/* * Copyright (C) 2011-2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** * File: * manage_metadata.cpp * Description: * Parse the xml file to get the metadata and generate the output DLL * with metadata. */ #include "metadata.h" #include "tinyxml2.h" #include "manage_metadata.h" #include "se_trace.h" #include "util_st.h" #include "section.h" #include "se_page_attr.h" #include "elf_util.h" #include #include #include #include #include using namespace tinyxml2; #define ALIGN_SIZE 0x1000 static bool traverser_parameter(const char *temp_name, const char *temp_text, xml_parameter_t *parameter, int parameter_count) { assert(temp_name != NULL && parameter != NULL); uint64_t temp_value=0; if(temp_text == NULL) { se_trace(SE_TRACE_ERROR, LACK_VALUE_FOR_ELEMENT_ERROR, temp_name); return false; } else { if(strchr(temp_text, '-')) { se_trace(SE_TRACE_ERROR, INVALID_VALUE_FOR_ELEMENT_ERROR, temp_name); return false; } errno = 0; char* endptr = NULL; temp_value = (uint64_t)strtoull(temp_text, &endptr, 0); if(*endptr!='\0'||errno!=0) //Invalid value or valid value but out of the representable range { se_trace(SE_TRACE_ERROR, INVALID_VALUE_FOR_ELEMENT_ERROR, temp_name); return false; } } //Look for the matched one int i=0; for(; i=parameter_count) //no matched, return false { se_trace(SE_TRACE_ERROR, UNREC_ELEMENT_ERROR, temp_name); return false; } //found one matched if(parameter[i].flag==1) //repeated definition of XML element, return false { se_trace(SE_TRACE_ERROR, REPEATED_DEFINE_ERROR, temp_name); return false; } parameter[i].flag = 1; if((temp_valueparameter[i].max_value)) // the value is invalid, return false { se_trace(SE_TRACE_ERROR, VALUE_OUT_OF_RANGE_ERROR, temp_name); return false; } parameter[i].value = temp_value; return true; } bool parse_metadata_file(const char *xmlpath, xml_parameter_t *parameter, int parameter_count) { const char* temp_name=NULL; assert(parameter != NULL); if(xmlpath == NULL) // user didn't define the metadata xml file. { se_trace(SE_TRACE_NOTICE, "Use default metadata...\n"); return true; } //use the metadata file that user gives us. parse xml file tinyxml2::XMLDocument doc; XMLError loadOkay = doc.LoadFile(xmlpath); if(loadOkay != XML_SUCCESS) { if(doc.ErrorID() == XML_ERROR_FILE_COULD_NOT_BE_OPENED) { se_trace(SE_TRACE_ERROR, OPEN_FILE_ERROR, xmlpath); } else { se_trace(SE_TRACE_ERROR, XML_FORMAT_ERROR); } return false; } doc.Print();//Write the document to standard out using formatted printing ("pretty print"). XMLElement *pmetadata_element = doc.FirstChildElement("EnclaveConfiguration"); if(!pmetadata_element || pmetadata_element->GetText() != NULL) { se_trace(SE_TRACE_ERROR, XML_FORMAT_ERROR); return false; } XMLElement *sub_element = NULL; sub_element = pmetadata_element->FirstChildElement(); const char *temp_text = NULL; while(sub_element)//parse xml node { if(sub_element->FirstAttribute() != NULL) { se_trace(SE_TRACE_ERROR, XML_FORMAT_ERROR); return false; } temp_name = sub_element->Value(); temp_text = sub_element->GetText(); //traverse every node. Compare with the default value. if(traverser_parameter(temp_name, temp_text, parameter, parameter_count) == false) { se_trace(SE_TRACE_ERROR, XML_FORMAT_ERROR); return false; } sub_element= sub_element->NextSiblingElement(); } return true; } CMetadata::CMetadata(metadata_t *metadata, BinParser *parser) : m_metadata(metadata) , m_parser(parser) { memset(m_metadata, 0, sizeof(metadata_t)); memset(&m_create_param, 