/* * Copyright (C) 2011-2018 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include "se_memory.h" #include "se_memcpy.h" #include "util.h" #include "enclave_mngr.h" #include "se_atomic.h" static uint32_t atomic_inc32(uint32_t volatile *val) { return se_atomic_inc(val); } uint32_t CEnclaveSim::m_counter = 1; sgx_enclave_id_t CEnclaveSim::gen_enclave_id(void) { //getpid() is to simulate fork() scenario, refer to do_ecall in sig_handler.cpp sgx_enclave_id_t id = ((uint64_t)getpid() << 32) | atomic_inc32(&m_counter); return id; } CEnclaveSim::CEnclaveSim(const secs_t* secs) { m_cpages = static_cast(secs->size >> SE_PAGE_SHIFT); m_flags = new si_flags_t[m_cpages]; // pages flags are initialized to -1 memset(m_flags, 0xff, m_cpages * sizeof(si_flags_t)); memcpy_s(&m_secs, sizeof(m_secs), secs, sizeof(*secs)); m_enclave_id = gen_enclave_id(); } CEnclaveSim::~CEnclaveSim() { delete[] m_flags; se_virtual_free(m_secs.base, (size_t)m_secs.size, MEM_RELEASE); } sgx_enclave_id_t CEnclaveSim::get_enclave_id() const { return m_enclave_id; } secs_t* CEnclaveSim::get_secs() { return &m_secs; } size_t CEnclaveSim::get_pg_idx(const void* pgaddr) const { return PTR_DIFF(pgaddr, m_secs.base) >> SE_PAGE_SHIFT; } bool CEnclaveSim::validate_pg_and_flags(const void* addr, si_flags_t flags) { // Must be page aligned if (!IS_PAGE_ALIGNED(addr)) return false; size_t page_idx = get_pg_idx(addr); // Must be within enclave address space if (page_idx >= m_cpages) return false; // Requested flags should only set those visible by instuctions if ((flags & (~SI_FLAGS_EXTERNAL))) return false; return true; } bool CEnclaveSim::add_page(const void* addr, si_flags_t flags) { if (!validate_pg_and_flags(addr, flags)) return false; // We only deal with these flags flags &= static_cast(SI_FLAGS_EXTERNAL); // Must not have been added yet size_t page_idx = get_pg_idx(addr); if (m_flags[page_idx] != (si_flags_t)-1) return false; m_flags[page_idx] = flags; return true; } bool CEnclaveSim::remove_page(const void* epc_lin_addr) { size_t page_idx = get_pg_idx(epc_lin_addr); if (m_flags[page_idx] != (si_flags_t)-1) { m_flags[page_idx] = (si_flags_t)-1; return true; } return false; } bool CEnclaveSim::is_tcs_page(const void* addr) const { // Must be page aligned if (!IS_PAGE_ALIGNED(addr)) return false; size_t page_idx = get_pg_idx(addr); // Must be within enclave address space if (page_idx >= m_cpages) return false; return (m_flags[page_idx] & SI_FLAG_PT_MASK) == SI_FLAG_TCS; } ////////////////////////////////////////////////////////////////////// CEnclaveMngr::CEnclaveMngr() { se_mutex_init(&m_list_lock); } CEnclaveMngr::~CEnclaveMngr() { se_mutex_destroy(&m_list_lock); std::list::iterator it = m_enclave_list.begin(); for (; it != m_enclave_list.end(); ++it) { delete (*it); } } // Note: this singleton implemenation is not multi-threading safe. CEnclaveMngr* CEnclaveMngr::get_instance() { static CEnclaveMngr mngr; return &mngr; } // Use constructor attribute to make sure that the later calling of // CEnclaveMngr::get_instance() is MT-safe. __attribute__ ((__constructor__)) static void build_mngr_instance() { CEnclaveMngr::get_instance(); } void CEnclaveMngr::add(CEnclaveSim* ce) { if (ce != NULL) { se_mutex_lock(&m_list_lock); m_enclave_list.push_back(ce); se_mutex_unlock(&m_list_lock); } } void CEnclaveMngr::remove(CEnclaveSim* ce) { if (ce != NULL) { se_mutex_lock(&m_list_lock); m_enclave_list.remove(ce); se_mutex_unlock(&m_list_lock); } } CEnclaveSim* CEnclaveMngr::get_enclave(const sgx_enclave_id_t id) { CEnclaveSim* ce = NULL; se_mutex_lock(&m_list_lock); std::list::iterator it = m_enclave_list.begin(); for (; it != m_enclave_list.end(); ++it) { if ((*it)->get_enclave_id() == id) { ce = *it; break; } } se_mutex_unlock(&m_list_lock); return ce; } CEnclaveSim* CEnclaveMngr::get_enclave(const void* base_addr) { CEnclaveSim* ce = NULL; se_mutex_lock(&m_list_lock); std::list::iterator it = m_enclave_list.begin(); for (; it != m_enclave_list.end(); ++it) { secs_t* secs = (*it)->get_secs(); if (base_addr >= secs->base && PTR_DIFF(base_addr, secs->base) < secs->size) { ce = *it; break; } } se_mutex_unlock(&m_list_lock); return ce; } CEnclaveSim* CEnclaveMngr::get_enclave(const secs_t* secs) { // The pEnclaveSECS field might not have been initialized yet. return get_enclave(secs->base); }