ( "test:bzReadGetUnused" ); for (i = 0; i < nUnused; i++) unused[i] = unusedTmp[i]; BZ2_bzReadClose ( &bzerr, bzf ); if (bzerr != BZ_OK) panic ( "test:bzReadGetUnused" ); if (nUnused == 0 && myfeof(zStream)) break; } if (ferror(zStream)) goto errhandler_io; ret = fclose ( zStream ); if (ret == EOF) goto errhandler_io; if (verbosity >= 2) fprintf ( stderr, "\n " ); return True; errhandler: BZ2_bzReadClose ( &bzerr_dummy, bzf ); if (verbosity == 0) fprintf ( stderr, "%s: %s: ", progName, inName ); switch (bzerr) { case BZ_CONFIG_ERROR: configError(); break; case BZ_IO_ERROR: errhandler_io: ioError(); break; case BZ_DATA_ERROR: fprintf ( stderr, "data integrity (CRC) error in data\n" ); return False; case BZ_MEM_ERROR: outOfMemory(); case BZ_UNEXPECTED_EOF: fprintf ( stderr, "file ends unexpectedly\n" ); return False; case BZ_DATA_ERROR_MAGIC: if (zStream != stdin) fclose(zStream); if (streamNo == 1) { fprintf ( stderr, "bad magic number (file not created by bzip2)\n" ); return False; } else { if (noisy) fprintf ( stderr, "trailing garbage after EOF ignored\n" ); return True; } default: panic ( "test:unexpected error" ); } panic ( "test:end" ); return True; /*notreached*/ } /*---------------------------------------------------*/ /*--- Error [non-] handling grunge ---*/ /*---------------------------------------------------*/ /*---------------------------------------------*/ static void setExit ( Int32 v ) { if (v > exitValue) exitValue = v; } /*---------------------------------------------*/ static void cadvise ( void ) { if (noisy) fprintf ( stderr, "\nIt is possible that the compressed file(s) have become corrupted.\n" "You can use the -tvv option to test integrity of such files.\n\n" "You can use the `bzip2recover' program to attempt to recover\n" "data from undamaged sections of corrupted files.\n\n" ); } /*---------------------------------------------*/ static void showFileNames ( void ) { if (noisy) fprintf ( stderr, "\tInput file = %s, output file = %s\n", inName, outName ); } /*---------------------------------------------*/ static void cleanUpAndFail ( Int32 ec ) { IntNative retVal; struct MY_STAT statBuf; if ( srcMode == SM_F2F && opMode != OM_TEST && deleteOutputOnInterrupt ) { /* Check whether input file still exists. Delete output file only if input exists to avoid loss of data. Joerg Prante, 5 January 2002. (JRS 06-Jan-2002: other changes in 1.0.2 mean this is less likely to happen. But to be ultra-paranoid, we do the check anyway.) */ retVal = MY_STAT ( inName, &statBuf ); if (retVal == 0) { if (noisy) fprintf ( stderr, "%s: Deleting output file %s, if it exists.\n", progName, outName ); if (outputHandleJustInCase != NULL) fclose ( outputHandleJustInCase ); retVal = remove ( outName ); if (retVal != 0) fprintf ( stderr, "%s: WARNING: deletion of output file " "(apparently) failed.\n", progName ); } else { fprintf ( stderr, "%s: WARNING: deletion of output file suppressed\n", progName ); fprintf ( stderr, "%s: since input file no longer exists. Output file\n", progName ); fprintf ( stderr, "%s: `%s' may be incomplete.\n", progName, outName ); fprintf ( stderr, "%s: I suggest doing an integrity test (bzip2 -tv)" " of it.\n", progName ); } } if (noisy && numFileNames > 0 && numFilesProcessed < numFileNames) { fprintf ( stderr, "%s: WARNING: some files have not been processed:\n" "%s: %d specified on command line, %d not processed yet.\n\n", progName, progName, numFileNames, numFileNames - numFilesProcessed ); } setExit(ec); exit(exitValue); } /*---------------------------------------------*/ static void panic ( Char* s ) { fprintf ( stderr, "\n%s: PANIC -- internal consistency error:\n" "\t%s\n" "\tThis is a BUG. Please report it to me at:\n" "\tjseward@acm.org\n", progName, s ); showFileNames(); cleanUpAndFail( 3 ); } /*---------------------------------------------*/ static void crcError ( void ) { fprintf ( stderr, "\n%s: Data integrity error when decompressing.\n", progName ); showFileNames(); cadvise(); cleanUpAndFail( 2 ); } /*---------------------------------------------*/ static void compressedStreamEOF ( void ) { if (noisy) { fprintf ( stderr, "\n%s: Compressed file ends unexpectedly;\n\t" "perhaps it is corrupted? *Possible* reason follows.