/* * * Copyright (c) 1994 * Hewlett-Packard Company * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Copyright (c) 1997 * Moscow Center for SPARC Technology * * Copyright (c) 1999 * Boris Fomitchev * * This material is provided "as is", with absolutely no warranty expressed * or implied. Any use is at your own risk. * * Permission to use or copy this software for any purpose is hereby granted * without fee, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef _STLP_INTERNAL_DEQUE_H #define _STLP_INTERNAL_DEQUE_H #ifndef _STLP_INTERNAL_ALGOBASE_H # include #endif #ifndef _STLP_INTERNAL_ALLOC_H # include #endif #ifndef _STLP_INTERNAL_ITERATOR_H # include #endif #ifndef _STLP_INTERNAL_UNINITIALIZED_H # include #endif #ifndef _STLP_RANGE_ERRORS_H # include #endif /* Class invariants: * For any nonsingular iterator i: * i.node is the address of an element in the map array. The * contents of i.node is a pointer to the beginning of a node. * i.first == *(i.node) * i.last == i.first + node_size * i.cur is a pointer in the range [i.first, i.last). NOTE: * the implication of this is that i.cur is always a dereferenceable * pointer, even if i is a past-the-end iterator. * Start and Finish are always nonsingular iterators. NOTE: this means * that an empty deque must have one node, and that a deque * with N elements, where N is the buffer size, must have two nodes. * For every node other than start.node and finish.node, every element * in the node is an initialized object. If start.node == finish.node, * then [start.cur, finish.cur) are initialized objects, and * the elements outside that range are uninitialized storage. Otherwise, * [start.cur, start.last) and [finish.first, finish.cur) are initialized * objects, and [start.first, start.cur) and [finish.cur, finish.last) * are uninitialized storage. * [map, map + map_size) is a valid, non-empty range. * [start.node, finish.node] is a valid range contained within * [map, map + map_size). * A pointer in the range [map, map + map_size) points to an allocated node * if and only if the pointer is in the range [start.node, finish.node]. */ _STLP_BEGIN_NAMESPACE _STLP_MOVE_TO_PRIV_NAMESPACE template struct _Deque_iterator_base { static size_t _S_buffer_size() { const size_t blocksize = _MAX_BYTES; return (sizeof(_Tp) < blocksize ? (blocksize / sizeof(_Tp)) : 1); } typedef random_access_iterator_tag iterator_category; typedef _Tp value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef value_type** _Map_pointer; typedef _Deque_iterator_base< _Tp > _Self; value_type* _M_cur; value_type* _M_first; value_type* _M_last; _Map_pointer _M_node; _Deque_iterator_base(value_type* __x, _Map_pointer __y) : _M_cur(__x), _M_first(*__y), _M_last(*__y + _S_buffer_size()), _M_node(__y) {} _Deque_iterator_base() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {} // see comment in doc/README.evc4 and doc/README.evc8 #if defined (_STLP_MSVC) && (_STLP_MSVC <= 1401) && defined (MIPS) && defined (NDEBUG) _Deque_iterator_base(_Deque_iterator_base const& __other) : _M_cur(__other._M_cur), _M_first(__other._M_first), _M_last(__other._M_last), _M_node(__other._M_node) {} #endif difference_type _M_subtract(const _Self& __x) const { return difference_type(_S_buffer_size()) * (_M_node - __x._M_node - 1) + (_M_cur - _M_first) + (__x._M_last - __x._M_cur); } void _M_increment() { if (++_M_cur == _M_last) { _M_set_node(_M_node + 1); _M_cur = _M_first; } } void _M_decrement() { if (_M_cur == _M_first) { _M_set_node(_M_node - 1); _M_cur = _M_last; } --_M_cur; } void _M_advance(difference_type __n) { const size_t buffersize = _S_buffer_size(); difference_type __offset = __n + (_M_cur - _M_first); if (__offset >= 0 && __offset < difference_type(buffersize)) _M_cur += __n; else { difference_type __node_offset = __offset > 0 ? __offset / buffersize : -difference_type((-__offset - 1) / buffersize) - 1; _M_set_node(_M_node + __node_offset); _M_cur = _M_first + (__offset - __node_offset * difference_type(buffersize)); } } void _M_set_node(_Map_pointer __new_node) { _M_last = (_M_first = *(_M_node = __new_node)) + difference_type(_S_buffer_size()); } }; template struct _Deque_iterator : public _Deque_iterator_base< _Tp> { typedef random_access_iterator_tag iterator_category; typedef _Tp value_type; typedef typename _Traits::reference reference; typedef typename _Traits::pointer pointer; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef value_type** _Map_pointer; typedef _Deque_iterator_base< _Tp > _Base; typedef _Deque_iterator<_Tp, _Traits> _Self; typedef typename _Traits::_NonConstTraits _NonConstTraits; typedef _Deque_iterator<_Tp, _NonConstTraits> iterator; typedef typename _Traits::_ConstTraits _ConstTraits; typedef _Deque_iterator<_Tp, _ConstTraits> const_iterator; _Deque_iterator(value_type* __x, _Map_pointer __y) : _Deque_iterator_base(__x,__y) {} _Deque_iterator() {} //copy constructor for iterator and constructor from iterator for const_iterator _Deque_iterator(const iterator& __x) : _Deque_iterator_base(__x) {} reference operator*() const { return *this->_M_cur; } _STLP_DEFINE_ARROW_OPERATOR difference_type operator-(const const_iterator& __x) const { return this->_M_subtract(__x); } _Self& operator++() { this->_M_increment(); return *this; } _Self operator++(int) { _Self __tmp = *this; ++*this; return __tmp; } _Self& operator--() { this->_M_decrement(); return *this; } _Self operator--(int) { _Self __tmp = *this; --*this; return __tmp; } _Self& operator+=(difference_type __n) { this->_M_advance(__n); return *this; } _Self operator+(difference_type __n) const { _Self __tmp = *this; return __tmp += __n; } _Self& operator-=(difference_type __n) { return *this += -__n; } _Self operator-(difference_type __n) const { _Self __tmp = *this; return __tmp -= __n; } reference operator[](difference_type __n) const { return *(*this + __n); } }; template inline _Deque_iterator<_Tp, _Traits> _STLP_CALL operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Traits>& __x) { return __x + __n; } #if defined (_STLP_USE_SEPARATE_RELOPS_NAMESPACE) template inline bool _STLP_CALL operator==(const _Deque_iterator_base<_Tp >& __x, const _Deque_iterator_base<_Tp >& __y) { return __x._M_cur == __y._M_cur; } template inline bool _STLP_CALL operator < (const _Deque_iterator_base<_Tp >& __x, const _Deque_iterator_base<_Tp >& __y) { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node); } template inline bool _STLP_CALL operator!=(const _Deque_iterator_base<_Tp >& __x, const _Deque_iterator_base<_Tp >& __y) { return __x._M_cur != __y._M_cur; } template inline bool _STLP_CALL operator>(const _Deque_iterator_base<_Tp >& __x, const _Deque_iterator_base<_Tp >& __y) { return __y < __x; } template inline bool _STLP_CALL operator>=(const _Deque_iterator_base<_Tp >& __x, const _Deque_iterator_base<_Tp >& __y) { return !(__x < __y); } template inline bool _STLP_CALL operator<=(const _Deque_iterator_base<_Tp >& __x, const _Deque_iterator_base<_Tp >& __y) { return !(__y < __x); } #else /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */ template inline bool _STLP_CALL operator==(const _Deque_iterator<_Tp, _Traits1 >& __x, const _Deque_iterator<_Tp, _Traits2 >& __y) { return __x._M_cur == __y._M_cur; } template inline bool _STLP_CALL operator < (const _Deque_iterator<_Tp, _Traits1 >& __x, const _Deque_iterator<_Tp, _Traits2 >& __y) { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node); } template inline bool _STLP_CALL operator!=(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp> >& __x, const _Deque_iterator<_Tp, _Const_traits<_Tp> >& __y) { return __x._M_cur != __y._M_cur; } template inline bool _STLP_CALL operator>(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp> >& __x, const _Deque_iterator<_Tp, _Const_traits<_Tp> >& __y) { return __y < __x; } template inline bool _STLP_CALL operator>=(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp> >& __x, const _Deque_iterator<_Tp, _Const_traits<_Tp> >& __y) { return !