/* * Copyright (C) 2016 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "owndefs.h" #include "owncp.h" #include "pcphash.h" #include "pcptool.h" /* // Magic functions defined in FIPS 180-1 // */ #define MAGIC_F0(B,C,D) (((B) & (C)) | ((~(B)) & (D))) #define MAGIC_F1(B,C,D) ((B) ^ (C) ^ (D)) #define MAGIC_F2(B,C,D) (((B) & (C)) | ((B) & (D)) | ((C) & (D))) #define MAGIC_F3(B,C,D) ((B) ^ (C) ^ (D)) #define SHA1_STEP(A,B,C,D,E, MAGIC_FUN, W,K) \ (E)+= ROL32((A),5) + MAGIC_FUN((B),(C),(D)) + (W) + (K); \ (B) = ROL32((B),30) #define COMPACT_SHA1_STEP(A,B,C,D,E, MAGIC_FUN, W,K, t) { \ Ipp32u _T = ROL32((A),5) + MAGIC_FUN((t)/20, (B),(C),(D)) + (E) + (W)[(t)] + (K)[(t)/20]; \ (E) = (D); \ (D) = (C); \ (C) = ROL32((B),30); \ (B) = (A); \ (A) = _T; \ } #if defined(_ALG_SHA1_COMPACT_) __INLINE Ipp32u MagicFun(int s, Ipp32u b, Ipp32u c, Ipp32u d) { switch(s) { case 0: return MAGIC_F0(b,c,d); case 2: return MAGIC_F2(b,c,d); default:return MAGIC_F1(b,c,d); } } #endif /*F* // Name: UpdateSHA1 // // Purpose: Update internal hash according to input message stream. // // Parameters: // uniHash pointer to in/out hash // mblk pointer to message stream // mlen message stream length (multiple by message block size) // uniParam pointer to the optional parameter // *F*/ #if defined(_ALG_SHA1_COMPACT_) #pragma message("SHA1 compact") #endif void UpdateSHA1(void* uinHash, const Ipp8u* mblk, int mlen, const void *uniParam) { Ipp32u* data = (Ipp32u*)mblk; Ipp32u* digest = (Ipp32u*)uinHash; Ipp32u* SHA1_cnt_loc = (Ipp32u*)uniParam; for(; mlen>=MBS_SHA1; data += MBS_SHA1/sizeof(Ipp32u), mlen -= MBS_SHA1) { int t; /* // expand message block */ Ipp32u W[80]; /* initialize the first 16 words in the array W (remember about endian) */ for(t=0; t<16; t++) { #if (IPP_ENDIAN == IPP_BIG_ENDIAN) W[t] = data[t]; #else W[t] = ENDIANNESS(data[t]); #endif } /* schedule another 80-16 words in the array W */ for(; t<80; t++) { W[t] = ROL32(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1); } /* // update hash */ { /* init A, B, C, D, E by the the input hash */ Ipp32u A = digest[0]; Ipp32u B = digest[1]; Ipp32u C = digest[2]; Ipp32u D = digest[3]; Ipp32u E = digest[4]; #if defined(_ALG_SHA1_COMPACT_) /* steps 0-79 */ for(t=0; t<80; t++) COMPACT_SHA1_STEP(A,B,C,D,E, MagicFun, W, SHA1_cnt_loc, t); #else /* perform 0-19 steps */ for(t=0; t<20; t+=5) { SHA1_STEP(A,B,C,D,E, MAGIC_F0, W[t ],SHA1_cnt_loc[0]); SHA1_STEP(E,A,B,C,D, MAGIC_F0, W[t+1],SHA1_cnt_loc[0]); SHA1_STEP(D,E,A,B,C, MAGIC_F0, W[t+2],SHA1_cnt_loc[0]); SHA1_STEP(C,D,E,A,B, MAGIC_F0, W[t+3],SHA1_cnt_loc[0]); SHA1_STEP(B,C,D,E,A, MAGIC_F0, W[t+4],SHA1_cnt_loc[0]); } /* perform 20-39 steps */ for(; t<40; t+=5) { SHA1_STEP(A,B,C,D,E, MAGIC_F1, W[t ],SHA1_cnt_loc[1]); SHA1_STEP(E,A,B,C,D, MAGIC_F1, W[t+1],SHA1_cnt_loc[1]); SHA1_STEP(D,E,A,B,C, MAGIC_F1, W[t+2],SHA1_cnt_loc[1]); SHA1_STEP(C,D,E,A,B, MAGIC_F1, W[t+3],SHA1_cnt_loc[1]); SHA1_STEP(B,C,D,E,A, MAGIC_F1, W[t+4],SHA1_cnt_loc[1]); } /* perform 40-59 steps */ for(; t<60; t+=5) { SHA1_STEP(A,B,C,D,E, MAGIC_F2, W[t ],SHA1_cnt_loc[2]); SHA1_STEP(E,A,B,C,D, MAGIC_F2, W[t+1],SHA1_cnt_loc[2]); SHA1_STEP(D,E,A,B,C, MAGIC_F2, W[t+2],SHA1_cnt_loc[2]); SHA1_STEP(C,D,E,A,B, MAGIC_F2, W[t+3],SHA1_cnt_loc[2]); SHA1_STEP(B,C,D,E,A, MAGIC_F2, W[t+4],SHA1_cnt_loc[2]); } /* perform 60-79 steps */ for(; t<80; t+=5) { SHA1_STEP(A,B,C,D,E, MAGIC_F3, W[t ],SHA1_cnt_loc[3]); SHA1_STEP(E,A,B,C,D, MAGIC_F3, W[t+1],SHA1_cnt_loc[3]); SHA1_STEP(D,E,A,B,C, MAGIC_F3, W[t+2],SHA1_cnt_loc[3]); SHA1_STEP(C,D,E,A,B, MAGIC_F3, W[t+3],SHA1_cnt_loc[3]); SHA1_STEP(B,C,D,E,A, MAGIC_F3, W[t+4],SHA1_cnt_loc[3]); } #endif /* update digest */ digest[0] += A; digest[1] += B; digest[2] += C; digest[3] += D; digest[4] += E; } } }