\n", progName ); perror ( progName ); showFileNames(); cadvise(); } cleanUpAndFail( 2 ); } /*---------------------------------------------*/ static void ioError ( void ) { fprintf ( stderr, "\n%s: I/O or other error, bailing out. " "Possible reason follows.\n", progName ); perror ( progName ); showFileNames(); cleanUpAndFail( 1 ); } /*---------------------------------------------*/ static void mySignalCatcher ( IntNative n ) { fprintf ( stderr, "\n%s: Control-C or similar caught, quitting.\n", progName ); cleanUpAndFail(1); } /*---------------------------------------------*/ static void mySIGSEGVorSIGBUScatcher ( IntNative n ) { if (opMode == OM_Z) fprintf ( stderr, "\n%s: Caught a SIGSEGV or SIGBUS whilst compressing.\n" "\n" " Possible causes are (most likely first):\n" " (1) This computer has unreliable memory or cache hardware\n" " (a surprisingly common problem; try a different machine.)\n" " (2) A bug in the compiler used to create this executable\n" " (unlikely, if you didn't compile bzip2 yourself.)\n" " (3) A real bug in bzip2 -- I hope this should never be the case.\n" " The user's manual, Section 4.3, has more info on (1) and (2).\n" " \n" " If you suspect this is a bug in bzip2, or are unsure about (1)\n" " or (2), feel free to report it to me at: jseward@acm.org.\n" " Section 4.3 of the user's manual describes the info a useful\n" " bug report should have. If the manual is available on your\n" " system, please try and read it before mailing me. If you don't\n" " have the manual or can't be bothered to read it, mail me anyway.\n" "\n", progName ); else fprintf ( stderr, "\n%s: Caught a SIGSEGV or SIGBUS whilst decompressing.\n" "\n" " Possible causes are (most likely first):\n" " (1) The compressed data is corrupted, and bzip2's usual checks\n" " failed to detect this. Try bzip2 -tvv my_file.bz2.\n" " (2) This computer has unreliable memory or cache hardware\n" " (a surprisingly common problem; try a different machine.)\n" " (3) A bug in the compiler used to create this executable\n" " (unlikely, if you didn't compile bzip2 yourself.)\n" " (4) A real bug in bzip2 -- I hope this should never be the case.\n" " The user's manual, Section 4.3, has more info on (2) and (3).\n" " \n" " If you suspect this is a bug in bzip2, or are unsure about (2)\n" " or (3), feel free to report it to me at: jseward@acm.org.\n" " Section 4.3 of the user's manual describes the info a useful\n" " bug report should have. If the manual is available on your\n" " system, please try and read it before mailing me. If you don't\n" " have the manual or can't be bothered to read it, mail me anyway.\n" "\n", progName ); showFileNames(); if (opMode == OM_Z) cleanUpAndFail( 3 ); else { cadvise(); cleanUpAndFail( 2 ); } } /*---------------------------------------------*/ static void outOfMemory ( void ) { fprintf ( stderr, "\n%s: couldn't allocate enough memory\n", progName ); showFileNames(); cleanUpAndFail(1); } /*---------------------------------------------*/ static void configError ( void ) { fprintf ( stderr, "bzip2: I'm not configured correctly for this platform!\n" "\tI require Int32, Int16 and Char to have sizes\n" "\tof 4, 2 and 1 bytes to run properly, and they don't.\n" "\tProbably you can fix this by defining them correctly,\n" "\tand recompiling. Bye!\n" ); setExit(3); exit(exitValue); } /*---------------------------------------------------*/ /*--- The main driver machinery ---*/ /*---------------------------------------------------*/ /* All rather crufty. The main problem is that input files are stat()d multiple times before use. This should be cleaned up. */ /*---------------------------------------------*/ static void pad ( Char *s ) { Int32 i; if ( (Int32)strlen(s) >= longestFileName ) return; for (i = 1; i <= longestFileName - (Int32)strlen(s); i++) fprintf ( stderr, " " ); } /*---------------------------------------------*/ static void copyFileName ( Char* to, Char* from ) { if ( strlen(from) > FILE_NAME_LEN-10 ) { fprintf ( stderr, "bzip2: file name\n`%s'\n" "is suspiciously (more than %d chars) long.