(__x < __y); } template inline bool _STLP_CALL operator<=(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp> >& __x, const _Deque_iterator<_Tp, _Const_traits<_Tp> >& __y) { return !(__y < __x); } #endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */ #if defined (_STLP_CLASS_PARTIAL_SPECIALIZATION) _STLP_MOVE_TO_STD_NAMESPACE template struct __type_traits<_STLP_PRIV _Deque_iterator<_Tp, _Traits> > { typedef __false_type has_trivial_default_constructor; typedef __true_type has_trivial_copy_constructor; typedef __true_type has_trivial_assignment_operator; typedef __true_type has_trivial_destructor; typedef __false_type is_POD_type; }; _STLP_MOVE_TO_PRIV_NAMESPACE #endif /* _STLP_CLASS_PARTIAL_SPECIALIZATION */ #if defined (_STLP_USE_OLD_HP_ITERATOR_QUERIES) _STLP_MOVE_TO_STD_NAMESPACE template inline _Tp* _STLP_CALL value_type(const _STLP_PRIV _Deque_iterator<_Tp, _Traits >&) { return (_Tp*)0; } template inline random_access_iterator_tag _STLP_CALL iterator_category(const _STLP_PRIV _Deque_iterator<_Tp, _Traits >&) { return random_access_iterator_tag(); } template inline ptrdiff_t* _STLP_CALL distance_type(const _STLP_PRIV _Deque_iterator<_Tp, _Traits >&) { return 0; } _STLP_MOVE_TO_PRIV_NAMESPACE #endif /* Deque base class. It has two purposes. First, its constructor * and destructor allocate (but don't initialize) storage. This makes * exception safety easier. Second, the base class encapsulates all of * the differences between SGI-style allocators and standard-conforming * allocators. */ template class _Deque_base { typedef _Deque_base<_Tp, _Alloc> _Self; public: typedef _Tp value_type; _STLP_FORCE_ALLOCATORS(_Tp, _Alloc) typedef _Alloc allocator_type; typedef _STLP_alloc_proxy _Alloc_proxy; typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type _Map_alloc_type; typedef _STLP_alloc_proxy _Map_alloc_proxy; typedef _Deque_iterator<_Tp, _Nonconst_traits<_Tp> > iterator; typedef _Deque_iterator<_Tp, _Const_traits<_Tp> > const_iterator; static size_t _STLP_CALL buffer_size() { return _Deque_iterator_base<_Tp>::_S_buffer_size(); } _Deque_base(const allocator_type& __a, size_t __num_elements) : _M_start(), _M_finish(), _M_map(_STLP_CONVERT_ALLOCATOR(__a, _Tp*), 0), _M_map_size(__a, (size_t)0) { _M_initialize_map(__num_elements); } _Deque_base(const allocator_type& __a) : _M_start(), _M_finish(), _M_map(_STLP_CONVERT_ALLOCATOR(__a, _Tp*), 0), _M_map_size(__a, (size_t)0) {} #if !defined (_STLP_NO_MOVE_SEMANTIC) _Deque_base(__move_source<_Self> src) : _M_start(src.get()._M_start), _M_finish(src.get()._M_finish), _M_map(__move_source<_Map_alloc_proxy>(src.get()._M_map)), _M_map_size(__move_source<_Alloc_proxy>(src.get()._M_map_size)) { src.get()._M_map._M_data = 0; src.get()._M_map_size._M_data = 0; src.get()._M_finish = src.get()._M_start; } #endif ~_Deque_base(); protected: void _M_initialize_map(size_t); void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish); void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish); enum { _S_initial_map_size = 8 }; protected: iterator _M_start; iterator _M_finish; _Map_alloc_proxy _M_map; _Alloc_proxy _M_map_size; }; #if defined (_STLP_USE_PTR_SPECIALIZATIONS) # define deque _STLP_PTR_IMPL_NAME(deque) #elif defined (_STLP_DEBUG) # define deque _STLP_NON_DBG_NAME(deque) #else _STLP_MOVE_TO_STD_NAMESPACE #endif template ) > class deque : protected _STLP_PRIV _Deque_base<_Tp, _Alloc> #if defined (_STLP_USE_PARTIAL_SPEC_WORKAROUND) && !defined (deque) , public __stlport_class > #endif { typedef _STLP_PRIV _Deque_base<_Tp, _Alloc> _Base; typedef deque<_Tp, _Alloc> _Self; public: // Basic types typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef random_access_iterator_tag _Iterator_category; _STLP_FORCE_ALLOCATORS(_Tp, _Alloc) typedef typename _Base::allocator_type allocator_type; public: // Iterators typedef typename _Base::iterator iterator; typedef typename _Base::const_iterator const_iterator; _STLP_DECLARE_RANDOM_ACCESS_REVERSE_ITERATORS; protected: // Internal typedefs typedef pointer* _Map_pointer; #if defined (_STLP_NO_MOVE_SEMANTIC) typedef __false_type _Movable; #endif public: // Basic accessors iterator begin() { return this->_M_start; } iterator end() { return this->_M_finish; } const_iterator begin() const { return const_iterator(this->_M_start); } const_iterator end() const { return const_iterator(this->_M_finish); } reverse_iterator rbegin() { return reverse_iterator(this->_M_finish); } reverse_iterator rend() { return reverse_iterator(this->_M_start); } const_reverse_iterator rbegin() const { return const_reverse_iterator(this->_M_finish); } const_reverse_iterator rend() const { return const_reverse_iterator(this->_M_start); } reference operator[](size_type __n) { return this->_M_start[difference_type(__n)]; } const_reference operator[](size_type __n) const { return this->_M_start[difference_type(__n)]; } void _M_range_check(size_type __n) const { if (__n >= this->size()) __stl_throw_out_of_range("deque"); } reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } reference front() { return *this->_M_start; } reference back() { iterator __tmp = this->_M_finish; --__tmp; return *__tmp; } const_reference front() const { return *this->_M_start; } const_reference back() const { const_iterator __tmp = this->_M_finish; --__tmp; return *__tmp; } size_type size() const { return this->_M_finish - this->_M_start; } size_type max_size() const { return size_type(-1); } bool empty() const { return this->_M_finish == this->_M_start; } allocator_type get_allocator() const { return this->_M_map_size; } public: // Constructor, destructor. #if !defined (_STLP_DONT_SUP_DFLT_PARAM) explicit deque(const allocator_type& __a = allocator_type()) #else deque() : _STLP_PRIV _Deque_base<_Tp, _Alloc>(allocator_type(), 0) {} deque(const allocator_type& __a) #endif : _STLP_PRIV _Deque_base<_Tp, _Alloc>(__a, 0) {} deque(const _Self& __x) : _STLP_PRIV _Deque_base<_Tp, _Alloc>(__x.get_allocator(), __x.size()) { _STLP_PRIV __ucopy(__x.begin(), __x.end(), this->_M_start); } #if !defined (_STLP_DONT_SUP_DFLT_PARAM) private: void _M_initialize(size_type __n, const value_type& __val = _STLP_DEFAULT_CONSTRUCTED(_Tp)) { typedef typename _TrivialInit<_Tp>::_Ret _TrivialInit; _M_fill_initialize(__val, _TrivialInit()); } public: explicit deque(size_type __n) : _STLP_PRIV _Deque_base<_Tp, _Alloc>(allocator_type(), __n) { _M_initialize(__n); } deque(size_type __n, const value_type& __val, const allocator_type& __a = allocator_type()) #else explicit deque(size_type __n) : _STLP_PRIV _Deque_base<_Tp, _Alloc>(allocator_type(), __n) { typedef typename _TrivialInit<_Tp>::_Ret _TrivialInit; _M_fill_initialize(_STLP_DEFAULT_CONSTRUCTED(_Tp), _TrivialInit()); } deque(size_type __n, const value_type& __val) : _STLP_PRIV _Deque_base<_Tp, _Alloc>(allocator_type(), __n) { _M_fill_initialize(__val, __false_type()); } deque(size_type __n, const value_type& __val, const allocator_type& __a) #endif : _STLP_PRIV _Deque_base<_Tp, _Alloc>(__a, __n) { _M_fill_initialize(__val, __false_type()); } #if defined (_STLP_MEMBER_TEMPLATES) protected: template void _M_initialize_dispatch(_Integer __n, _Integer __x, const __true_type&) { this->_M_initialize_map(__n); _M_fill_initialize(__x, __false_type()); } template void _M_initialize_dispatch(_InputIter __first, _InputIter __last, const __false_type&) { _M_range_initialize(__first, __last, _STLP_ITERATOR_CATEGORY(__first, _InputIter)); } public: // Check whether it's an integral type. If so, it's not an iterator. template deque(_InputIterator __first, _InputIterator __last, const allocator_type& __a _STLP_ALLOCATOR_TYPE_DFL) : _STLP_PRIV _Deque_base<_Tp, _Alloc>(__a) { typedef typename _IsIntegral<_InputIterator>::_Ret _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } # if defined (_STLP_NEEDS_EXTRA_TEMPLATE_CONSTRUCTORS) template deque(_InputIterator __first, _InputIterator __last) : _STLP_PRIV _Deque_base<_Tp, _Alloc>(allocator_type()) { typedef typename _IsIntegral<_InputIterator>::_Ret _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } # endif #else deque(const value_type* __first, const value_type* __last, const allocator_type& __a = allocator_type() ) : _STLP_PRIV _Deque_base<_Tp, _Alloc>(__a, __last - __first) { _STLP_PRIV __ucopy(__first, __last, this->_M_start); } deque(const_iterator __first, const_iterator __last, const allocator_type& __a = allocator_type() ) : _STLP_PRIV _Deque_base<_Tp, _Alloc>(__a, __last - __first) { _STLP_PRIV __ucopy(__first, __last, this->_M_start); } #endif /* _STLP_MEMBER_TEMPLATES */ #if !defined (_STLP_NO_MOVE_SEMANTIC) deque(__move_source<_Self> src) : _STLP_PRIV _Deque_base<_Tp, _Alloc>(__move_source<_Base>(src.get())) {} #endif ~deque() { _STLP_STD::_Destroy_Range(this->_M_start, this->_M_finish); } _Self& operator= (const _Self& __x); void swap(_Self& __x) { _STLP_STD::swap(this->_M_start, __x._M_start); _STLP_STD::swap(this->_M_finish, __x._M_finish); this->_M_map.swap(__x._M_map); this->_M_map_size.swap(__x._M_map_size); } #if defined (_STLP_USE_PARTIAL_SPEC_WORKAROUND) && !defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER) void _M_swap_workaround(_Self& __x) { swap(__x); } #endif public: // assign(), a generalized assignment member function. Two // versions: one that takes a count, and one that takes a range. // The range version is a member template, so we dispatch on whether // or not the type is an integer. void _M_fill_assign(size_type __n, const _Tp& __val) { if (__n > size()) { _STLP_STD::fill(begin(), end(), __val); insert(end(), __n - size(), __val); } else { erase(begin() + __n, end()); _STLP_STD::fill(begin(), end(), __val); } } void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); } #if defined (_STLP_MEMBER_TEMPLATES) template void assign(_InputIterator __first, _InputIterator __last) { typedef typename _IsIntegral<_InputIterator>::_Ret _Integral; _M_assign_dispatch(__first, __last, _Integral()); } private: // helper functions for assign() template void _M_assign_dispatch(_Integer __n, _Integer __val, const __true_type& /*_IsIntegral*/) { _M_fill_assign((size_type) __n, (_Tp) __val); } template void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, const __false_type& /*_IsIntegral*/) { _M_assign_aux(__first, __last, _STLP_ITERATOR_CATEGORY(__first, _InputIterator)); } template void _M_assign_aux(_InputIter __first, _InputIter __last, const input_iterator_tag &) { iterator __cur = begin(); for ( ; __first != __last && __cur != end(); ++__cur, ++__first) *__cur = *__first; if (__first == __last) erase(__cur, end()); else insert(end(), __first, __last); } template void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, const forward_iterator_tag &) { #else void assign(const value_type *__first, const value_type *__last) { size_type __size = size(); size_type __len = __last - __first; if (__len > __size) { const value_type *__mid = __first + __size; _STLP_STD::copy(__first, __mid, begin()); insert(end(), __mid, __last); } else { erase(_STLP_STD::copy(__first, __last, begin()), end()); } } void assign(const_iterator __first, const_iterator __last) { typedef const_iterator _ForwardIterator; #endif /* _STLP_MEMBER_TEMPLATES */ size_type __len = _STLP_STD::distance(__first, __last); if (__len > size()) { _ForwardIterator __mid = __first; _STLP_STD::advance(__mid, size()); _STLP_STD::copy(__first, __mid, begin()); insert(end(), __mid, __last); } else { erase(_STLP_STD::copy(__first, __last, begin()), end()); } } public: // push_* and pop_* #if !defined (_STLP_DONT_SUP_DFLT_PARAM) && !defined (_STLP_NO_ANACHRONISMS) void push_back(const value_type& __t = _STLP_DEFAULT_CONSTRUCTED(_Tp)) { #else void push_back(const value_type& __t) { #endif /*!