/* -*- mode:c; c-file-style:"k&r"; c-basic-offset: 4; tab-width:4; indent-tabs-mode:nil; mode:auto-fill; fill-column:78; -*- */ /* vim: set ts=4 sw=4 et tw=78 fo=cqt wm=0: */ /* Copyright (C) 2014 Stony Brook University This file is part of Graphene Library OS. Graphene Library OS is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Graphene Library OS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ /* * slabmgr.h * * This file contains implementation of SLAB (variable-size) memory allocator. */ #ifndef SLABMGR_H #define SLABMGR_H #include "list.h" #include #include #ifndef system_malloc #error "macro \"void * system_malloc(int size)\" not declared" #endif #ifndef system_free #error "macro \"void * system_free(void * ptr, int size)\" not declared" #endif #ifndef system_lock #define system_lock() ({}) #endif #ifndef system_unlock #define system_unlock() ({}) #endif /* malloc is supposed to provide some kind of alignment guarantees, but * I can't find a specific reference to what that should be for x86_64. * The first link here is a reference to a technical report from Mozilla, * which seems to indicate that 64-bit platforms align return values to * 16-bytes. calloc and malloc provide the same alignment guarantees. * calloc additionally sets the memory to 0, which malloc is not required * to do. * * http://www.erahm.org/2016/03/24/minimum-alignment-of-allocation-across-platforms/ * http://pubs.opengroup.org/onlinepubs/9699919799/functions/malloc.html */ #define MIN_MALLOC_ALIGNMENT 16 /* Slab objects need to be a multiple of 16 bytes to ensure proper address * alignment for malloc and calloc. */ #define OBJ_PADDING 15 #define LARGE_OBJ_PADDING 8 /* Returns the smallest exact multiple of _y that is at least as large as _x. * In other words, returns _x if _x is a multiple of _y, otherwise rounds * _x up to be a multiple of _y. */ #define ROUND_UP(_x, _y) ((((_x) + (_y) - 1) / (_y)) * (_y)) DEFINE_LIST(slab_obj); typedef struct __attribute__((packed)) slab_obj { unsigned char level; unsigned char padding[OBJ_PADDING]; union { LIST_TYPE(slab_obj) __list; unsigned char *raw; }; } SLAB_OBJ_TYPE, * SLAB_OBJ; /* In order for slab elements to be 16-byte aligned, struct slab_area must * be a multiple of 16 bytes. TODO: Add compile time assertion that this * invariant is respected. */ #define AREA_PADDING 12 DEFINE_LIST(slab_area); typedef struct __attribute__((packed)) slab_area { LIST_TYPE(slab_area) __list; unsigned int size; unsigned char pad[AREA_PADDING]; unsigned char raw[]; } SLAB_AREA_TYPE, * SLAB_AREA; #ifdef SLAB_DEBUG struct slab_debug { struct { const char * file; int line; } alloc, free; }; # define SLAB_DEBUG_SIZE sizeof(struct slab_debug) #else # define SLAB_DEBUG_SIZE 0 #endif #ifdef SLAB_CANARY # define SLAB_CANARY_STRING 0xDEADBEEF # define SLAB_CANARY_SIZE sizeof(unsigned long) #else # define SLAB_CANARY_SIZE 0 #endif #define SLAB_HDR_SIZE \ ROUND_UP((sizeof(SLAB_OBJ_TYPE) - sizeof(LIST_TYPE(slab_obj)) + \ SLAB_DEBUG_SIZE + SLAB_CANARY_SIZE), \ MIN_MALLOC_ALIGNMENT) #ifndef SLAB_LEVEL #define SLAB_LEVEL 8 #endif #ifndef SLAB_LEVEL_SIZES # define SLAB_LEVEL_SIZES 16, 32, 64, \ 128 - SLAB_HDR_SIZE, \ 256 - SLAB_HDR_SIZE, \ 512 - SLAB_HDR_SIZE, \ 1024 - SLAB_HDR_SIZE, \ 2048 - SLAB_HDR_SIZE # define SLAB_LEVELS_SUM (4080 - SLAB_HDR_SIZE * 5) #else # ifndef SLAB_LEVELS_SUM # error "SALB_LEVELS_SUM not defined" # endif #endif static int slab_levels[SLAB_LEVEL] = { SLAB_LEVEL_SIZES }; DEFINE_LISTP(slab_obj); DEFINE_LISTP(slab_area); typedef struct slab_mgr { LISTP_TYPE(slab_area) area_list[SLAB_LEVEL]; LISTP_TYPE(slab_obj) free_list[SLAB_LEVEL]; unsigned int size[SLAB_LEVEL]; void * addr[SLAB_LEVEL], * addr_top[SLAB_LEVEL]; } SLAB_MGR_TYPE, * SLAB_MGR; typedef struct __attribute__((packed)) large_mem_obj { // offset 0 unsigned long size; unsigned char large_padding[LARGE_OBJ_PADDING]; // offset 16 unsigned char level; unsigned char padding[OBJ_PADDING]; // offset 32 unsigned char raw[]; } LARGE_MEM_OBJ_TYPE, * LARGE_MEM_OBJ; #define OBJ_LEVEL(obj) ((obj)->level) #define OBJ_RAW(obj) (&(obj)->raw) #ifndef container_of #define container_of(ptr, type, field) ((type *)((char *)(ptr) - offsetof(type, field))) #endif #define RAW_TO_LEVEL(raw_ptr) \ (*((unsigned char *) (raw_ptr) - OBJ_PADDING - 1)) #define RAW_TO_OBJ(raw_ptr, type) container_of((raw_ptr), type, raw) #define __SUM_OBJ_SIZE(slab_size, size) \ (((slab_size) + SLAB_HDR_SIZE) * (size)) #define __MIN_MEM_SIZE() (sizeof(SLAB_AREA_TYPE)) #define __MAX_MEM_SIZE(slab_size, size) \ (__MIN_MEM_SIZE() + __SUM_OBJ_SIZE((slab_size), (size))) #define __INIT_SUM_OBJ_SIZE(size) \ ((SLAB_LEVELS_SUM + SLAB_HDR_SIZE * SLAB_LEVEL) * (size)) #define __INIT_MIN_MEM_SIZE() \ (sizeof(SLAB_MGR_TYPE) + sizeof(SLAB_AREA_TYPE) * SLAB_LEVEL) #define __INIT_MAX_MEM_SIZE(size) \ (__INIT_MIN_MEM_SIZE() + __INIT_SUM_OBJ_SIZE((size))) #ifdef PAGE_SIZE static inline int size_align_down(int slab_size, int size) { int s = __MAX_MEM_SIZE(slab_size, size); int p = s - (s & ~(PAGE_SIZE - 1)); int o = __SUM_OBJ_SIZE(slab_size, 1); return size - p / o - (p % o ? 1 : 0); } static inline int size_align_up(int slab_size, int size) { int s = __MAX_MEM_SIZE(slab_size, size); int p = ((s + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) - s; int o = __SUM_OBJ_SIZE(slab_size, 1); return size + p / o; } static inline int init_align_down(int size) { int s = __INIT_MAX_MEM_SIZE(size); int p = s - (s & ~(PAGE_SIZE - 1)); int o = __INIT_SUM_OBJ_SIZE(1); return size - p /o - (p % o ? 1 : 0); } static inline int init_size_align_up(int size) { int s = __INIT_MAX_MEM_SIZE(size); int p = ((s + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) - s; int o = __INIT_SUM_OBJ_SIZE(1); return size + p / o; } #endif /* PAGE_SIZE */ #ifndef STARTUP_SIZE # define STARTUP_SIZE 16 #endif static inline void __set_free_slab_area (SLAB_AREA area, SLAB_MGR mgr, int level) { int slab_size = slab_levels[level] + SLAB_HDR_SIZE; mgr->addr[level] = (void *) area->raw; mgr->addr_top[level] = (void *) area->raw + area->size * slab_size; mgr->size[level] += area->size; } static inline SLAB_MGR create_slab_mgr (void) { #ifdef PAGE_SIZE int size = init_size_align_up(STARTUP_SIZE); #else int size = STARTUP_SIZE; #endif unsigned long mem; SLAB_AREA area; SLAB_MGR mgr; mem = (unsigned long) system_malloc(__INIT_MAX_MEM_SIZE(size)); if (mem <= 0) return NULL; mgr = (SLAB_MGR) mem; void * addr = (void *) mgr + sizeof(SLAB_MGR_TYPE); int i; for (i = 0 ; i < SLAB_LEVEL ; i++) { area = (SLAB_AREA) addr; area->size = STARTUP_SIZE; INIT_LIST_HEAD(area, __list); INIT_LISTP(&mgr->area_list[i]); listp_add_tail(area, &mgr->area_list[i], __list); INIT_LISTP(&mgr->free_list[i]); mgr->size[i] = 0; __set_free_slab_area(area, mgr, i); addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE); } return mgr; } static inline void destroy_slab_mgr (SLAB_MGR mgr) { void * addr = (void *) mgr + sizeof(SLAB_MGR_TYPE); SLAB_AREA area, tmp, n; int i; for (i = 0 ; i < SLAB_LEVEL; i++) { area = (SLAB_AREA) addr; listp_for_each_entry_safe(tmp, n, &mgr->area_list[i], __list) { if (tmp != area) system_free(area, __MAX_MEM_SIZE(slab_levels[i], area->size)); } addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE); } system_free(mgr, addr - (void *) mgr); } static inline SLAB_MGR enlarge_slab_mgr (SLAB_MGR mgr, int level) { SLAB_AREA