/* * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Copyright (c) 1997 * Moscow Center for SPARC Technology * * Copyright (c) 1999 * Boris Fomitchev * * This material is provided "as is", with absolutely no warranty expressed * or implied. Any use is at your own risk. * * Permission to use or copy this software for any purpose is hereby granted * without fee, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * */ #include "stlport_prefix.h" #include #if defined (__GNUC__) && (defined (__CYGWIN__) || defined (__MINGW32__)) # include #endif #if defined (_STLP_PTHREADS) && !defined (_STLP_NO_THREADS) # include # include #endif #include #include "lock_free_slist.h" #if defined (__WATCOMC__) # pragma warning 13 9 # pragma warning 367 9 # pragma warning 368 9 #endif #if defined (_STLP_SGI_THREADS) // We test whether threads are in use before locking. // Perhaps this should be moved into stl_threads.h, but that // probably makes it harder to avoid the procedure call when // it isn't needed. extern "C" { extern int __us_rsthread_malloc; } #endif // Specialised debug form of new operator which does not provide "false" // memory leaks when run with debug CRT libraries. #if defined (_STLP_MSVC) && (_STLP_MSVC >= 1020 && defined (_STLP_DEBUG_ALLOC)) && !defined (_STLP_WCE) # include inline char* __stlp_new_chunk(size_t __bytes) { void *__chunk = _STLP_CHECK_NULL_ALLOC(::operator new(__bytes, __FILE__, __LINE__)); return __STATIC_CAST(char*, __chunk); } inline void __stlp_delete_chunck(void* __p) { ::operator delete(__p, __FILE__, __LINE__); } #else # ifdef _STLP_NODE_ALLOC_USE_MALLOC # include inline char* __stlp_new_chunk(size_t __bytes) { // do not use _STLP_CHECK_NULL_ALLOC, this macro is dedicated to new operator. void *__chunk = _STLP_VENDOR_CSTD::malloc(__bytes); if (__chunk == 0) { _STLP_THROW_BAD_ALLOC; } return __STATIC_CAST(char*, __chunk); } inline void __stlp_delete_chunck(void* __p) { _STLP_VENDOR_CSTD::free(__p); } # else inline char* __stlp_new_chunk(size_t __bytes) { return __STATIC_CAST(char*, _STLP_STD::__stl_new(__bytes)); } inline void __stlp_delete_chunck(void* __p) { _STLP_STD::__stl_delete(__p); } # endif #endif /* This is an additional atomic operations to the ones already defined in * stl/_threads.h, platform should try to support it to improve performance. * __add_atomic_t _STLP_ATOMIC_ADD(volatile __add_atomic_t* __target, __add_atomic_t __val) : * does *__target = *__target + __val and returns the old *__target value */ typedef long __add_atomic_t; typedef unsigned long __uadd_atomic_t; #if defined (__GNUC__) && defined (__i386__) inline long _STLP_atomic_add_gcc_x86(long volatile* p, long addend) { long result; __asm__ __volatile__ ("lock; xaddl %1, %0;" :"=m" (*p), "=r" (result) :"m" (*p), "1" (addend) :"cc"); return result + addend; } # define _STLP_ATOMIC_ADD(__dst, __val) _STLP_atomic_add_gcc_x86(__dst, __val) #elif defined (_STLP_WIN32THREADS) // The Win32 API function InterlockedExchangeAdd is not available on Windows 95. # if !defined (_STLP_WIN95_LIKE) # if defined (_STLP_NEW_PLATFORM_SDK) # define _STLP_ATOMIC_ADD(__dst, __val) InterlockedExchangeAdd(__dst, __val) # else # define _STLP_ATOMIC_ADD(__dst, __val) InterlockedExchangeAdd(__CONST_CAST(__add_atomic_t*, __dst), __val) # endif # endif #endif #if defined (__OS400__) // dums 02/05/2007: is it really necessary ? enum { _ALIGN = 16, _ALIGN_SHIFT = 4 }; #else enum { _ALIGN = 2 * sizeof(void*), _ALIGN_SHIFT = 2 + sizeof(void*) / 4 }; #endif #define _S_FREELIST_INDEX(__bytes) ((__bytes - size_t(1)) >> (int)_ALIGN_SHIFT) _STLP_BEGIN_NAMESPACE // malloc_alloc out-of-memory handling static __oom_handler_type __oom_handler = __STATIC_CAST(__oom_handler_type, 0); #ifdef _STLP_THREADS _STLP_mutex __oom_handler_lock; #endif void* _STLP_CALL __malloc_alloc::allocate(size_t __n) { void *__result = malloc(__n); if ( 0 == __result ) { __oom_handler_type __my_malloc_handler; for (;;) { { #ifdef _STLP_THREADS _STLP_auto_lock _l( __oom_handler_lock ); #endif __my_malloc_handler = __oom_handler; } if ( 0 == __my_malloc_handler) { _STLP_THROW_BAD_ALLOC; } (*__my_malloc_handler)(); __result = malloc(__n); if ( __result ) return __result; } } return __result; } __oom_handler_type _STLP_CALL __malloc_alloc::set_malloc_handler(__oom_handler_type __f) { #ifdef _STLP_THREADS _STLP_auto_lock _l( __oom_handler_lock ); #endif __oom_handler_type __old = __oom_handler; __oom_handler = __f; return __old; } // ******************************************************* // Default node allocator. // With a reasonable compiler, this should be roughly as fast as the // original STL class-specific allocators, but with less fragmentation. // // Important implementation properties: // 1. If the client request an object of size > _MAX_BYTES, the resulting // object will be obtained directly from malloc. // 2. In all other cases, we allocate an object of size exactly // _S_round_up(requested_size). Thus the client has enough size // information that we can return the object to the proper free list // without permanently losing part of the object. // #define _STLP_NFREELISTS 16 #if defined (_STLP_LEAKS_PEDANTIC) && defined (_STLP_USE_DYNAMIC_LIB) /* * We can only do cleanup of the node allocator memory pool if we are * sure that the STLport library is used as a shared one as it guaranties * the unicity of the node allocator instance. Without that guaranty node * allocator instances might exchange memory blocks making the implementation * of a cleaning process much more complicated. */ # define _STLP_DO_CLEAN_NODE_ALLOC #endif /* When STLport is used without multi threaded safety we use the node allocator * implementation with locks as locks becomes no-op. The lock free implementation * always use system specific atomic operations which are slower than 'normal' * ones. */ #if defined (_STLP_THREADS) && \ defined (_STLP_HAS_ATOMIC_FREELIST) && defined (_STLP_ATOMIC_ADD) /* * We have an implementation of the atomic freelist (_STLP_atomic_freelist) * for this architecture and compiler. That means we can use the non-blocking * implementation of the node-allocation engine.*/ # define _STLP_USE_LOCK_FREE_IMPLEMENTATION #endif #if !defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) # if defined (_STLP_THREADS) class _Node_Alloc_Lock { static _STLP_STATIC_MUTEX& _S_Mutex() { static _STLP_STATIC_MUTEX mutex _STLP_MUTEX_INITIALIZER; return mutex; } public: _Node_Alloc_Lock() { # if defined (_STLP_SGI_THREADS) if (__us_rsthread_malloc) # endif _S_Mutex()._M_acquire_lock(); } ~_Node_Alloc_Lock() { # if defined (_STLP_SGI_THREADS) if (__us_rsthread_malloc) # endif _S_Mutex()._M_release_lock(); } }; # else class _Node_Alloc_Lock { public: _Node_Alloc_Lock() { } ~_Node_Alloc_Lock() { } }; # endif struct _Node_alloc_obj { _Node_alloc_obj * _M_next; }; #endif class __node_alloc_impl { static inline size_t _STLP_CALL _S_round_up(size_t __bytes) { return (((__bytes) + (size_t)_ALIGN-1) & ~((size_t)_ALIGN - 1)); } #if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) typedef _STLP_atomic_freelist::item _Obj; typedef _STLP_atomic_freelist _Freelist; typedef _STLP_atomic_freelist _ChunkList; // Header of blocks of memory that have been allocated as part of // a larger chunk but have not yet been chopped up into nodes. struct _FreeBlockHeader : public _STLP_atomic_freelist::item { char* _M_end; // pointer to end of free memory }; #else typedef _Node_alloc_obj _Obj; typedef _Obj* _STLP_VOLATILE _Freelist; typedef _Obj* _ChunkList; #endif private: // Returns an object of size __n, and optionally adds to size __n free list. static _Obj* _S_refill(size_t __n); // Allocates a chunk for nobjs of size __p_size. nobjs may be reduced // if it is inconvenient to allocate the requested number. static char* _S_chunk_alloc(size_t __p_size, int& __nobjs); // Chunk allocation state. static _Freelist _S_free_list[_STLP_NFREELISTS]; // Amount of total allocated memory #if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) static _STLP_VOLATILE __add_atomic_t _S_heap_size; #else static size_t _S_heap_size; #endif #if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) // List of blocks of free memory static _STLP_atomic_freelist _S_free_mem_blocks; #else // Start of the current free memory buffer static char* _S_start_free; // End of the current free memory buffer static char* _S_end_free; #endif #if defined (_STLP_DO_CLEAN_NODE_ALLOC) public: // Methods to report alloc/dealloc calls to the counter system. # if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) typedef _STLP_VOLATILE __stl_atomic_t _AllocCounter; # else typedef __stl_atomic_t _AllocCounter; # endif