0, sizeof(m_create_param)); } CMetadata::~CMetadata() { } bool CMetadata::build_metadata(const xml_parameter_t *parameter) { if(!modify_metadata(parameter)) { return false; } // layout table if(!build_layout_table()) { return false; } // patch table if(!build_patch_table()) { return false; } return true; } bool CMetadata::modify_metadata(const xml_parameter_t *parameter) { assert(parameter != NULL); m_metadata->version = META_DATA_MAKE_VERSION(MAJOR_VERSION,MINOR_VERSION ); m_metadata->size = offsetof(metadata_t, data); m_metadata->tcs_policy = (uint32_t)parameter[TCSPOLICY].value; m_metadata->ssa_frame_size = SSA_FRAME_SIZE; //stack/heap must be page-align if(parameter[STACKMAXSIZE].value % ALIGN_SIZE) { se_trace(SE_TRACE_ERROR, SET_STACK_SIZE_ERROR); return false; } if(parameter[HEAPMAXSIZE].value % ALIGN_SIZE) { se_trace(SE_TRACE_ERROR, SET_HEAP_SIZE_ERROR); return false; } // LE setting: HW != 0, Licensekey = 1 // Other enclave setting: HW = 0, Licensekey = 0 if((parameter[HW].value == 0 && parameter[LAUNCHKEY].value != 0) || (parameter[HW].value != 0 && parameter[LAUNCHKEY].value == 0)) { se_trace(SE_TRACE_ERROR, SET_HW_LE_ERROR); return false; } m_metadata->max_save_buffer_size = MAX_SAVE_BUF_SIZE; m_metadata->magic_num = METADATA_MAGIC; m_metadata->desired_misc_select = 0; m_metadata->enclave_css.body.misc_select = (uint32_t)parameter[MISCSELECT].value; m_metadata->enclave_css.body.misc_mask = (uint32_t)parameter[MISCMASK].value; m_create_param.heap_max_size = parameter[HEAPMAXSIZE].value; m_create_param.ssa_frame_size = SSA_FRAME_SIZE; m_create_param.stack_max_size = parameter[STACKMAXSIZE].value; m_create_param.tcs_max_num = (uint32_t)parameter[TCSNUM].value; m_create_param.tcs_policy = m_metadata->tcs_policy; return true; } void *CMetadata::alloc_buffer_from_metadata(uint32_t size) { void *addr = GET_PTR(void, m_metadata, m_metadata->size); m_metadata->size += size; if((m_metadata->size < size) || (m_metadata->size > METADATA_SIZE)) { return NULL; } return addr; } bool CMetadata::build_layout_entries(vector &layouts) { uint32_t size = (uint32_t)(layouts.size() * sizeof(layout_t)); layout_t *layout_table = (layout_t *) alloc_buffer_from_metadata(size); if(layout_table == NULL) { se_trace(SE_TRACE_ERROR, INVALID_ENCLAVE_ERROR); return false; } m_metadata->dirs[DIR_LAYOUT].offset = (uint32_t)PTR_DIFF(layout_table, m_metadata); m_metadata->dirs[DIR_LAYOUT].size = size; uint64_t rva = calculate_sections_size(); if(rva == 0) { se_trace(SE_TRACE_ERROR, INVALID_ENCLAVE_ERROR); return false; } for(uint32_t i = 0; i < layouts.size(); i++) { memcpy_s(layout_table, sizeof(layout_t), &layouts[i], sizeof(layout_t)); if(!IS_GROUP_ID(layouts[i].entry.id)) { layout_table->entry.rva = rva; rva += (uint64_t)layouts[i].entry.page_count << SE_PAGE_SHIFT; } else { for (uint32_t j = 0; j < layouts[i].group.entry_count; j++) { layout_table->group.load_step += (uint64_t)layouts[i-j-1].entry.page_count << SE_PAGE_SHIFT; } rva += layouts[i].group.load_times * layout_table->group.load_step; } layout_table++; } // enclave virtual size m_metadata->enclave_size = calculate_enclave_size(rva); if(m_metadata->enclave_size == (uint64_t)-1) { se_trace(SE_TRACE_ERROR, OUT_OF_EPC_ERROR); return false; } // the last guard page entry to round the enclave size to power of 2 if(m_metadata->enclave_size - rva > 0) { layout_table = (layout_t *)alloc_buffer_from_metadata(sizeof(layout_t)); if(layout_table == NULL) { se_trace(SE_TRACE_ERROR, INVALID_ENCLAVE_ERROR); return