\n" "Try using a reasonable file name instead. Sorry! :-)\n", from, FILE_NAME_LEN-10 ); setExit(1); exit(exitValue); } strncpy(to,from,FILE_NAME_LEN-10); to[FILE_NAME_LEN-10]='\0'; } /*---------------------------------------------*/ static Bool fileExists ( Char* name ) { FILE *tmp = fopen ( name, "rb" ); Bool exists = (tmp != NULL); if (tmp != NULL) fclose ( tmp ); return exists; } /*---------------------------------------------*/ /* Open an output file safely with O_EXCL and good permissions. This avoids a race condition in versions < 1.0.2, in which the file was first opened and then had its interim permissions set safely. We instead use open() to create the file with the interim permissions required. (--- --- rw-). For non-Unix platforms, if we are not worrying about security issues, simple this simply behaves like fopen. */ FILE* fopen_output_safely ( Char* name, const char* mode ) { # if BZ_UNIX FILE* fp; IntNative fh; fh = open(name, O_WRONLY|O_CREAT|O_EXCL, S_IWUSR|S_IRUSR); if (fh == -1) return NULL; fp = fdopen(fh, mode); if (fp == NULL) close(fh); return fp; # else return fopen(name, mode); # endif } /*---------------------------------------------*/ /*-- if in doubt, return True --*/ static Bool notAStandardFile ( Char* name ) { IntNative i; struct MY_STAT statBuf; i = MY_LSTAT ( name, &statBuf ); if (i != 0) return True; if (MY_S_ISREG(statBuf.st_mode)) return False; return True; } /*---------------------------------------------*/ /*-- rac 11/21/98 see if file has hard links to it --*/ static Int32 countHardLinks ( Char* name ) { IntNative i; struct MY_STAT statBuf; i = MY_LSTAT ( name, &statBuf ); if (i != 0) return 0; return (statBuf.st_nlink - 1); } /*---------------------------------------------*/ /* Copy modification date, access date, permissions and owner from the source to destination file. We have to copy this meta-info off into fileMetaInfo before starting to compress / decompress it, because doing it afterwards means we get the wrong access time. To complicate matters, in compress() and decompress() below, the sequence of tests preceding the call to saveInputFileMetaInfo() involves calling fileExists(), which in turn establishes its result by attempting to fopen() the file, and if successful, immediately fclose()ing it again. So we have to assume that the fopen() call does not cause the access time field to be updated. Reading of the man page for stat() (man 2 stat) on RedHat 7.2 seems to imply that merely doing open() will not affect the access time. Therefore we merely need to hope that the C library only does open() as a result of fopen(), and not any kind of read()-ahead cleverness. It sounds pretty fragile to me. Whether this carries across robustly to arbitrary Unix-like platforms (or even works robustly on this one, RedHat 7.2) is unknown to me. Nevertheless ... */ #if BZ_UNIX static struct MY_STAT fileMetaInfo; #endif static void saveInputFileMetaInfo ( Char *srcName ) { # if BZ_UNIX IntNative retVal; /* Note use of stat here, not lstat. */ retVal = MY_STAT( srcName, &fileMetaInfo ); ERROR_IF_NOT_ZERO ( retVal ); # endif } static void applySavedMetaInfoToOutputFile ( Char *dstName ) { # if BZ_UNIX IntNative retVal; struct utimbuf uTimBuf; uTimBuf.actime = fileMetaInfo.st_atime; uTimBuf.modtime = fileMetaInfo.st_mtime; retVal = chmod ( dstName, fileMetaInfo.st_mode ); ERROR_IF_NOT_ZERO ( retVal ); retVal = utime ( dstName, &uTimBuf ); ERROR_IF_NOT_ZERO ( retVal ); retVal = chown ( dstName, fileMetaInfo.st_uid, fileMetaInfo.st_gid ); /* chown() will in many cases return with EPERM, which can be safely ignored. */ # endif } /*---------------------------------------------*/ static Bool containsDubiousChars ( Char* name ) { # if BZ_UNIX /* On unix, files can contain any characters and the file expansion * is performed by the shell. */ return False; # else /* ! BZ_UNIX */ /* On non-unix (Win* platforms), wildcard characters are not allowed in * filenames. */ for (; *name != '\0'; name++) if (*name == '?' || *name == '*') return True; return False; # endif /* BZ_UNIX */ } /*---------------------------------------------*/ #define BZ_N_SUFFIX_PAIRS 4 Char* zSuffix[BZ_N_SUFFIX_PAIRS] = { ".bz2", ".bz", ".tbz2", ".tbz" }; Char* unzSuffix[BZ_N_SUFFIX_PAIRS] = { "", "", ".tar", ".tar" }; static Bool hasSuffix ( Char* s, Char* suffix ) { Int32 ns = strlen(s); Int32 nx = strlen(suffix); if (ns < nx) return False; if (strcmp(s + ns - nx, suffix) == 0) return True; return False; } static Bool mapSuffix ( Char* name, Char* oldSuffix, Char* newSuffix ) { if (!hasSuffix(name,oldSuffix)) return False; name[strlen(name)-strlen(oldSuffix)] = 0; strcat ( name, newSuffix ); return True; } /*---------------------------------------------*/ static void compress ( Char *name ) { FILE *inStr; FILE *outStr; Int32 n, i; struct MY_STAT statBuf; deleteOutputOnInterrupt = False; if (name == NULL && srcMode != SM_I2O) panic ( "compress: bad modes\n" ); switch (srcMode) { case SM_I2O: copyFileName ( inName, "(stdin)" ); copyFileName ( outName, "(stdout)" ); break; case SM_F2F: copyFileName ( inName, name ); copyFileName ( outName, name ); strcat ( outName, ".bz2" ); break; case SM_F2O: copyFileName ( inName, name ); copyFileName ( outName, "(stdout)" ); break; } if ( srcMode != SM_I2O && containsDubiousChars ( inName ) ) { if (noisy) fprintf ( stderr, "%s: There are no files matching `%s'.\n", progName, inName ); setExit(1); return; } if ( srcMode != SM_I2O && !fileExists ( inName ) ) { fprintf ( stderr, "%s: Can't open input file %s: %s.\n", progName, inName, strerror(errno) ); setExit(1); return; } for (i = 0; i < BZ_N_SUFFIX_PAIRS; i++) { if (hasSuffix(inName, zSuffix[i])) { if (noisy) fprintf ( stderr, "%s: Input file %s already has %s suffix.\n", progName, inName, zSuffix[i] ); setExit(1); return; } } if ( srcMode == SM_F2F || srcMode == SM_F2O ) { MY_STAT(inName, &statBuf); if ( MY_S_ISDIR(statBuf.st_mode) ) { fprintf( stderr, "%s: Input file %s is a directory.\n", progName,inName); setExit(1); return; } } if ( srcMode == SM_F2F && !forceOverwrite && notAStandardFile ( inName )) { if (noisy) fprintf ( stderr, "%s: Input file %s is not a normal file.\n", progName, inName ); setExit(1); return; } if ( srcMode == SM_F2F && fileExists ( outName ) ) { if (forceOverwrite) { remove(outName); } else { fprintf ( stderr, "%s: Output file %s already exists.\n", progName, outName ); setExit(1); return; } } if ( srcMode == SM_F2F && !forceOverwrite && (n=countHardLinks ( inName )) > 0) { fprintf ( stderr, "%s: Input file %s has %d other link%s.\n", progName, inName, n, n > 1 ? "s" : "" ); setExit(1); return; } if ( srcMode == SM_F2F ) { /* Save the file's meta-info before we open it. Doing it later means we mess up the access times. */ saveInputFileMetaInfo ( inName ); } switch ( srcMode ) { case SM_I2O: inStr = stdin; outStr = stdout; if ( isatty ( fileno ( stdout ) ) ) { fprintf ( stderr, "%s: I won't write compressed data to a terminal.\n", progName ); fprintf ( stderr, "%s: For help, type: `%s --help'.\n", progName, progName ); setExit(1); return; }; break; case SM_F2O: inStr = fopen ( inName, "rb" ); outStr = stdout; if ( isatty ( fileno ( stdout ) ) ) { fprintf ( stderr, "%s: I won't write compressed data to a terminal.\n", progName ); fprintf ( stderr, "%s: For help, type: `%s --help'.\n", progName, progName ); if ( inStr != NULL ) fclose ( inStr ); setExit(1); return; }; if ( inStr == NULL ) { fprintf ( stderr, "%s: Can't open input file %s: %s.\n", progName, inName, strerror(errno) ); setExit(1); return; }; break; case SM_F2F: inStr = fopen ( inName, "rb" ); outStr = fopen_output_safely ( outName, "wb" ); if ( outStr == NULL) { fprintf ( stderr, "%s: Can't create output file %s: %s.\n", progName, outName, strerror(errno) ); if ( inStr != NULL ) fclose ( inStr ); setExit(1); return; } if ( inStr == NULL ) { fprintf ( stderr, "%s: Can't open input file %s: %s.