static _AllocCounter& _STLP_CALL _S_alloc_counter(); static void _S_alloc_call(); static void _S_dealloc_call(); private: // Free all the allocated chuncks of memory static void _S_chunk_dealloc(); // Beginning of the linked list of allocated chunks of memory static _ChunkList _S_chunks; #endif /* _STLP_DO_CLEAN_NODE_ALLOC */ public: /* __n must be > 0 */ static void* _M_allocate(size_t& __n); /* __p may not be 0 */ static void _M_deallocate(void *__p, size_t __n); }; #if !defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) void* __node_alloc_impl::_M_allocate(size_t& __n) { __n = _S_round_up(__n); _Obj * _STLP_VOLATILE * __my_free_list = _S_free_list + _S_FREELIST_INDEX(__n); _Obj *__r; // Acquire the lock here with a constructor call. // This ensures that it is released in exit or during stack // unwinding. _Node_Alloc_Lock __lock_instance; if ( (__r = *__my_free_list) != 0 ) { *__my_free_list = __r->_M_next; } else { __r = _S_refill(__n); } # if defined (_STLP_DO_CLEAN_NODE_ALLOC) _S_alloc_call(); # endif // lock is released here return __r; } void __node_alloc_impl::_M_deallocate(void *__p, size_t __n) { _Obj * _STLP_VOLATILE * __my_free_list = _S_free_list + _S_FREELIST_INDEX(__n); _Obj * __pobj = __STATIC_CAST(_Obj*, __p); // acquire lock _Node_Alloc_Lock __lock_instance; __pobj->_M_next = *__my_free_list; *__my_free_list = __pobj; # if defined (_STLP_DO_CLEAN_NODE_ALLOC) _S_dealloc_call(); # endif // lock is released here } # if defined (_STLP_DO_CLEAN_NODE_ALLOC) # define _STLP_OFFSET sizeof(_Obj) # else # define _STLP_OFFSET 0 # endif /* We allocate memory in large chunks in order to avoid fragmenting */ /* the malloc heap too much. */ /* We assume that size is properly aligned. */ /* We hold the allocation lock. */ char* __node_alloc_impl::_S_chunk_alloc(size_t _p_size, int& __nobjs) { char* __result; size_t __total_bytes = _p_size * __nobjs; size_t __bytes_left = _S_end_free - _S_start_free; if (__bytes_left > 0) { if (__bytes_left >= __total_bytes) { __result = _S_start_free; _S_start_free += __total_bytes; return __result; } if (__bytes_left >= _p_size) { __nobjs = (int)(__bytes_left / _p_size); __total_bytes = _p_size * __nobjs; __result = _S_start_free; _S_start_free += __total_bytes; return __result; } // Try to make use of the left-over piece. _Obj* _STLP_VOLATILE* __my_free_list = _S_free_list + _S_FREELIST_INDEX(__bytes_left); __REINTERPRET_CAST(_Obj*, _S_start_free)->_M_next = *__my_free_list; *__my_free_list = __REINTERPRET_CAST(_Obj*, _S_start_free); _S_start_free = _S_end_free = 0; } size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size) + _STLP_OFFSET; _STLP_TRY { _S_start_free = __stlp_new_chunk(__bytes_to_get); } #if defined (_STLP_USE_EXCEPTIONS) catch (const _STLP_STD::bad_alloc&) { _Obj* _STLP_VOLATILE* __my_free_list; _Obj* __p; // Try to do with what we have. That can't hurt. // We do not try smaller requests, since that tends // to result in disaster on multi-process machines. for (size_t __i = _p_size; __i <= (size_t)_MAX_BYTES; __i += (size_t)_ALIGN) { __my_free_list = _S_free_list + _S_FREELIST_INDEX(__i); __p = *__my_free_list; if (0 != __p) { *__my_free_list = __p -> _M_next; _S_start_free = __REINTERPRET_CAST(char*, __p); _S_end_free = _S_start_free + __i; return _S_chunk_alloc(_p_size, __nobjs); // Any leftover piece will eventually make it to the // right free list. } } __bytes_to_get = __total_bytes + _STLP_OFFSET; _S_start_free = __stlp_new_chunk(__bytes_to_get); } #endif _S_heap_size += __bytes_to_get >> 4; # if defined (_STLP_DO_CLEAN_NODE_ALLOC) __REINTERPRET_CAST(_Obj*, _S_start_free)->_M_next = _S_chunks; _S_chunks = __REINTERPRET_CAST(_Obj*, _S_start_free); # endif _S_end_free = _S_start_free + __bytes_to_get; _S_start_free += _STLP_OFFSET; return _S_chunk_alloc(_p_size, __nobjs); } /* Returns an object of size __n, and optionally adds to size __n free list.