/* * Copyright (C) 2011-2018 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sgx_tprotected_fs.h" #include "sgx_tprotected_fs_t.h" #include "protected_fs_file.h" #include //#include #include // this function returns 0 only if the specified file existed and it was actually deleted // before we do that, we try to see if the file contained a monotonic counter, and if it did, we delete it from the system int32_t protected_fs_file::remove(const char* filename) { sgx_status_t status; int32_t result32 = 0; /* void* file = NULL; int64_t real_file_size = 0; if (filename == NULL) return 1; meta_data_node_t* file_meta_data = NULL; meta_data_encrypted_t* encrypted_part_plain = NULL; // if we have a problem in any of the stages, we simply jump to the end and try to remove the file... do { status = u_sgxprotectedfs_check_if_file_exists(&result, filename); if (status != SGX_SUCCESS) break; if (result == 0) { errno = EINVAL; return 1; // no such file, or file locked so we can't delete it anyways } try { file_meta_data = new meta_data_node_t; encrypted_part_plain = new meta_data_encrypted_t; } catch (std::bad_alloc e) { break; } status = u_sgxprotectedfs_exclusive_file_open(&file, filename, 1, &real_file_size, &result32); if (status != SGX_SUCCESS || file == NULL) break; if (real_file_size == 0 || real_file_size % NODE_SIZE != 0) break; // empty file or not an SGX protected FS file // might be an SGX protected FS file status = u_sgxprotectedfs_fread_node(&result32, file, 0, (uint8_t*)file_meta_data, NODE_SIZE); if (status != SGX_SUCCESS || result32 != 0) break; if (file_meta_data->plain_part.major_version != SGX_FILE_MAJOR_VERSION) break; sgx_aes_gcm_128bit_key_t zero_key_id = {0}; sgx_aes_gcm_128bit_key_t key = {0}; if (consttime_memequal(&file_meta_data->plain_part.key_id, &zero_key_id, sizeof(sgx_aes_gcm_128bit_key_t)) == 1) break; // shared file - no monotonic counter sgx_key_request_t key_request = {0}; key_request.key_name = SGX_KEYSELECT_SEAL; key_request.key_policy = SGX_KEYPOLICY_MRENCLAVE; memcpy(&key_request.key_id, &file_meta_data->plain_part.key_id, sizeof(sgx_key_id_t)); status = sgx_get_key(&key_request, &key); if (status != SGX_SUCCESS) break; status = sgx_rijndael128GCM_decrypt(&key, file_meta_data->encrypted_part, sizeof(meta_data_encrypted_blob_t), (uint8_t*)encrypted_part_plain, file_meta_data->plain_part.meta_data_iv, SGX_AESGCM_IV_SIZE, NULL, 0, &file_meta_data->plain_part.meta_data_gmac); if (status != SGX_SUCCESS) break; sgx_mc_uuid_t empty_mc_uuid = {0}; if (consttime_memequal(&empty_mc_uuid, &encrypted_part_plain->mc_uuid, sizeof(sgx_mc_uuid_t)) == 0) { status = sgx_destroy_monotonic_counter(&encrypted_part_plain->mc_uuid); if (status != SGX_SUCCESS) break; // monotonic counter was deleted, mission accomplished!! } } while (0); // cleanup if (file_meta_data != NULL) delete file_meta_data; if (encrypted_part_plain != NULL) { // scrub the encrypted part memset_s(encrypted_part_plain, sizeof(meta_data_encrypted_t), 0, sizeof(meta_data_encrypted_t)); delete encrypted_part_plain; } if (file != NULL) u_sgxprotectedfs_fclose(&result32, file); */ // do the actual file removal status = u_sgxprotectedfs_remove(&result32, filename); if (status != SGX_SUCCESS) { errno = status; return 1; } if (result32 != 0) { if (result32 == -1) // no external errno value errno = EPERM; else errno = result32; return 1; } return 0; } int64_t protected_fs_file::tell() { int64_t result; sgx_thread_mutex_lock(&mutex); if (file_status != SGX_FILE_STATUS_OK) { errno = EPERM; last_error = SGX_ERROR_FILE_BAD_STATUS; sgx_thread_mutex_unlock(&mutex); return -1; } result = offset; sgx_thread_mutex_unlock(&mutex); return result; } // we don't support sparse files, fseek beyond the current file size will fail int protected_fs_file::seek(int64_t new_offset, int origin) { sgx_thread_mutex_lock(&mutex); if (file_status != SGX_FILE_STATUS_OK) { last_error = SGX_ERROR_FILE_BAD_STATUS; sgx_thread_mutex_unlock(&mutex); return -1; } //if (open_mode.binary == 0 && origin != SEEK_SET && new_offset != 0) //{ // last_error = EINVAL; // sgx_thread_mutex_unlock(&mutex); // return -1; //} int result = -1; switch (origin) { case SEEK_SET: if (new_offset >= 0 && new_offset <= encrypted_part_plain.size) { offset = new_offset; result = 0; } break; case SEEK_CUR: if ((offset + new_offset) >= 0 && (offset + new_offset) <= encrypted_part_plain.size) { offset += new_offset; result = 0; } break; case SEEK_END: if (new_offset <= 0 && new_offset >= (0 - encrypted_part_plain.size)) { offset = encrypted_part_plain.size + new_offset; result = 0; } break; default: break; } if (result == 0) end_of_file = false; else last_error = EINVAL; sgx_thread_mutex_unlock(&mutex); return result; } uint32_t protected_fs_file::get_error() { uint32_t result = SGX_SUCCESS; sgx_thread_mutex_lock(&mutex); if (last_error != SGX_SUCCESS) result = last_error; else if (file_status != SGX_FILE_STATUS_OK) result = SGX_ERROR_FILE_BAD_STATUS; sgx_thread_mutex_unlock(&mutex); return result; } bool protected_fs_file::get_eof() { return end_of_file; } void protected_fs_file::clear_error() { sgx_thread_mutex_lock(&mutex); if (file_status == SGX_FILE_STATUS_NOT_INITIALIZED || file_status == SGX_FILE_STATUS_CLOSED || file_status == SGX_FILE_STATUS_CRYPTO_ERROR || file_status == SGX_FILE_STATUS_CORRUPTED || file_status == SGX_FILE_STATUS_MEMORY_CORRUPTED) // can't fix these... { sgx_thread_mutex_unlock(&mutex); return; } if (file_status == SGX_FILE_STATUS_FLUSH_ERROR) { if (internal_flush(/*false,*/ true) == true) file_status = SGX_FILE_STATUS_OK; } if (file_status == SGX_FILE_STATUS_WRITE_TO_DISK_FAILED) { if (write_all_changes_to_disk(true) == true) { need_writing = false; file_status = SGX_FILE_STATUS_OK; } } /* if (file_status == SGX_FILE_STATUS_WRITE_TO_DISK_FAILED_NEED_MC) { if (write_all_changes_to_disk(true) == true) { need_writing = false; file_status = SGX_FILE_STATUS_MC_NOT_INCREMENTED; // fall through...next 'if' should take care of this one } } if ((file_status == SGX_FILE_STATUS_MC_NOT_INCREMENTED) && (encrypted_part_plain.mc_value <= (UINT_MAX-2))) { uint32_t mc_value; sgx_status_t status = sgx_increment_monotonic_counter(&encrypted_part_plain.mc_uuid, &mc_value); if (status == SGX_SUCCESS) { assert(mc_value == encrypted_part_plain.mc_value); file_status = SGX_FILE_STATUS_OK; } else { last_error = status; } } */ if (file_status == SGX_FILE_STATUS_OK) { last_error = SGX_SUCCESS; end_of_file = false; } sgx_thread_mutex_unlock(&mutex); } // clears the cache with all the plain data that was in it // doesn't clear the meta-data and first node, which are part of the 'main' structure int32_t protected_fs_file::clear_cache() { sgx_thread_mutex_lock(&mutex); if (file_status != SGX_FILE_STATUS_OK) { sgx_thread_mutex_unlock(&mutex); clear_error(); // attempt to fix the file, will also flush it sgx_thread_mutex_lock(&mutex); } else // file_status == SGX_FILE_STATUS_OK { internal_flush(/*false,*/ true); } if (file_status != SGX_FILE_STATUS_OK) // clearing the cache might lead to losing un-saved data { sgx_thread_mutex_unlock(&mutex); return 1; } while (cache.size() > 0) { void* data = cache.get_last(); assert(data != NULL); assert(((file_data_node_t*)data)->need_writing == false); // need_writing is in the same offset in both node types // for production - if (data == NULL || ((file_data_node_t*)data)->need_writing == true) { sgx_thread_mutex_unlock(&mutex); return 1; } cache.remove_last(); // before deleting the memory, need to scrub the plain secrets if (((file_data_node_t*)data)->type == FILE_DATA_NODE_TYPE) // type is in the same offset in both node types { file_data_node_t* file_data_node = (file_data_node_t*)data; memset_s(&file_data_node->plain, sizeof(data_node_t), 0, sizeof(data_node_t)); delete file_data_node; } else { file_mht_node_t* file_mht_node = (file_mht_node_t*)data; memset_s(&file_mht_node->plain, sizeof(mht_node_t), 0, sizeof(mht_node_t)); delete file_mht_node; } } sgx_thread_mutex_unlock(&mutex); return 0; }