\n", progName, inName, strerror(errno) ); if ( outStr != NULL ) fclose ( outStr ); setExit(1); return; }; break; default: panic ( "compress: bad srcMode" ); break; } if (verbosity >= 1) { fprintf ( stderr, " %s: ", inName ); pad ( inName ); fflush ( stderr ); } /*--- Now the input and output handles are sane. Do the Biz. ---*/ outputHandleJustInCase = outStr; deleteOutputOnInterrupt = True; compressStream ( inStr, outStr ); outputHandleJustInCase = NULL; /*--- If there was an I/O error, we won't get here. ---*/ if ( srcMode == SM_F2F ) { applySavedMetaInfoToOutputFile ( outName ); deleteOutputOnInterrupt = False; if ( !keepInputFiles ) { IntNative retVal = remove ( inName ); ERROR_IF_NOT_ZERO ( retVal ); } } deleteOutputOnInterrupt = False; } /*---------------------------------------------*/ static void uncompress ( Char *name ) { FILE *inStr; FILE *outStr; Int32 n, i; Bool magicNumberOK; Bool cantGuess; struct MY_STAT statBuf; deleteOutputOnInterrupt = False; if (name == NULL && srcMode != SM_I2O) panic ( "uncompress: bad modes\n" ); cantGuess = False; switch (srcMode) { case SM_I2O: copyFileName ( inName, "(stdin)" ); copyFileName ( outName, "(stdout)" ); break; case SM_F2F: copyFileName ( inName, name ); copyFileName ( outName, name ); for (i = 0; i < BZ_N_SUFFIX_PAIRS; i++) if (mapSuffix(outName,zSuffix[i],unzSuffix[i])) goto zzz; cantGuess = True; strcat ( outName, ".out" ); break; case SM_F2O: copyFileName ( inName, name ); copyFileName ( outName, "(stdout)" ); break; } zzz: if ( srcMode != SM_I2O && containsDubiousChars ( inName ) ) { if (noisy) fprintf ( stderr, "%s: There are no files matching `%s'.\n", progName, inName ); setExit(1); return; } if ( srcMode != SM_I2O && !fileExists ( inName ) ) { fprintf ( stderr, "%s: Can't open input file %s: %s.\n", progName, inName, strerror(errno) ); setExit(1); return; } if ( srcMode == SM_F2F || srcMode == SM_F2O ) { MY_STAT(inName, &statBuf); if ( MY_S_ISDIR(statBuf.st_mode) ) { fprintf( stderr, "%s: Input file %s is a directory.\n", progName,inName); setExit(1); return; } } if ( srcMode == SM_F2F && !forceOverwrite && notAStandardFile ( inName )) { if (noisy) fprintf ( stderr, "%s: Input file %s is not a normal file.\n", progName, inName ); setExit(1); return; } if ( /* srcMode == SM_F2F implied && */ cantGuess ) { if (noisy) fprintf ( stderr, "%s: Can't guess original name for %s -- using %s\n", progName, inName, outName ); /* just a warning, no return */ } if ( srcMode == SM_F2F && fileExists ( outName ) ) { if (forceOverwrite) { remove(outName); } else { fprintf ( stderr, "%s: Output file %s already exists.\n", progName, outName ); setExit(1); return; } } if ( srcMode == SM_F2F && !forceOverwrite && (n=countHardLinks ( inName ) ) > 0) { fprintf ( stderr, "%s: Input file %s has %d other link%s.\n", progName, inName, n, n > 1 ? "s" : "" ); setExit(1); return; } if ( srcMode == SM_F2F ) { /* Save the file's meta-info before we open it. Doing it later means we mess up the access times. */ saveInputFileMetaInfo ( inName ); } switch ( srcMode ) { case SM_I2O: inStr = stdin; outStr = stdout; if ( isatty ( fileno ( stdin ) ) ) { fprintf ( stderr, "%s: I won't read compressed data from a terminal.\n", progName ); fprintf ( stderr, "%s: For help, type: `%s --help'.\n", progName, progName ); setExit(1); return; }; break; case SM_F2O: inStr = fopen ( inName, "rb" ); outStr = stdout; if ( inStr == NULL ) { fprintf ( stderr, "%s: Can't open input file %s:%s.\n", progName, inName, strerror(errno) ); if ( inStr != NULL ) fclose ( inStr ); setExit(1); return; }; break; case SM_F2F: inStr = fopen ( inName, "rb" ); outStr = fopen_output_safely ( outName, "wb" ); if ( outStr == NULL) { fprintf ( stderr, "%s: Can't create output file %s: %s.\n", progName, outName, strerror(errno) ); if ( inStr != NULL ) fclose ( inStr ); setExit(1); return; } if ( inStr == NULL ) { fprintf ( stderr, "%s: Can't open input file %s: %s.\n", progName, inName, strerror(errno) ); if ( outStr != NULL ) fclose ( outStr ); setExit(1); return; }; break; default: panic ( "uncompress: bad srcMode" ); break; } if (verbosity >= 1) { fprintf ( stderr, " %s: ", inName ); pad ( inName ); fflush ( stderr ); } /*--- Now the input and output handles are sane. Do the Biz. ---*/ outputHandleJustInCase = outStr; deleteOutputOnInterrupt = True; magicNumberOK = uncompressStream ( inStr, outStr ); outputHandleJustInCase = NULL; /*--- If there was an I/O error, we won't get here. ---*/ if ( magicNumberOK ) { if ( srcMode == SM_F2F ) { applySavedMetaInfoToOutputFile ( outName ); deleteOutputOnInterrupt = False; if ( !keepInputFiles ) { IntNative retVal = remove ( inName ); ERROR_IF_NOT_ZERO ( retVal ); } } } else { unzFailsExist = True; deleteOutputOnInterrupt = False; if ( srcMode == SM_F2F ) { IntNative retVal = remove ( outName ); ERROR_IF_NOT_ZERO ( retVal ); } } deleteOutputOnInterrupt = False; if ( magicNumberOK ) { if (verbosity >= 1) fprintf ( stderr, "done\n" ); } else { setExit(2); if (verbosity >= 1) fprintf ( stderr, "not a bzip2 file.