*/ /* We assume that __n is properly aligned. */ /* We hold the allocation lock. */ _Node_alloc_obj* __node_alloc_impl::_S_refill(size_t __n) { int __nobjs = 20; char* __chunk = _S_chunk_alloc(__n, __nobjs); if (1 == __nobjs) return __REINTERPRET_CAST(_Obj*, __chunk); _Obj* _STLP_VOLATILE* __my_free_list = _S_free_list + _S_FREELIST_INDEX(__n); _Obj* __result; _Obj* __current_obj; _Obj* __next_obj; /* Build free list in chunk */ __result = __REINTERPRET_CAST(_Obj*, __chunk); *__my_free_list = __next_obj = __REINTERPRET_CAST(_Obj*, __chunk + __n); for (--__nobjs; --__nobjs; ) { __current_obj = __next_obj; __next_obj = __REINTERPRET_CAST(_Obj*, __REINTERPRET_CAST(char*, __next_obj) + __n); __current_obj->_M_next = __next_obj; } __next_obj->_M_next = 0; return __result; } # if defined (_STLP_DO_CLEAN_NODE_ALLOC) void __node_alloc_impl::_S_alloc_call() { ++_S_alloc_counter(); } void __node_alloc_impl::_S_dealloc_call() { __stl_atomic_t &counter = _S_alloc_counter(); if (--counter == 0) { _S_chunk_dealloc(); } } /* We deallocate all the memory chunks */ void __node_alloc_impl::_S_chunk_dealloc() { _Obj *__pcur = _S_chunks, *__pnext; while (__pcur != 0) { __pnext = __pcur->_M_next; __stlp_delete_chunck(__pcur); __pcur = __pnext; } _S_chunks = 0; _S_start_free = _S_end_free = 0; _S_heap_size = 0; memset(__REINTERPRET_CAST(char*, __CONST_CAST(_Obj**, &_S_free_list[0])), 0, _STLP_NFREELISTS * sizeof(_Obj*)); } # endif #else void* __node_alloc_impl::_M_allocate(size_t& __n) { __n = _S_round_up(__n); _Obj* __r = _S_free_list[_S_FREELIST_INDEX(__n)].pop(); if (__r == 0) { __r = _S_refill(__n); } # if defined (_STLP_DO_CLEAN_NODE_ALLOC) _S_alloc_call(); # endif return __r; } void __node_alloc_impl::_M_deallocate(void *__p, size_t __n) { _S_free_list[_S_FREELIST_INDEX(__n)].push(__STATIC_CAST(_Obj*, __p)); # if defined (_STLP_DO_CLEAN_NODE_ALLOC) _S_dealloc_call(); # endif } /* Returns an object of size __n, and optionally adds additional ones to */ /* freelist of objects of size __n. */ /* We assume that __n is properly aligned. */ __node_alloc_impl::_Obj* __node_alloc_impl::_S_refill(size_t __n) { int __nobjs = 20; char* __chunk = _S_chunk_alloc(__n, __nobjs); if (__nobjs <= 1) return __REINTERPRET_CAST(_Obj*, __chunk); // Push all new nodes (minus first one) onto freelist _Obj* __result = __REINTERPRET_CAST(_Obj*, __chunk); _Obj* __cur_item = __result; _Freelist* __my_freelist = _S_free_list + _S_FREELIST_INDEX(__n); for (--__nobjs; __nobjs != 0; --__nobjs) { __cur_item = __REINTERPRET_CAST(_Obj*, __REINTERPRET_CAST(char*, __cur_item) + __n); __my_freelist->push(__cur_item); } return __result; } # if defined (_STLP_DO_CLEAN_NODE_ALLOC) # define _STLP_OFFSET _ALIGN # else # define _STLP_OFFSET 0 # endif /* We allocate memory in large chunks in order to avoid fragmenting */ /* the malloc heap too much. */ /* We assume that size is properly aligned. */ char* __node_alloc_impl::_S_chunk_alloc(size_t _p_size, int& __nobjs) { # if defined (_STLP_DO_CLEAN_NODE_ALLOC) //We are going to add a small memory block to keep all the allocated blocks //address, we need to do so respecting the memory alignment. The following //static assert checks that the reserved block is big enough to store a pointer. _STLP_STATIC_ASSERT(sizeof(_Obj) <= _ALIGN) # endif char* __result = 0; __add_atomic_t __total_bytes = __STATIC_CAST(__add_atomic_t, _p_size) * __nobjs; _FreeBlockHeader* __block = __STATIC_CAST(_FreeBlockHeader*, _S_free_mem_blocks.pop()); if (__block != 0) { // We checked a block out and can now mess with it with impugnity. // We'll put the remainder back into the list if we're done with it below. char* __buf_start = __REINTERPRET_CAST(char*, __block); __add_atomic_t __bytes_left = __block->_M_end - __buf_start; if ((__bytes_left < __total_bytes) && (__bytes_left >= __STATIC_CAST(__add_atomic_t, _p_size))) { // There's enough left for at least one object, but not as much as we wanted __result = __buf_start; __nobjs = (int)(__bytes_left/_p_size); __total_bytes = __STATIC_CAST(__add_atomic_t, _p_size) * __nobjs; __bytes_left -= __total_bytes; __buf_start += __total_bytes; } else if (__bytes_left >= __total_bytes) { // The block has enough left to satisfy all that was asked for __result = __buf_start; __bytes_left -= __total_bytes; __buf_start += __total_bytes; } if (__bytes_left != 0) { // There is still some memory left over in block after we satisfied our request. if ((__result != 0) && (__bytes_left >= (__add_atomic_t)sizeof(_FreeBlockHeader))) { // We were able to allocate at least one object and there is still enough // left to put remainder back into list. _FreeBlockHeader* __newblock = __REINTERPRET_CAST(_FreeBlockHeader*, __buf_start); __newblock->_M_end = __block->_M_end; _S_free_mem_blocks.push(__newblock); } else { // We were not able to allocate enough for at least one object. // Shove into freelist of nearest (rounded-down!) size. size_t __rounded_down = _S_round_up(__bytes_left + 1) - (size_t)_ALIGN; if (__rounded_down > 0) _S_free_list[_S_FREELIST_INDEX(__rounded_down)].push((_Obj*)__buf_start); } } if (__result != 0) return __result; } // We couldn't satisfy it from the list of free blocks, get new memory. __add_atomic_t __bytes_to_get = 2 * __total_bytes + __STATIC_CAST(__add_atomic_t, _S_round_up(__STATIC_CAST(__uadd_atomic_t, _STLP_ATOMIC_ADD(&_S_heap_size, 0)))) + _STLP_OFFSET; _STLP_TRY { __result = __stlp_new_chunk(__bytes_to_get); } #if defined (_STLP_USE_EXCEPTIONS) catch (const bad_alloc&) { // Allocation failed; try to canibalize from freelist of a larger object size. for (size_t __i = _p_size; __i <= (size_t)_MAX_BYTES; __i += (size_t)_ALIGN) { _Obj* __p = _S_free_list[_S_FREELIST_INDEX(__i)].pop(); if (0 != __p) { if (__i < sizeof(_FreeBlockHeader)) { // Not enough to put into list of free blocks, divvy it up here. // Use as much as possible for this request and shove remainder into freelist. __nobjs = (int)(__i/_p_size); __total_bytes = __nobjs * __STATIC_CAST(__add_atomic_t, _p_size); size_t __bytes_left = __i - __total_bytes; size_t __rounded_down = _S_round_up(__bytes_left+1) - (size_t)_ALIGN; if (__rounded_down > 0) { _S_free_list[_S_FREELIST_INDEX(__rounded_down)].push(__REINTERPRET_CAST(_Obj*, __REINTERPRET_CAST(char*, __p) + __total_bytes)); } return __REINTERPRET_CAST(char*, __p); } else { // Add node to list of available blocks and recursively allocate from it. _FreeBlockHeader* __newblock = (_FreeBlockHeader*)__p; __newblock->_M_end = __REINTERPRET_CAST(char*, __p) + __i; _S_free_mem_blocks.push(__newblock); return _S_chunk_alloc(_p_size, __nobjs); } } } // We were not able to find something in a freelist, try to allocate a smaller amount. __bytes_to_get = __total_bytes + _STLP_OFFSET; __result = __stlp_new_chunk(__bytes_to_get); // This should either throw an exception or remedy the situation. // Thus we assume it succeeded. } #endif // Alignment check _STLP_VERBOSE_ASSERT(((__REINTERPRET_CAST(size_t, __result) & __STATIC_CAST(size_t, _ALIGN - 1)) == 0), _StlMsg_DBA_DELETED_TWICE) _STLP_ATOMIC_ADD(&_S_heap_size, __bytes_to_get >> 4); # if defined (_STLP_DO_CLEAN_NODE_ALLOC) // We have to track the allocated memory chunks for release on exit. _S_chunks.push(__REINTERPRET_CAST(_Obj*, __result)); __result += _ALIGN; __bytes_to_get -= _ALIGN; # endif if (__bytes_to_get > __total_bytes) { // Push excess memory allocated in this chunk into list of free memory blocks _FreeBlockHeader* __freeblock = __REINTERPRET_CAST(_FreeBlockHeader*, __result + __total_bytes); __freeblock->_M_end = __result + __bytes_to_get; _S_free_mem_blocks.push(__freeblock); } return __result; } # if defined (_STLP_DO_CLEAN_NODE_ALLOC) void __node_alloc_impl::_S_alloc_call() { _STLP_ATOMIC_INCREMENT(&_S_alloc_counter()); } void __node_alloc_impl::_S_dealloc_call() { _STLP_VOLATILE __stl_atomic_t *pcounter = &_S_alloc_counter(); if (_STLP_ATOMIC_DECREMENT(pcounter) == 0) _S_chunk_dealloc(); } /* We deallocate all the memory chunks */ void __node_alloc_impl::_S_chunk_dealloc() { // Note: The _Node_alloc_helper class ensures that this function // will only be called when the (shared) library is unloaded or the // process is shutdown. It's thus not possible that another thread // is currently trying to allocate a node (we're not thread-safe here). // // Clear the free blocks and all freelistst. This makes sure that if // for some reason more memory is allocated again during shutdown // (it'd also be really nasty to leave references to deallocated memory). _S_free_mem_blocks.clear(); _S_heap_size = 0; for (size_t __i = 0; __i < _STLP_NFREELISTS; ++__i) { _S_free_list[__i].clear(); } // Detach list of chunks and free them all _Obj* __chunk = _S_chunks.clear(); while (__chunk != 0) { _Obj* __next = __chunk->_M_next; __stlp_delete_chunck(__chunk); __chunk = __next; } } # endif #endif #if defined (_STLP_DO_CLEAN_NODE_ALLOC) struct __node_alloc_cleaner { ~__node_alloc_cleaner() { __node_alloc_impl::_S_dealloc_call(); } }; # if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) _STLP_VOLATILE __stl_atomic_t& _STLP_CALL # else __stl_atomic_t& _STLP_CALL # endif __node_alloc_impl::_S_alloc_counter() { static _AllocCounter _S_counter = 1; static __node_alloc_cleaner _S_node_alloc_cleaner; return _S_counter; } #endif #if !defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) _Node_alloc_obj * _STLP_VOLATILE __node_alloc_impl::_S_free_list[_STLP_NFREELISTS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // The 16 zeros are necessary to make version 4.1 of the SunPro // compiler happy. Otherwise it appears to allocate too little // space for the array. #else _STLP_atomic_freelist __node_alloc_impl::_S_free_list[_STLP_NFREELISTS]; _STLP_atomic_freelist __node_alloc_impl::_S_free_mem_blocks; #endif #if !defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) char *__node_alloc_impl::_S_start_free = 0; char *__node_alloc_impl::_S_end_free = 0; #endif #if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) _STLP_VOLATILE __add_atomic_t #else size_t #endif __node_alloc_impl::_S_heap_size = 0; #if defined (_STLP_DO_CLEAN_NODE_ALLOC) # if defined (_STLP_USE_LOCK_FREE_IMPLEMENTATION) _STLP_atomic_freelist __node_alloc_impl::_S_chunks; # else _Node_alloc_obj* __node_alloc_impl::_S_chunks = 0; # endif #endif void * _STLP_CALL __node_alloc::_M_allocate(size_t& __n) { return __node_alloc_impl::_M_allocate(__n); } void _STLP_CALL __node_alloc::_M_deallocate(void *__p, size_t __n) { __node_alloc_impl::_M_deallocate(__p, __n); } #if defined (_STLP_PTHREADS) && !defined (_STLP_NO_THREADS) # define _STLP_DATA_ALIGNMENT 8 _STLP_MOVE_TO_PRIV_NAMESPACE // ******************************************************* // __perthread_alloc implementation union _Pthread_alloc_obj { union _Pthread_alloc_obj * __free_list_link; char __client_data[_STLP_DATA_ALIGNMENT]; /* The client sees this. */ }; // Pthread allocators don't appear to the client to have meaningful // instances. We do in fact need to associate some state with each // thread. That state is represented by _Pthread_alloc_per_thread_state. struct _Pthread_alloc_per_thread_state { typedef _Pthread_alloc_obj __obj; enum { _S_NFREELISTS = _MAX_BYTES / _STLP_DATA_ALIGNMENT }; // Free list link for list of available per thread structures. // When one of these becomes available for reuse due to thread // termination, any objects in its free list remain associated // with it. The whole structure may then be used by a newly // created thread. _Pthread_alloc_per_thread_state() : __next(0) { memset((void *)__CONST_CAST(_Pthread_alloc_obj**, __free_list), 0, (size_t)_S_NFREELISTS * sizeof(__obj *)); } // Returns an object of size __n, and possibly adds to size n free list. void *_M_refill(size_t __n); _Pthread_alloc_obj* volatile __free_list[_S_NFREELISTS]; _Pthread_alloc_per_thread_state *__next; // this data member is only to be used by per_thread_allocator, which returns memory to the originating thread. _STLP_mutex _M_lock; }; // Pthread-specific allocator. class _Pthread_alloc_impl { public: // but only for internal use: typedef _Pthread_alloc_per_thread_state __state_type; typedef char value_type; // Allocates a chunk for nobjs of size size. nobjs may be reduced // if it is inconvenient to allocate the requested number. static char *_S_chunk_alloc(size_t __size, size_t &__nobjs, __state_type*); enum {_S_ALIGN = _STLP_DATA_ALIGNMENT}; static size_t _S_round_up(size_t __bytes) { return (((__bytes) + (int)_S_ALIGN - 1) & ~((int)_S_ALIGN - 1)); } static size_t _S_freelist_index(size_t __bytes) { return (((__bytes) + (int)_S_ALIGN - 1) / (int)_S_ALIGN - 1); } private: // Chunk allocation state. And other shared state. // Protected by _S_chunk_allocator_lock. static _STLP_STATIC_MUTEX _S_chunk_allocator_lock; static char *_S_start_free; static char *_S_end_free; static size_t _S_heap_size; static __state_type *_S_free_per_thread_states; static pthread_key_t _S_key; static bool _S_key_initialized; // Pthread key under which per thread state is stored. // Allocator instances that are currently unclaimed by any thread. static void _S_destructor(void *instance); // Function to be called on thread exit to reclaim per thread // state. static __state_type *_S_new_per_thread_state(); public: // Return a recycled or new per thread state. static __state_type *_S_get_per_thread_state(); private: // ensure that the current thread has