area; int size; if (level >= SLAB_LEVEL) { system_lock(); goto out; } size = mgr->size[level]; area = (SLAB_AREA) system_malloc(__MAX_MEM_SIZE(slab_levels[level], size)); if (area <= 0) return NULL; system_lock(); area->size = size; INIT_LIST_HEAD(area, __list); listp_add(area, &mgr->area_list[level], __list); __set_free_slab_area(area, mgr, level); system_unlock(); out: return mgr; } static inline void * slab_alloc (SLAB_MGR mgr, int size) { SLAB_OBJ mobj; int i; int level = -1; for (i = 0 ; i < SLAB_LEVEL ; i++) if (size <= slab_levels[i]) { level = i; break; } if (level == -1) { LARGE_MEM_OBJ mem = (LARGE_MEM_OBJ) system_malloc(sizeof(LARGE_MEM_OBJ_TYPE) + size); if (!mem) return NULL; mem->size = size; OBJ_LEVEL(mem) = (unsigned char) -1; return OBJ_RAW(mem); } system_lock(); if (mgr->addr[level] == mgr->addr_top[level] && listp_empty(&mgr->free_list[level])) { system_unlock(); enlarge_slab_mgr(mgr, level); system_lock(); } if (!listp_empty(&mgr->free_list[level])) { mobj = listp_first_entry(&mgr->free_list[level], SLAB_OBJ_TYPE, __list); listp_del(mobj, &mgr->free_list[level], __list); } else { mobj = (void *) mgr->addr[level]; mgr->addr[level] += slab_levels[level] + SLAB_HDR_SIZE; } OBJ_LEVEL(mobj) = level; system_unlock(); #ifdef SLAB_CANARY unsigned long * m = (unsigned long *) ((void *) OBJ_RAW(mobj) + slab_levels[level]); *m = SLAB_CANARY_STRING; #endif return OBJ_RAW(mobj); } #ifdef SLAB_DEBUG static inline void * slab_alloc_debug (SLAB_MGR mgr, int size, const char * file, int line) { void * mem = slab_alloc(mgr, size); int i; int level = -1; for (i = 0 ; i < SLAB_LEVEL ; i++) if (size <= slab_levels[i]) { level = i; break; } if (level != -1) { struct slab_debug * debug = (struct slab_debug *) (mem + slab_levels[level] + SLAB_CANARY_SIZE); debug->alloc.file = file; debug->alloc.line = line; } return mem; } #endif static inline void slab_free (SLAB_MGR mgr, void * obj) { /* In a general purpose allocator, free of NULL is allowed (and is a * nop). We might want to enforce stricter rules for our allocator if * we're sure that no clients rely on being able to free NULL. */ if (obj == NULL) return; unsigned char level = RAW_TO_LEVEL(obj); if (level == (unsigned char) -1) { LARGE_MEM_OBJ mem = RAW_TO_OBJ(obj, LARGE_MEM_OBJ_TYPE); system_free(mem, mem->size + sizeof(LARGE_MEM_OBJ_TYPE)); return; } /* If this happens, either the heap is already corrupted, or someone's * freeing something that's wrong, which will most likely lead to heap * corruption. Either way, panic if this happens. TODO: this doesn't allow * us to detect cases where the heap headers have been zeroed, which * is a common type of heap corruption. We could make this case slightly * more likely to be detected by adding a non-zero offset to the level, * so a level of 0 in the header would no longer be a valid level. */ if (level >= SLAB_LEVEL) { pal_printf("Heap corruption detected: invalid heap level %ud\n", level); assert(0); // panic } #ifdef SLAB_CANARY unsigned long * m = (unsigned long *) (obj + slab_levels[level]); assert((*m) == SLAB_CANARY_STRING); #endif SLAB_OBJ mobj = RAW_TO_OBJ(obj, SLAB_OBJ_TYPE); system_lock(); INIT_LIST_HEAD(mobj, __list); listp_add_tail(mobj, &mgr->free_list[level], __list); system_unlock(); } #ifdef SLAB_DEBUG static inline void slab_free_debug (SLAB_MGR mgr, void * obj, const char * file, int line) { if (obj == NULL) return; unsigned char level = RAW_TO_LEVEL(obj); if (level < SLAB_LEVEL) { struct slab_debug * debug = (struct slab_debug *) (obj + slab_levels[level] + SLAB_CANARY_SIZE); debug->free.file = file; debug->free.line = line; } slab_free(mgr, obj); } #endif #endif /* SLABMGR_H */