\n" ); else fprintf ( stderr, "%s: %s is not a bzip2 file.\n", progName, inName ); } } /*---------------------------------------------*/ static void testf ( Char *name ) { FILE *inStr; Bool allOK; struct MY_STAT statBuf; deleteOutputOnInterrupt = False; if (name == NULL && srcMode != SM_I2O) panic ( "testf: bad modes\n" ); copyFileName ( outName, "(none)" ); switch (srcMode) { case SM_I2O: copyFileName ( inName, "(stdin)" ); break; case SM_F2F: copyFileName ( inName, name ); break; case SM_F2O: copyFileName ( inName, name ); break; } if ( srcMode != SM_I2O && containsDubiousChars ( inName ) ) { if (noisy) fprintf ( stderr, "%s: There are no files matching `%s'.\n", progName, inName ); setExit(1); return; } if ( srcMode != SM_I2O && !fileExists ( inName ) ) { fprintf ( stderr, "%s: Can't open input %s: %s.\n", progName, inName, strerror(errno) ); setExit(1); return; } if ( srcMode != SM_I2O ) { MY_STAT(inName, &statBuf); if ( MY_S_ISDIR(statBuf.st_mode) ) { fprintf( stderr, "%s: Input file %s is a directory.\n", progName,inName); setExit(1); return; } } switch ( srcMode ) { case SM_I2O: if ( isatty ( fileno ( stdin ) ) ) { fprintf ( stderr, "%s: I won't read compressed data from a terminal.\n", progName ); fprintf ( stderr, "%s: For help, type: `%s --help'.\n", progName, progName ); setExit(1); return; }; inStr = stdin; break; case SM_F2O: case SM_F2F: inStr = fopen ( inName, "rb" ); if ( inStr == NULL ) { fprintf ( stderr, "%s: Can't open input file %s:%s.\n", progName, inName, strerror(errno) ); setExit(1); return; }; break; default: panic ( "testf: bad srcMode" ); break; } if (verbosity >= 1) { fprintf ( stderr, " %s: ", inName ); pad ( inName ); fflush ( stderr ); } /*--- Now the input handle is sane. Do the Biz. ---*/ outputHandleJustInCase = NULL; allOK = testStream ( inStr ); if (allOK && verbosity >= 1) fprintf ( stderr, "ok\n" ); if (!allOK) testFailsExist = True; } /*---------------------------------------------*/ static void license ( void ) { fprintf ( stderr, "bzip2, a block-sorting file compressor. " "Version %s.\n" " \n" " Copyright (C) 1996-2002 by Julian Seward.\n" " \n" " This program is free software; you can redistribute it and/or modify\n" " it under the terms set out in the LICENSE file, which is included\n" " in the bzip2-1.0 source distribution.\n" " \n" " This program is distributed in the hope that it will be useful,\n" " but WITHOUT ANY WARRANTY; without even the implied warranty of\n" " MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n" " LICENSE file for more details.\n" " \n", BZ2_bzlibVersion() ); } /*---------------------------------------------*/ static void usage ( Char *fullProgName ) { fprintf ( stderr, "bzip2, a block-sorting file compressor. " "Version %s.\n" "\n usage: %s [flags and input files in any order]\n" "\n" " -h --help print this message\n" " -d --decompress force decompression\n" " -z --compress force compression\n" " -k --keep keep (don't delete) input files\n" " -f --force overwrite existing output files\n" " -t --test test compressed file integrity\n" " -c --stdout output to standard out\n" " -q --quiet suppress noncritical error messages\n" " -v --verbose be verbose (a 2nd -v gives more)\n" " -L --license display software version & license\n" " -V --version display software version & license\n" " -s --small use less memory (at most 2500k)\n" " -1 .. -9 set block size to 100k .. 900k\n" " --fast alias for -1\n" " --best alias for -9\n" "\n" " If invoked as `bzip2', default action is to compress.\n" " as `bunzip2', default action is to decompress.\n" " as `bzcat', default action is to decompress to stdout.\n" "\n" " If no file names are given, bzip2 compresses or decompresses\n" " from standard input to standard output. You can combine\n" " short flags, so `-v -4' means the same as -v4 or -4v, &c.