/* * Copyright (C) 2011-2018 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sgx_tcrypto_common.h" /* * Elliptic Curve Crytpography - Based on GF(p), 256 bit */ /* Allocates and initializes ecc context * Parameters: * Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h * Output: sgx_ecc_state_handle_t *p_ecc_handle - Pointer to the handle of ECC crypto system */ sgx_status_t sgx_ecc256_open_context(__attribute__((unused))sgx_ecc_state_handle_t* p_ecc_handle) { IppStatus ipp_ret = ippStsNoErr; IppsECCPState* p_ecc_state = NULL; // default use 256r1 parameter int ctx_size = 0; if (p_ecc_handle == NULL) return SGX_ERROR_INVALID_PARAMETER; ipp_ret = ippsECCPGetSize(256, &ctx_size); if (ipp_ret != ippStsNoErr) return SGX_ERROR_UNEXPECTED; p_ecc_state = (IppsECCPState*)(malloc(ctx_size)); if (p_ecc_state == NULL) return SGX_ERROR_OUT_OF_MEMORY; ipp_ret = ippsECCPInit(256, p_ecc_state); if (ipp_ret != ippStsNoErr) { SAFE_FREE(p_ecc_state); *p_ecc_handle = NULL; return SGX_ERROR_UNEXPECTED; } ipp_ret = ippsECCPSetStd256r1(p_ecc_state); if (ipp_ret != ippStsNoErr) { SAFE_FREE(p_ecc_state); *p_ecc_handle = NULL; return SGX_ERROR_UNEXPECTED; } *p_ecc_handle = p_ecc_state; return SGX_SUCCESS; } /* Cleans up ecc context * Parameters: * Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h * Output: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system */ sgx_status_t sgx_ecc256_close_context(sgx_ecc_state_handle_t ecc_handle) { if (ecc_handle == NULL) { return SGX_ERROR_INVALID_PARAMETER; } IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle; int ctx_size = 0; IppStatus ipp_ret = ippsECCPGetSize(256, &ctx_size); if (ipp_ret != ippStsNoErr) { free(p_ecc_state); return SGX_SUCCESS; } memset_s(p_ecc_state, ctx_size, 0, ctx_size); free(p_ecc_state); return SGX_SUCCESS; } /* Populates private/public key pair - caller code allocates memory * Parameters: * Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h * Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system * Outputs: sgx_ec256_private_t *p_private - Pointer to the private key * sgx_ec256_public_t *p_public - Pointer to the public key */ sgx_status_t sgx_ecc256_create_key_pair(sgx_ec256_private_t *p_private, sgx_ec256_public_t *p_public, sgx_ecc_state_handle_t ecc_handle) { if ((ecc_handle == NULL) || (p_private == NULL) || (p_public == NULL)) { return SGX_ERROR_INVALID_PARAMETER; } IppsBigNumState* dh_priv_BN = NULL; IppsECCPPointState* point_pub = NULL; IppsBigNumState* pub_gx = NULL; IppsBigNumState* pub_gy = NULL; IppStatus ipp_ret = ippStsNoErr; int ecPointSize = 0; IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle; do { //init eccp point ipp_ret = ippsECCPPointGetSize(256, &ecPointSize); ERROR_BREAK(ipp_ret); point_pub = (IppsECCPPointState*)(malloc(ecPointSize)); if (!point_pub) { ipp_ret = ippStsNoMemErr; break; } ipp_ret = ippsECCPPointInit(256, point_pub); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &dh_priv_BN); ERROR_BREAK(ipp_ret); // Use the true random number (DRNG) // Notice that IPP ensures the private key generated is non-zero ipp_ret = ippsECCPGenKeyPair(dh_priv_BN, point_pub, p_ecc_state, (IppBitSupplier)sgx_ipp_DRNGen, NULL); ERROR_BREAK(ipp_ret); //convert point_result to oct string ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &pub_gx); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &pub_gy); ERROR_BREAK(ipp_ret); ipp_ret = ippsECCPGetPoint(pub_gx, pub_gy, point_pub, p_ecc_state); ERROR_BREAK(ipp_ret); IppsBigNumSGN sgn = IppsBigNumPOS; Ipp32u *pdata = NULL; // ippsRef_BN is in bits not bytes (versus old ippsGet_BN) int length = 0; ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gx); ERROR_BREAK(ipp_ret); memset(p_public->gx, 0, sizeof(p_public->gx)); ipp_ret = check_copy_size(sizeof(p_public->gx), ROUND_TO(length, 8) / 8); ERROR_BREAK(ipp_ret); memcpy(p_public->gx, pdata, ROUND_TO(length, 8) / 8); ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gy); ERROR_BREAK(ipp_ret); memset(p_public->gy, 0, sizeof(p_public->gy)); ipp_ret = check_copy_size(sizeof(p_public->gy), ROUND_TO(length, 8) / 8); ERROR_BREAK(ipp_ret); memcpy(p_public->gy, pdata, ROUND_TO(length, 8) / 8); ipp_ret = ippsRef_BN(&sgn, &length, &pdata, dh_priv_BN); ERROR_BREAK(ipp_ret); memset(p_private->r, 0, sizeof(p_private->r)); ipp_ret = check_copy_size(sizeof(p_private->r), ROUND_TO(length, 8) / 8); ERROR_BREAK(ipp_ret); memcpy(p_private->r, pdata, ROUND_TO(length, 8) / 8); } while (0); //Clear temp buffer before free. if (point_pub) memset_s(point_pub, ecPointSize, 0, ecPointSize); SAFE_FREE(point_pub); sgx_ipp_secure_free_BN(pub_gx, SGX_ECP256_KEY_SIZE); sgx_ipp_secure_free_BN(pub_gy, SGX_ECP256_KEY_SIZE); sgx_ipp_secure_free_BN(dh_priv_BN, SGX_ECP256_KEY_SIZE); switch (ipp_ret) { case ippStsNoErr: return SGX_SUCCESS; case ippStsNoMemErr: case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY; case ippStsNullPtrErr: case ippStsLengthErr: case ippStsOutOfRangeErr: case ippStsSizeErr: case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER; default: return SGX_ERROR_UNEXPECTED; } } /* Checks whether the input point is a valid point on the given elliptic curve * Parameters: * Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h * Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system * sgx_ec256_public_t *p_point - Pointer to perform validity check on - LITTLE ENDIAN * Output: int *p_valid - Return 0 if the point is an invalid point on ECC curve */ sgx_status_t sgx_ecc256_check_point(const sgx_ec256_public_t *p_point, const sgx_ecc_state_handle_t ecc_handle, int *p_valid) { if ((ecc_handle == NULL) || (p_point == NULL) || (p_valid == NULL)) { return SGX_ERROR_INVALID_PARAMETER; } IppsECCPPointState* point2check = NULL; IppStatus ipp_ret = ippStsNoErr; IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle; IppECResult ipp_result = ippECValid; int ecPointSize = 0; IppsBigNumState* BN_gx = NULL; IppsBigNumState* BN_gy = NULL; // Intialize return to false *p_valid = 0; do { ipp_ret = ippsECCPPointGetSize(256, &ecPointSize); ERROR_BREAK(ipp_ret); point2check = (IppsECCPPointState*)malloc(ecPointSize); if (!point2check) { ipp_ret = ippStsNoMemErr; break; } ipp_ret = ippsECCPPointInit(256, point2check); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN((const Ipp32u *)p_point->gx, sizeof(p_point->gx), &BN_gx); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN((const Ipp32u *)p_point->gy, sizeof(p_point->gy), &BN_gy); ERROR_BREAK(ipp_ret); ipp_ret = ippsECCPSetPoint(BN_gx, BN_gy, point2check, p_ecc_state); ERROR_BREAK(ipp_ret); // Check to see if the point is a valid point on the Elliptic curve and is not infinity ipp_ret = ippsECCPCheckPoint(point2check, &ipp_result, p_ecc_state); ERROR_BREAK(ipp_ret); if (ipp_result == ippECValid) { *p_valid = 1; } } while (0); // Clear temp buffer before free. if (point2check) memset_s(point2check, ecPointSize, 0, ecPointSize); SAFE_FREE(point2check); sgx_ipp_secure_free_BN(BN_gx, sizeof(p_point->gx)); sgx_ipp_secure_free_BN(BN_gy, sizeof(p_point->gy)); switch (ipp_ret) { case ippStsNoErr: return SGX_SUCCESS; case ippStsNoMemErr: case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY; case ippStsNullPtrErr: case ippStsLengthErr: case ippStsOutOfRangeErr: case ippStsSizeErr: case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER; default: return SGX_ERROR_UNEXPECTED; } } /* Computes DH shared key based on private B key (local) and remote public Ga Key * Parameters: * Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h * Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system * sgx_ec256_private_t *p_private_b - Pointer to the local private key - LITTLE ENDIAN * sgx_ec256_public_t *p_public_ga - Pointer to the remote public key - LITTLE ENDIAN * Output: sgx_ec256_dh_shared_t *p_shared_key - Pointer to the shared DH key - LITTLE ENDIAN x-coordinate of (privKeyB - pubKeyA) */ sgx_status_t sgx_ecc256_compute_shared_dhkey(sgx_ec256_private_t *p_private_b, sgx_ec256_public_t *p_public_ga, sgx_ec256_dh_shared_t *p_shared_key, sgx_ecc_state_handle_t ecc_handle) { if ((ecc_handle == NULL) || (p_private_b == NULL) || (p_public_ga == NULL) || (p_shared_key == NULL)) { return SGX_ERROR_INVALID_PARAMETER; } IppsBigNumState* BN_dh_privB = NULL; IppsBigNumState* BN_dh_share = NULL; IppsBigNumState* pubA_gx = NULL; IppsBigNumState* pubA_gy = NULL; IppsECCPPointState* point_pubA = NULL; IppStatus ipp_ret = ippStsNoErr; int ecPointSize = 0; IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle; IppECResult ipp_result = ippECValid; do { ipp_ret = sgx_ipp_newBN((Ipp32u*)p_private_b->r, sizeof(sgx_ec256_private_t), &BN_dh_privB); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gx, sizeof(p_public_ga->gx), &pubA_gx); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gy, sizeof(p_public_ga->gy), &pubA_gy); ERROR_BREAK(ipp_ret); ipp_ret = ippsECCPPointGetSize(256, &ecPointSize); ERROR_BREAK(ipp_ret); point_pubA = (IppsECCPPointState*)(malloc(ecPointSize)); if (!point_pubA) { ipp_ret = ippStsNoMemErr; break; } ipp_ret = ippsECCPPointInit(256, point_pubA); ERROR_BREAK(ipp_ret); ipp_ret = ippsECCPSetPoint(pubA_gx, pubA_gy, point_pubA, p_ecc_state); ERROR_BREAK(ipp_ret); // Check to see if the point is a valid point on the Elliptic curve and is not infinity ipp_ret = ippsECCPCheckPoint(point_pubA, &ipp_result, p_ecc_state); if (ipp_result != ippECValid) { break; } ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN(NULL, sizeof(sgx_ec256_dh_shared_t), &BN_dh_share); ERROR_BREAK(ipp_ret); /* This API generates shareA = x-coordinate of (privKeyB*pubKeyA) */ ipp_ret = ippsECCPSharedSecretDH(BN_dh_privB, point_pubA, BN_dh_share, p_ecc_state); ERROR_BREAK(ipp_ret); IppsBigNumSGN sgn = IppsBigNumPOS; int length = 0; Ipp32u * pdata = NULL; ipp_ret = ippsRef_BN(&sgn, &length, &pdata, BN_dh_share); ERROR_BREAK(ipp_ret); memset(p_shared_key->s, 0, sizeof(p_shared_key->s)); ipp_ret = check_copy_size(sizeof(p_shared_key->s), ROUND_TO(length, 8) / 8); ERROR_BREAK(ipp_ret); memcpy(p_shared_key->s, pdata, ROUND_TO(length, 8) / 8); } while (0); // Clear temp buffer before free. if (point_pubA) memset_s(point_pubA, ecPointSize, 0, ecPointSize); SAFE_FREE(point_pubA); sgx_ipp_secure_free_BN(pubA_gx, sizeof(p_public_ga->gx)); sgx_ipp_secure_free_BN(pubA_gy, sizeof(p_public_ga->gy)); sgx_ipp_secure_free_BN(BN_dh_privB, sizeof(sgx_ec256_private_t)); sgx_ipp_secure_free_BN(BN_dh_share, sizeof(sgx_ec256_dh_shared_t)); if (ipp_result != ippECValid) { return SGX_ERROR_INVALID_PARAMETER; } switch (ipp_ret) { case ippStsNoErr: return SGX_SUCCESS; case ippStsNoMemErr: case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY; case ippStsNullPtrErr: case ippStsLengthErr: case ippStsOutOfRangeErr: case ippStsSizeErr: case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER; default: return SGX_ERROR_UNEXPECTED; } }