false; } layout_table->entry.id = LAYOUT_ID_GUARD; layout_table->entry.rva = rva; layout_table->entry.page_count = (uint32_t)((m_metadata->enclave_size - rva) >> SE_PAGE_SHIFT); m_metadata->dirs[DIR_LAYOUT].size += (uint32_t)sizeof(layout_t); } return true; } bool CMetadata::build_layout_table() { vector layouts; layout_t layout; memset(&layout, 0, sizeof(layout)); layout_t guard_page; memset(&guard_page, 0, sizeof(guard_page)); guard_page.entry.id = LAYOUT_ID_GUARD; guard_page.entry.page_count = SE_GUARD_PAGE_SIZE >> SE_PAGE_SHIFT; // heap layout.entry.id = LAYOUT_ID_HEAP; layout.entry.page_count = (uint32_t)(m_create_param.heap_max_size >> SE_PAGE_SHIFT); layout.entry.attributes = ADD_PAGE_ONLY; layout.entry.si_flags = SI_FLAGS_RW; layouts.push_back(layout); // thread context memory layout // guard page | stack | TCS | SSA | guard page | TLS // guard page layouts.push_back(guard_page); // stack layout.entry.id = LAYOUT_ID_STACK; layout.entry.page_count = (uint32_t)(m_create_param.stack_max_size >> SE_PAGE_SHIFT); layout.entry.attributes = ADD_EXTEND_PAGE; layout.entry.si_flags = SI_FLAGS_RW; layout.entry.content_size = 0xCCCCCCCC; layouts.push_back(layout); // guard page layouts.push_back(guard_page); // tcs layout.entry.id = LAYOUT_ID_TCS; layout.entry.page_count = TCS_SIZE >> SE_PAGE_SHIFT; layout.entry.attributes = ADD_EXTEND_PAGE; layout.entry.si_flags = SI_FLAGS_TCS; tcs_t *tcs_template = (tcs_t *) alloc_buffer_from_metadata(TCS_TEMPLATE_SIZE); if(tcs_template == NULL) { se_trace(SE_TRACE_ERROR, INVALID_ENCLAVE_ERROR); return false; } layout.entry.content_offset = (uint32_t)PTR_DIFF(tcs_template, m_metadata), layout.entry.content_size = TCS_TEMPLATE_SIZE; layouts.push_back(layout); memset(&layout, 0, sizeof(layout)); // ssa layout.entry.id = LAYOUT_ID_SSA; layout.entry.page_count = SSA_FRAME_SIZE * SSA_NUM; layout.entry.attributes = ADD_EXTEND_PAGE; layout.entry.si_flags = SI_FLAGS_RW; layouts.push_back(layout); // guard page layouts.push_back(guard_page); // td layout.entry.id = LAYOUT_ID_TD; layout.entry.page_count = 1; const Section *section = m_parser->get_tls_section(); if(section) { layout.entry.page_count += (uint32_t)(ROUND_TO_PAGE(section->virtual_size()) >> SE_PAGE_SHIFT); } layout.entry.attributes = ADD_EXTEND_PAGE; layout.entry.si_flags = SI_FLAGS_RW; layouts.push_back(layout); // group for thread context if (m_create_param.tcs_max_num > 1) { memset(&layout, 0, sizeof(layout)); layout.group.id = LAYOUT_ID_THREAD_GROUP; layout.group.entry_count = (uint16_t) (layouts.size() - 1); layout.group.load_times = m_create_param.tcs_max_num-1; layouts.push_back(layout); } // build layout table if(false == build_layout_entries(layouts)) { return false; } // tcs template if(false == build_tcs_template(tcs_template)) { se_trace(SE_TRACE_ERROR, INVALID_ENCLAVE_ERROR); return false; } return true; } bool CMetadata::build_patch_entries(vector &patches) { uint32_t size = (uint32_t)(patches.size() * sizeof(patch_entry_t)); patch_entry_t *patch_table = (patch_entry_t *) alloc_buffer_from_metadata(size); if(patch_table == NULL) { se_trace(SE_TRACE_ERROR, INVALID_ENCLAVE_ERROR); return false; } m_metadata->dirs[DIR_PATCH].offset = (uint32_t)PTR_DIFF(patch_table, m_metadata); m_metadata->dirs[DIR_PATCH].size = size; for(uint32_t i = 0; i < patches.size(); i++) { memcpy_s(patch_table, sizeof(patch_entry_t), &patches[i], sizeof(patch_entry_t)); patch_table++; } return true; } bool CMetadata::build_patch_table() { const