\n" # if BZ_UNIX "\n" # endif , BZ2_bzlibVersion(), fullProgName ); } /*---------------------------------------------*/ static void redundant ( Char* flag ) { fprintf ( stderr, "%s: %s is redundant in versions 0.9.5 and above\n", progName, flag ); } /*---------------------------------------------*/ /*-- All the garbage from here to main() is purely to implement a linked list of command-line arguments, into which main() copies argv[1 .. argc-1]. The purpose of this exercise is to facilitate the expansion of wildcard characters * and ? in filenames for OSs which don't know how to do it themselves, like MSDOS, Windows 95 and NT. The actual Dirty Work is done by the platform- specific macro APPEND_FILESPEC. --*/ typedef struct zzzz { Char *name; struct zzzz *link; } Cell; /*---------------------------------------------*/ static void *myMalloc ( Int32 n ) { void* p; p = malloc ( (size_t)n ); if (p == NULL) outOfMemory (); return p; } /*---------------------------------------------*/ static Cell *mkCell ( void ) { Cell *c; c = (Cell*) myMalloc ( sizeof ( Cell ) ); c->name = NULL; c->link = NULL; return c; } /*---------------------------------------------*/ static Cell *snocString ( Cell *root, Char *name ) { if (root == NULL) { Cell *tmp = mkCell(); tmp->name = (Char*) myMalloc ( 5 + strlen(name) ); strcpy ( tmp->name, name ); return tmp; } else { Cell *tmp = root; while (tmp->link != NULL) tmp = tmp->link; tmp->link = snocString ( tmp->link, name ); return root; } } /*---------------------------------------------*/ static void addFlagsFromEnvVar ( Cell** argList, Char* varName ) { Int32 i, j, k; Char *envbase, *p; envbase = getenv(varName); if (envbase != NULL) { p = envbase; i = 0; while (True) { if (p[i] == 0) break; p += i; i = 0; while (isspace((Int32)(p[0]))) p++; while (p[i] != 0 && !isspace((Int32)(p[i]))) i++; if (i > 0) { k = i; if (k > FILE_NAME_LEN-10) k = FILE_NAME_LEN-10; for (j = 0; j < k; j++) tmpName[j] = p[j]; tmpName[k] = 0; APPEND_FLAG(*argList, tmpName); } } } } /*---------------------------------------------*/ #define ISFLAG(s) (strcmp(aa->name, (s))==0) IntNative main ( IntNative argc, Char *argv[] ) { Int32 i, j; Char *tmp; Cell *argList; Cell *aa; Bool decode; /*-- Be really really really paranoid :-) --*/ if (sizeof(Int32) != 4 || sizeof(UInt32) != 4 || sizeof(Int16) != 2 || sizeof(UInt16) != 2 || sizeof(Char) != 1 || sizeof(UChar) != 1) configError(); /*-- Initialise --*/ outputHandleJustInCase = NULL; smallMode = False; keepInputFiles = False; forceOverwrite = False; noisy = True; verbosity = 0; blockSize100k = 9; testFailsExist = False; unzFailsExist = False; numFileNames = 0; numFilesProcessed = 0; workFactor = 30; deleteOutputOnInterrupt = False; exitValue = 0; i = j = 0; /* avoid bogus warning from egcs-1.1.X */ /*-- Set up signal handlers for mem access errors --*/ signal (SIGSEGV, mySIGSEGVorSIGBUScatcher); # if BZ_UNIX # ifndef __DJGPP__ signal (SIGBUS, mySIGSEGVorSIGBUScatcher); # endif # endif copyFileName ( inName, "(none)" ); copyFileName ( outName, "(none)" ); copyFileName ( progNameReally, argv[0] ); progName = &progNameReally[0]; for (tmp = &progNameReally[0]; *tmp != '\0'; tmp++) if (*tmp == PATH_SEP) progName = tmp + 1; /*-- Copy flags from env var BZIP2, and expand filename wildcards in arg list. --*/ argList = NULL; addFlagsFromEnvVar ( &argList, "BZIP2" ); addFlagsFromEnvVar ( &argList, "BZIP" ); for (i = 1; i <= argc-1; i++) APPEND_FILESPEC(argList, argv[i]); /*-- Find the length of the longest filename --*/ longestFileName = 7; numFileNames = 0; decode = True; for (aa = argList; aa != NULL; aa = aa->link) { if (ISFLAG("--")) { decode = False; continue; } if (aa->name[0] == '-' && decode) continue; numFileNames++; if (longestFileName < (Int32)strlen(aa->name) ) longestFileName = (Int32)strlen(aa->name); } /*-- Determine source modes; flag handling may change this too. --*/ if (numFileNames == 0) srcMode = SM_I2O; else srcMode = SM_F2F; /*-- Determine what to do (compress/uncompress/test/cat). --*/ /*-- Note that subsequent flag handling may change this. --*/ opMode = OM_Z; if ( (strstr ( progName, "unzip" ) != 0) || (strstr ( progName, "UNZIP" ) != 0) ) opMode = OM_UNZ; if ( (strstr ( progName, "z2cat" ) != 0) || (strstr ( progName, "Z2CAT" ) != 0) || (strstr ( progName, "zcat" ) != 0) || (strstr ( progName, "ZCAT" ) != 0) ) { opMode = OM_UNZ; srcMode = (numFileNames == 0) ? SM_I2O : SM_F2O; } /*-- Look at the flags. --*/ for (aa = argList; aa != NULL; aa = aa->link) { if (ISFLAG("--")) break; if (aa->name[0] == '-' && aa->name[1] != '-') { for (j = 1; aa->name[j] != '\0'; j++) { switch (aa->name[j]) { case 'c': srcMode = SM_F2O; break; case 'd': opMode = OM_UNZ; break; case 'z': opMode = OM_Z; break; case 'f': forceOverwrite = True; break; case 't': opMode = OM_TEST; break; case 'k': keepInputFiles = True; break; case 's': smallMode = True; break; case 'q': noisy = False; break; case '1': blockSize100k = 1; break; case '2': blockSize100k = 2; break; case '3': blockSize100k = 3; break; case '4': blockSize100k = 4; break; case '5': blockSize100k = 5; break; case '6': blockSize100k = 6; break; case '7': blockSize100k = 7; break; case '8': blockSize100k = 8; break; case '9': blockSize100k = 9; break; case 'V': case 'L': license(); break; case 'v': verbosity++; break; case 'h': usage ( progName ); exit ( 0 ); break; default: fprintf ( stderr, "%s: Bad flag `%s'\n", progName, aa->name ); usage ( progName ); exit ( 1 ); break; } } } } /*-- And again ... --*/ for (aa = argList; aa != NULL; aa = aa->link) { if (ISFLAG("--")) break; if (ISFLAG("--stdout")) srcMode = SM_F2O; else if (ISFLAG("--decompress")) opMode = OM_UNZ; else if (ISFLAG("--compress")) opMode = OM_Z; else if (ISFLAG("--force")) forceOverwrite = True; else if (ISFLAG("--test")) opMode = OM_TEST; else if (ISFLAG("--keep")) keepInputFiles = True; else if (ISFLAG("--small")) smallMode = True; else if (ISFLAG("--quiet")) noisy = False; else if (ISFLAG("--version")) license(); else if (ISFLAG("--license")) license(); else if (ISFLAG("--exponential")) workFactor = 1; else if (ISFLAG("--repetitive-best")) redundant(aa->name); else if (ISFLAG("--repetitive-fast")) redundant(aa->name); else if (ISFLAG("--fast")) blockSize100k = 1; else if (ISFLAG("--best")) blockSize100k = 9; else if (ISFLAG("--verbose")) verbosity++; else if (ISFLAG("--help")) { usage ( progName ); exit ( 0 ); } else if (strncmp ( aa->name, "--", 2) == 0) { fprintf ( stderr, "%s: Bad flag `%s'\n", progName, aa->name ); usage ( progName ); exit ( 1 ); } } if (verbosity > 4) verbosity = 4; if (opMode == OM_Z && smallMode && blockSize100k > 2) blockSize100k = 2; if (opMode == OM_TEST && srcMode == SM_F2O) { fprintf ( stderr, "%s: -c and -t cannot be used together.\n", progName ); exit ( 1 ); } if (srcMode == SM_F2O && numFileNames == 0) srcMode = SM_I2O; if (opMode != OM_Z) blockSize100k = 0; if (srcMode == SM_F2F) { signal (SIGINT, mySignalCatcher); signal (SIGTERM, mySignalCatcher); # if BZ_UNIX signal (SIGHUP, mySignalCatcher); # endif } if (opMode == OM_Z) { if (srcMode == SM_I2O) { compress ( NULL ); } else { decode = True; for (aa = argList; aa != NULL; aa = aa->link) { if (ISFLAG("--")) { decode = False; continue; } if (aa->name[0] == '-' && decode) continue; numFilesProcessed++; compress ( aa->name ); } } } else if (opMode == OM_UNZ) { unzFailsExist = False; if (srcMode == SM_I2O) { uncompress ( NULL ); } else { decode = True; for (aa = argList; aa != NULL; aa = aa->link) { if (ISFLAG("--")) { decode = False; continue; } if (aa->name[0] == '-' && decode) continue; numFilesProcessed++; uncompress ( aa->name ); } } if (unzFailsExist) { setExit(2); exit(exitValue); } } else { testFailsExist = False; if (srcMode == SM_I2O) { testf ( NULL ); } else { decode = True; for (aa = argList; aa != NULL; aa = aa->link) { if (ISFLAG("--")) { decode = False; continue; } if (aa->name[0] == '-' && decode) continue; numFilesProcessed++; testf ( aa->name ); } } if (testFailsExist && noisy) { fprintf ( stderr, "\n" "You can use the `bzip2recover' program to attempt to recover\n" "data from undamaged sections of corrupted files.\n\n" ); setExit(2); exit(exitValue); } } /* Free the argument list memory to mollify leak detectors (eg) Purify, Checker. Serves no other useful purpose. */ aa = argList; while (aa != NULL) { Cell* aa2 = aa->link; if (aa->name != NULL) free(aa->name); free(aa); aa = aa2; } return exitValue; } /*-----------------------------------------------------------*/ /*--- end bzip2.c ---*/ /*-----------------------------------------------------------*/