an associated // per thread state. class _M_lock; friend class _M_lock; class _M_lock { public: _M_lock () { _S_chunk_allocator_lock._M_acquire_lock(); } ~_M_lock () { _S_chunk_allocator_lock._M_release_lock(); } }; public: /* n must be > 0 */ static void * allocate(size_t& __n); /* p may not be 0 */ static void deallocate(void *__p, size_t __n); // boris : versions for per_thread_allocator /* n must be > 0 */ static void * allocate(size_t& __n, __state_type* __a); /* p may not be 0 */ static void deallocate(void *__p, size_t __n, __state_type* __a); static void * reallocate(void *__p, size_t __old_sz, size_t& __new_sz); }; /* Returns an object of size n, and optionally adds to size n free list.*/ /* We assume that n is properly aligned. */ /* We hold the allocation lock. */ void *_Pthread_alloc_per_thread_state::_M_refill(size_t __n) { typedef _Pthread_alloc_obj __obj; size_t __nobjs = 128; char * __chunk = _Pthread_alloc_impl::_S_chunk_alloc(__n, __nobjs, this); __obj * volatile * __my_free_list; __obj * __result; __obj * __current_obj, * __next_obj; size_t __i; if (1 == __nobjs) { return __chunk; } __my_free_list = __free_list + _Pthread_alloc_impl::_S_freelist_index(__n); /* Build free list in chunk */ __result = (__obj *)__chunk; *__my_free_list = __next_obj = (__obj *)(__chunk + __n); for (__i = 1; ; ++__i) { __current_obj = __next_obj; __next_obj = (__obj *)((char *)__next_obj + __n); if (__nobjs - 1 == __i) { __current_obj -> __free_list_link = 0; break; } else { __current_obj -> __free_list_link = __next_obj; } } return __result; } void _Pthread_alloc_impl::_S_destructor(void *__instance) { _M_lock __lock_instance; // Need to acquire lock here. _Pthread_alloc_per_thread_state* __s = (_Pthread_alloc_per_thread_state*)__instance; __s -> __next = _S_free_per_thread_states; _S_free_per_thread_states = __s; } _Pthread_alloc_per_thread_state* _Pthread_alloc_impl::_S_new_per_thread_state() { /* lock already held here. */ if (0 != _S_free_per_thread_states) { _Pthread_alloc_per_thread_state *__result = _S_free_per_thread_states; _S_free_per_thread_states = _S_free_per_thread_states -> __next; return __result; } else { return new _Pthread_alloc_per_thread_state; } } _Pthread_alloc_per_thread_state* _Pthread_alloc_impl::_S_get_per_thread_state() { int __ret_code; __state_type* __result; if (_S_key_initialized && (__result = (__state_type*) pthread_getspecific(_S_key))) return __result; /*REFERENCED*/ _M_lock __lock_instance; // Need to acquire lock here. if (!_S_key_initialized) { if (pthread_key_create(&_S_key, _S_destructor)) { _STLP_THROW_BAD_ALLOC; // failed } _S_key_initialized = true; } __result = _S_new_per_thread_state(); __ret_code = pthread_setspecific(_S_key, __result); if (__ret_code) { if (__ret_code == ENOMEM) { _STLP_THROW_BAD_ALLOC; } else { // EINVAL _STLP_ABORT(); } } return __result; } /* We allocate memory in large chunks in order to avoid fragmenting */ /* the malloc heap too much. */ /* We assume that size is properly aligned. */ char *_Pthread_alloc_impl::_S_chunk_alloc(size_t __p_size, size_t &__nobjs, _Pthread_alloc_per_thread_state *__a) { typedef _Pthread_alloc_obj __obj; { char * __result; size_t __total_bytes; size_t __bytes_left; /*REFERENCED*/ _M_lock __lock_instance; // Acquire lock for this routine __total_bytes = __p_size * __nobjs; __bytes_left = _S_end_free - _S_start_free; if (__bytes_left >= __total_bytes) { __result = _S_start_free; _S_start_free += __total_bytes; return __result; } else if (__bytes_left >= __p_size) { __nobjs = __bytes_left/__p_size; __total_bytes = __p_size * __nobjs; __result = _S_start_free; _S_start_free += __total_bytes; return __result; } else { size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size); // Try to make use of the left-over piece. if (__bytes_left > 0) { __obj * volatile * __my_free_list = __a->__free_list + _S_freelist_index(__bytes_left); ((__obj *)_S_start_free) -> __free_list_link = *__my_free_list; *__my_free_list = (__obj *)_S_start_free; } # ifdef _SGI_SOURCE // Try to get memory that's aligned on something like a // cache line boundary, so as to avoid parceling out // parts of the same line to different threads and thus // possibly different processors. { const int __cache_line_size = 128; // probable upper bound __bytes_to_get &= ~(__cache_line_size-1); _S_start_free = (char *)memalign(__cache_line_size, __bytes_to_get); if (0 == _S_start_free) { _S_start_free = (char *)__malloc_alloc::allocate(__bytes_to_get); } } # else /* !SGI_SOURCE */ _S_start_free = (char *)__malloc_alloc::allocate(__bytes_to_get); # endif _S_heap_size += __bytes_to_get >> 4; _S_end_free = _S_start_free + __bytes_to_get; } } // lock is released here return _S_chunk_alloc(__p_size, __nobjs, __a); } /* n must be > 0 */ void *_Pthread_alloc_impl::allocate(size_t& __n) { typedef _Pthread_alloc_obj __obj; __obj * volatile * __my_free_list; __obj * __result; __state_type* __a; if (__n > _MAX_BYTES) { return __malloc_alloc::allocate(__n); } __n = _S_round_up(__n); __a = _S_get_per_thread_state(); __my_free_list = __a->__free_list + _S_freelist_index(__n); __result = *__my_free_list; if (__result == 0) { void *__r = __a->_M_refill(__n); return __r; } *__my_free_list = __result->__free_list_link; return __result; }; /* p may not be 0 */ void _Pthread_alloc_impl::deallocate(void *__p, size_t __n) { typedef _Pthread_alloc_obj __obj; __obj *__q = (__obj *)__p; __obj * volatile * __my_free_list; __state_type* __a; if (__n > _MAX_BYTES) { __malloc_alloc::deallocate(__p, __n); return; } __a = _S_get_per_thread_state(); __my_free_list = __a->__free_list + _S_freelist_index(__n); __q -> __free_list_link = *__my_free_list; *__my_free_list = __q; } // boris : versions for per_thread_allocator /* n must be > 0 */ void *_Pthread_alloc_impl::allocate(size_t& __n, __state_type* __a) { typedef _Pthread_alloc_obj __obj; __obj * volatile * __my_free_list; __obj * __result; if (__n > _MAX_BYTES) { return __malloc_alloc::allocate(__n); } __n = _S_round_up(__n); // boris : here, we have to lock per thread state, as we may be getting memory from // different thread pool. _STLP_auto_lock __lock(__a->_M_lock); __my_free_list = __a->__free_list + _S_freelist_index(__n); __result = *__my_free_list; if (__result == 0) { void *__r = __a->_M_refill(__n); return __r; } *__my_free_list = __result->__free_list_link; return __result; }; /* p may not be 0 */ void _Pthread_alloc_impl::deallocate(void *__p, size_t __n, __state_type* __a) { typedef _Pthread_alloc_obj __obj; __obj *__q = (__obj *)__p; __obj * volatile * __my_free_list; if (__n > _MAX_BYTES) { __malloc_alloc::deallocate(__p, __n); return; } // boris : here, we have to lock per thread state, as we may be returning memory from // different thread. _STLP_auto_lock __lock(__a->_M_lock); __my_free_list = __a->__free_list + _S_freelist_index(__n); __q -> __free_list_link = *__my_free_list; *__my_free_list = __q; } void *_Pthread_alloc_impl::reallocate(void *__p, size_t __old_sz, size_t& __new_sz) { void * __result; size_t __copy_sz; if (__old_sz > _MAX_BYTES && __new_sz > _MAX_BYTES) { return realloc(__p, __new_sz); } if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return __p; __result = allocate(__new_sz); __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz; memcpy(__result, __p, __copy_sz); deallocate(__p, __old_sz); return __result; } _Pthread_alloc_per_thread_state* _Pthread_alloc_impl::_S_free_per_thread_states = 0; pthread_key_t _Pthread_alloc_impl::_S_key = 0; _STLP_STATIC_MUTEX _Pthread_alloc_impl::_S_chunk_allocator_lock _STLP_MUTEX_INITIALIZER; bool _Pthread_alloc_impl::_S_key_initialized = false; char *_Pthread_alloc_impl::_S_start_free = 0; char *_Pthread_alloc_impl::_S_end_free = 0; size_t _Pthread_alloc_impl::_S_heap_size = 0; void * _STLP_CALL _Pthread_alloc::allocate(size_t& __n) { return _Pthread_alloc_impl::allocate(__n); } void _STLP_CALL _Pthread_alloc::deallocate(void *__p, size_t __n) { _Pthread_alloc_impl::deallocate(__p, __n); } void * _STLP_CALL _Pthread_alloc::allocate(size_t& __n, __state_type* __a) { return _Pthread_alloc_impl::allocate(__n, __a); } void _STLP_CALL _Pthread_alloc::deallocate(void *__p, size_t __n, __state_type* __a) { _Pthread_alloc_impl::deallocate(__p, __n, __a); } void * _STLP_CALL _Pthread_alloc::reallocate(void *__p, size_t __old_sz, size_t& __new_sz) { return _Pthread_alloc_impl::reallocate(__p, __old_sz, __new_sz); } _Pthread_alloc_per_thread_state* _STLP_CALL _Pthread_alloc::_S_get_per_thread_state() { return _Pthread_alloc_impl::_S_get_per_thread_state(); } _STLP_MOVE_TO_STD_NAMESPACE #endif _STLP_END_NAMESPACE #undef _S_FREELIST_INDEX