uint8_t *base_addr = (const uint8_t *)m_parser->get_start_addr(); vector patches; patch_entry_t patch; memset(&patch, 0, sizeof(patch)); // td template uint8_t buf[200]; uint32_t size = 200; memset(buf, 0, size); if(false == build_gd_template(buf, &size)) { return false; } uint8_t *gd_template = (uint8_t *)alloc_buffer_from_metadata(size); if(gd_template == NULL) { se_trace(SE_TRACE_ERROR, INVALID_ENCLAVE_ERROR); return false; } memcpy_s(gd_template, size, buf, size); uint64_t rva = m_parser->get_symbol_rva("g_global_data"); if(0 == rva) { se_trace(SE_TRACE_ERROR, INVALID_ENCLAVE_ERROR); return false; } patch.dst = (uint64_t)PTR_DIFF(get_rawdata_by_rva(rva), base_addr); patch.src = (uint32_t)PTR_DIFF(gd_template, m_metadata); patch.size = size; patches.push_back(patch); // patch the image header uint64_t *zero = (uint64_t *)alloc_buffer_from_metadata(sizeof(*zero)); if(zero == NULL) { se_trace(SE_TRACE_ERROR, INVALID_ENCLAVE_ERROR); return false; } *zero = 0; bin_fmt_t bf = m_parser->get_bin_format(); if(bf == BF_ELF32) { Elf32_Ehdr *elf_hdr = (Elf32_Ehdr *)base_addr; patch.dst = (uint64_t)PTR_DIFF(&elf_hdr->e_shnum, base_addr); patch.src = (uint32_t)PTR_DIFF(zero, m_metadata); patch.size = (uint32_t)sizeof(elf_hdr->e_shnum); patches.push_back(patch); patch.dst = (uint64_t)PTR_DIFF(&elf_hdr->e_shoff, base_addr); patch.src = (uint32_t)PTR_DIFF(zero, m_metadata); patch.size = (uint32_t)sizeof(elf_hdr->e_shoff); patches.push_back(patch); patch.dst = (uint64_t)PTR_DIFF(&elf_hdr->e_shstrndx, base_addr); patch.src = (uint32_t)PTR_DIFF(zero, m_metadata); patch.size = (uint32_t)sizeof(elf_hdr->e_shstrndx); patches.push_back(patch); // Modify GNU_RELRO info to eliminate the impact of enclave measurement. Elf32_Phdr *prg_hdr = GET_PTR(Elf32_Phdr, base_addr, elf_hdr->e_phoff); for (unsigned idx = 0; idx < elf_hdr->e_phnum; ++idx, ++prg_hdr) { if(prg_hdr->p_type == PT_GNU_RELRO) { patch.dst = (uint64_t)PTR_DIFF(prg_hdr, base_addr); patch.src = (uint32_t)PTR_DIFF(zero, m_metadata); patch.size = (uint32_t)sizeof(Elf32_Phdr); patches.push_back(patch); break; } } } else if(bf == BF_ELF64) { Elf64_Ehdr *elf_hdr = (Elf64_Ehdr *)base_addr; patch.dst = (uint64_t)PTR_DIFF(&elf_hdr->e_shnum, base_addr); patch.src = (uint32_t)PTR_DIFF(zero, m_metadata); patch.size = (uint32_t)sizeof(elf_hdr->e_shnum); patches.push_back(patch); patch.dst = (uint64_t)PTR_DIFF(&elf_hdr->e_shoff, base_addr); patch.src = (uint32_t)PTR_DIFF(zero, m_metadata); patch.size = (uint32_t)sizeof(elf_hdr->e_shoff); patches.push_back(patch); patch.dst = (uint64_t)PTR_DIFF(&elf_hdr->e_shstrndx, base_addr); patch.src = (uint32_t)PTR_DIFF(zero, m_metadata); patch.size = (uint32_t)sizeof(elf_hdr->e_shstrndx); patches.push_back(patch); } if(false == build_patch_entries(patches)) { return false; } return true; } layout_entry_t *CMetadata::get_entry_by_id(uint16_t id) { layout_entry_t *layout_start = GET_PTR(layout_entry_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset); layout_entry_t *layout_end = GET_PTR(layout_entry_t, m_metadata, m_metadata->dirs[DIR_LAYOUT].offset + m_metadata->dirs[DIR_LAYOUT].size); for (layout_entry_t *layout = layout_start; layout < layout_end; layout++) { if(layout->id == id) return layout; } assert(false); return NULL; } bool CMetadata::build_gd_template(uint8_t *data, uint32_t *data_size) { m_create_param.stack_limit_addr = get_entry_by_id(LAYOUT_ID_STACK)->rva - get_entry_by_id(LAYOUT_ID_TCS)->rva; m_create_param.stack_base_addr = ((uint64_t)get_entry_by_id(LAYOUT_ID_STACK)->page_count << SE_PAGE_SHIFT) + m_create_param.stack_limit_addr; m_create_param.first_ssa_gpr = get_entry_by_id(LAYOUT_ID_SSA)->rva - get_entry_by_id(LAYOUT_ID_TCS)->rva + SSA_FRAME_SIZE * SE_PAGE_SIZE - (uint64_t)sizeof(ssa_gpr_t); m_create_param.enclave_size = m_metadata->enclave_size; m_create_param.heap_offset = get_entry_by_id(LAYOUT_ID_HEAP)->rva; uint64_t tmp_tls_addr = get_entry_by_id(LAYOUT_ID_TD)->rva - get_entry_by_id(LAYOUT_ID_TCS)->rva; m_create_param.td_addr = tmp_tls_addr + (((uint64_t)get_entry_by_id(LAYOUT_ID_TD)->page_count - 1) << SE_PAGE_SHIFT); const Section *section = m_parser->get_tls_section(); if(section) { /* adjust the tls_addr to be the pointer to the actual TLS data area */ m_create_param.tls_addr = m_create_param.td_addr - section->virtual_size(); assert(TRIM_TO_PAGE(m_create_param.tls_addr) == tmp_tls_addr); } else m_create_param.tls_addr = tmp_tls_addr; if(false == m_parser->update_global_data(&m_create_param, data, data_size)) { se_trace(SE_TRACE_ERROR, NO_MEMORY_ERROR); // metadata structure doesnot have enough memory for global_data template return false; } return true; } bool CMetadata::build_tcs_template(tcs_t *tcs) { tcs->oentry = m_parser->get_symbol_rva("enclave_entry"); if(tcs->oentry == 0) { return false; } tcs->nssa = SSA_NUM; tcs->cssa = 0; tcs->ossa = get_entry_by_id(LAYOUT_ID_SSA)->rva - get_entry_by_id(LAYOUT_ID_TCS)->rva; //fs/gs pointer at TLS/TD tcs->ofs_base = tcs->ogs_base = get_entry_by_id(LAYOUT_ID_TD)->rva - get_entry_by_id(LAYOUT_ID_TCS)->rva + (((uint64_t)get_entry_by_id(LAYOUT_ID_TD)->page_count - 1) << SE_PAGE_SHIFT); tcs->ofs_limit = tcs->ogs_limit = (uint32_t)-1; return true; } void* CMetadata::get_rawdata_by_rva(uint64_t rva) { std::vector sections = m_parser->get_sections(); for(unsigned int i = 0; i < sections.size() ; i++) { uint64_t start_rva = TRIM_TO_PAGE(sections[i]->get_rva()); uint64_t end_rva = ROUND_TO_PAGE(sections[i]->get_rva() + sections[i]->virtual_size()); if(start_rva <= rva && rva < end_rva) { uint64_t offset = rva - sections[i]->get_rva(); if (offset > sections[i]->raw_data_size()) { return 0; } return GET_PTR(void, sections[i]->raw_data(), offset); } } return 0; } uint64_t CMetadata::calculate_sections_size() { std::vector sections = m_parser->get_sections(); uint64_t max_rva = 0; Section *last_section = NULL; for(unsigned int i = 0; i < sections.size() ; i++) { if(sections[i]->get_rva() > max_rva) { max_rva = sections[i]->get_rva(); last_section = sections[i]; } } uint64_t size = (NULL == last_section) ? (0) : (last_section->get_rva() + last_section->virtual_size()); size = ROUND_TO_PAGE(size); if(last_section != NULL && size < ROUND_TO_PAGE(last_section->get_rva() + ROUND_TO_PAGE(last_section->virtual_size()))) { size += SE_PAGE_SIZE; } return size; } uint64_t CMetadata::calculate_enclave_size(uint64_t size) { uint64_t enclave_max_size = m_parser->get_enclave_max_size(); if(size > enclave_max_size) return (uint64_t)-1; uint64_t round_size = 1; while (round_size < size) { round_size <<=1; if(!round_size) return (uint64_t)-1; } if(round_size > enclave_max_size) return (uint64_t)-1; return round_size; } bool update_metadata(const char *path, const metadata_t *metadata, uint64_t meta_offset) { assert(path != NULL && metadata != NULL); return write_data_to_file(path, std::ios::in | std::ios::binary| std::ios::out, reinterpret_cast(const_cast( metadata)), metadata->size, (long)meta_offset); }