_STLP_DONT_SUP_DFLT_PARAM && !_STLP_NO_ANACHRONISMS*/ if (this->_M_finish._M_cur != this->_M_finish._M_last - 1) { _Copy_Construct(this->_M_finish._M_cur, __t); ++this->_M_finish._M_cur; } else _M_push_back_aux_v(__t); } #if !defined (_STLP_DONT_SUP_DFLT_PARAM) && !defined (_STLP_NO_ANACHRONISMS) void push_front(const value_type& __t = _STLP_DEFAULT_CONSTRUCTED(_Tp)) { #else void push_front(const value_type& __t) { #endif /*!_STLP_DONT_SUP_DFLT_PARAM && !_STLP_NO_ANACHRONISMS*/ if (this->_M_start._M_cur != this->_M_start._M_first) { _Copy_Construct(this->_M_start._M_cur - 1, __t); --this->_M_start._M_cur; } else _M_push_front_aux_v(__t); } #if defined (_STLP_DONT_SUP_DFLT_PARAM) && !defined (_STLP_NO_ANACHRONISMS) void push_back() { if (this->_M_finish._M_cur != this->_M_finish._M_last - 1) { _STLP_STD::_Construct(this->_M_finish._M_cur); ++this->_M_finish._M_cur; } else _M_push_back_aux(); } void push_front() { if (this->_M_start._M_cur != this->_M_start._M_first) { _STLP_STD::_Construct(this->_M_start._M_cur - 1); --this->_M_start._M_cur; } else _M_push_front_aux(); } #endif /*_STLP_DONT_SUP_DFLT_PARAM && !_STLP_NO_ANACHRONISMS*/ void pop_back() { if (this->_M_finish._M_cur != this->_M_finish._M_first) { --this->_M_finish._M_cur; _STLP_STD::_Destroy(this->_M_finish._M_cur); } else { _M_pop_back_aux(); _STLP_STD::_Destroy(this->_M_finish._M_cur); } } void pop_front() { _STLP_STD::_Destroy(this->_M_start._M_cur); _M_pop_front_aux(); } public: // Insert #if !defined (_STLP_DONT_SUP_DFLT_PARAM) && !defined (_STLP_NO_ANACHRONISMS) iterator insert(iterator __pos, const value_type& __x = _STLP_DEFAULT_CONSTRUCTED(_Tp)) { #else iterator insert(iterator __pos, const value_type& __x) { #endif /*!_STLP_DONT_SUP_DFLT_PARAM && !_STLP_NO_ANACHRONISMS*/ #if !defined (_STLP_NO_MOVE_SEMANTIC) typedef typename __move_traits<_Tp>::implemented _Movable; #endif if (__pos._M_cur == this->_M_start._M_cur) { push_front(__x); return this->_M_start; } else if (__pos._M_cur == this->_M_finish._M_cur) { push_back(__x); iterator __tmp = this->_M_finish; --__tmp; return __tmp; } else { return _M_fill_insert_aux(__pos, 1, __x, _Movable()); } } #if defined(_STLP_DONT_SUP_DFLT_PARAM) && !defined(_STLP_NO_ANACHRONISMS) iterator insert(iterator __pos) { return insert(__pos, _STLP_DEFAULT_CONSTRUCTED(_Tp)); } #endif /*_STLP_DONT_SUP_DFLT_PARAM && !_STLP_NO_ANACHRONISMS*/ void insert(iterator __pos, size_type __n, const value_type& __x) { _M_fill_insert(__pos, __n, __x); } protected: iterator _M_fill_insert_aux(iterator __pos, size_type __n, const value_type& __x, const __true_type& /*_Movable*/); iterator _M_fill_insert_aux(iterator __pos, size_type __n, const value_type& __x, const __false_type& /*_Movable*/); void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); #if defined (_STLP_MEMBER_TEMPLATES) template void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, const __true_type& /*_IsIntegral*/) { _M_fill_insert(__pos, (size_type) __n, (value_type) __x); } template void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, const __false_type& /*_IsIntegral*/) { _M_insert(__pos, __first, __last, _STLP_ITERATOR_CATEGORY(__first, _InputIterator)); } public: // Check whether it's an integral type. If so, it's not an iterator. template void insert(iterator __pos, _InputIterator __first, _InputIterator __last) { typedef typename _IsIntegral<_InputIterator>::_Ret _Integral; _M_insert_dispatch(__pos, __first, __last, _Integral()); } #else /* _STLP_MEMBER_TEMPLATES */ void _M_insert_range_aux(iterator __pos, const value_type* __first, const value_type* __last, size_type __n, const __true_type& /*_Movable*/); void _M_insert_range_aux(iterator __pos, const value_type* __first, const value_type* __last, size_type __n, const __false_type& /*_Movable*/); void _M_insert_range_aux(iterator __pos, const_iterator __first, const_iterator __last, size_type __n, const __true_type& /*_Movable*/); void _M_insert_range_aux(iterator __pos, const_iterator __first, const_iterator __last, size_type __n, const __false_type& /*_Movable*/); public: void insert(iterator __pos, const value_type* __first, const value_type* __last); void insert(iterator __pos, const_iterator __first, const_iterator __last); #endif /* _STLP_MEMBER_TEMPLATES */ public: #if !defined(_STLP_DONT_SUP_DFLT_PARAM) void resize(size_type __new_size, const value_type& __x = _STLP_DEFAULT_CONSTRUCTED(_Tp)) { #else void resize(size_type __new_size, const value_type& __x) { #endif /*_STLP_DONT_SUP_DFLT_PARAM*/ const size_type __len = size(); if (__new_size < __len) erase(this->_M_start + __new_size, this->_M_finish); else insert(this->_M_finish, __new_size - __len, __x); } #if defined (_STLP_DONT_SUP_DFLT_PARAM) void resize(size_type __new_size) { resize(__new_size, _STLP_DEFAULT_CONSTRUCTED(_Tp)); } #endif /*_STLP_DONT_SUP_DFLT_PARAM*/ protected: iterator _M_erase(iterator __pos, const __true_type& /*_Movable*/); iterator _M_erase(iterator __pos, const __false_type& /*_Movable*/); iterator _M_erase(iterator __first, iterator __last, const __true_type& /*_Movable*/); iterator _M_erase(iterator __first, iterator __last, const __false_type& /*_Movable*/); public: // Erase iterator erase(iterator __pos) { #if !defined (_STLP_NO_MOVE_SEMANTIC) typedef typename __move_traits<_Tp>::implemented _Movable; #endif return _M_erase(__pos, _Movable()); } iterator erase(iterator __first, iterator __last) { #if !defined (_STLP_NO_MOVE_SEMANTIC) typedef typename __move_traits<_Tp>::implemented _Movable; #endif if (__first == this->_M_start && __last == this->_M_finish) { clear(); return this->_M_finish; } else { if (__first == __last) return __first; return _M_erase(__first, __last, _Movable()); } } void clear(); protected: // Internal construction/destruction void _M_fill_initialize(const value_type& __val, const __true_type& /*_TrivialInit*/) {} void _M_fill_initialize(const value_type& __val, const __false_type& /*_TrivialInit*/); #if defined (_STLP_MEMBER_TEMPLATES) template void _M_range_initialize(_InputIterator __first, _InputIterator __last, const input_iterator_tag &) { this->_M_initialize_map(0); _STLP_TRY { for ( ; __first != __last; ++__first) push_back(*__first); } _STLP_UNWIND(clear()) } template void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, const forward_iterator_tag &) { size_type __n = _STLP_STD::distance(__first, __last); this->_M_initialize_map(__n); _Map_pointer __cur_node = this->_M_start._M_node; _STLP_TRY { for (; __cur_node < this->_M_finish._M_node; ++__cur_node) { _ForwardIterator __mid = __first; _STLP_STD::advance(__mid, this->buffer_size()); _STLP_STD::uninitialized_copy(__first, __mid, *__cur_node); __first = __mid; } _STLP_STD::uninitialized_copy(__first, __last, this->_M_finish._M_first); } _STLP_UNWIND(_STLP_STD::_Destroy_Range(this->_M_start, iterator(*__cur_node, __cur_node))) } #endif /* _STLP_MEMBER_TEMPLATES */ protected: // Internal push_* and pop_* void _M_push_back_aux_v(const value_type&); void _M_push_front_aux_v(const value_type&); #if defined (_STLP_DONT_SUP_DFLT_PARAM) && !defined (_STLP_NO_ANACHRONISMS) void _M_push_back_aux(); void _M_push_front_aux(); #endif /*_STLP_DONT_SUP_DFLT_PARAM !_STLP_NO_ANACHRONISMS*/ void _M_pop_back_aux(); void _M_pop_front_aux(); protected: // Internal insert functions #if defined (_STLP_MEMBER_TEMPLATES) template void _M_insert(iterator __pos, _InputIterator __first, _InputIterator __last, const input_iterator_tag &) { _STLP_STD::copy(__first, __last, inserter(*this, __pos)); } template void _M_insert(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, const forward_iterator_tag &) { #if !defined (_STLP_NO_MOVE_SEMANTIC) typedef typename __move_traits<_Tp>::implemented _Movable; #endif size_type __n = _STLP_STD::distance(__first, __last); if (__pos._M_cur == this->_M_start._M_cur) { iterator __new_start = _M_reserve_elements_at_front(__n); _STLP_TRY { uninitialized_copy(__first, __last, __new_start); this->_M_start = __new_start; } _STLP_UNWIND(this->_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node)) } else if (__pos._M_cur == this->_M_finish._M_cur) { iterator __new_finish = _M_reserve_elements_at_back(__n); _STLP_TRY { uninitialized_copy(__first, __last, this->_M_finish); this->_M_finish = __new_finish; } _STLP_UNWIND(this->_M_destroy_nodes(this->_M_finish._M_node + 1, __new_finish._M_node + 1)) } else _M_insert_range_aux(__pos, __first, __last, __n, _Movable()); } template void _M_insert_range_aux(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, size_type __n, const __true_type& /*_Movable*/) { const difference_type __elemsbefore = __pos - this->_M_start; size_type __length = size(); if (__elemsbefore <= difference_type(__length / 2)) { iterator __new_start = _M_reserve_elements_at_front(__n); __pos = this->_M_start + __elemsbefore; _STLP_TRY { iterator __dst = __new_start; iterator __src = this->_M_start; for (; __src != __pos; ++__dst, ++__src) { _STLP_STD::_Move_Construct(&(*__dst), *__src); _STLP_STD::_Destroy_Moved(&(*__src)); } this->_M_start = __new_start; uninitialized_copy(__first, __last, __dst); } _STLP_UNWIND(this->_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node)) } else { iterator __new_finish = _M_reserve_elements_at_back(__n); const difference_type __elemsafter = difference_type(__length) - __elemsbefore; __pos = this->_M_finish - __elemsafter; _STLP_TRY { iterator __dst = __new_finish; iterator __src = this->_M_finish; for (--__src, --__dst; __src >= __pos; --__src, --__dst) { _STLP_STD::_Move_Construct(&(*__dst), *__src); _STLP_STD::_Destroy_Moved(&(*__src)); } this->_M_finish = __new_finish; uninitialized_copy(__first, __last, __pos); } _STLP_UNWIND(this->_M_destroy_nodes(this->_M_finish._M_node + 1, __new_finish._M_node + 1)) } } template void _M_insert_range_aux(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, size_type __n, const __false_type& /*_Movable*/) { const difference_type __elemsbefore = __pos - this->_M_start; size_type __length = size(); if (__elemsbefore <= difference_type(__length / 2)) { iterator __new_start = _M_reserve_elements_at_front(__n); iterator __old_start = this->_M_start; __pos = this->_M_start + __elemsbefore; _STLP_TRY { if (__elemsbefore >= difference_type(__n)) { iterator __start_n = this->_M_start + difference_type(__n); _STLP_STD::uninitialized_copy(this->_M_start, __start_n, __new_start); this->_M_start = __new_start; _STLP_STD::copy(__start_n, __pos, __old_start); _STLP_STD::copy(__first, __last, __pos - difference_type(__n)); } else { _ForwardIterator __mid = __first; _STLP_STD::advance(__mid, difference_type(__n) - __elemsbefore); _STLP_PRIV __uninitialized_copy_copy(this->_M_start, __pos, __first, __mid, __new_start); this->_M_start = __new_start; _STLP_STD::copy(__mid, __last, __old_start); } } _STLP_UNWIND(this->_M_destroy_nodes(__new_start._M_node, this->_M_start._M_node)) } else { iterator __new_finish = _M_reserve_elements_at_back(__n); iterator __old_finish = this->_M_finish; const difference_type __elemsafter = difference_type(__length) - __elemsbefore; __pos = this->_M_finish - __elemsafter; _STLP_TRY { if (__elemsafter > difference_type(__n)) { iterator __finish_n = this->_M_finish - difference_type(__n); _STLP_STD::uninitialized_copy(__finish_n, this->_M_finish, this->_M_finish); this->_M_finish = __new_finish; _STLP_STD::copy_backward(__pos, __finish_n, __old_finish); _STLP_STD::copy(__first, __last, __pos); } else { _ForwardIterator __mid = __first; _STLP_STD::advance(__mid, __elemsafter); _STLP_PRIV __uninitialized_copy_copy(__mid, __last, __pos, this->_M_finish, this->_M_finish); this->_M_finish = __new_finish; _STLP_STD::copy(__first, __mid, __pos); } } _STLP_UNWIND(this->_M_destroy_nodes(this->_M_finish._M_node + 1, __new_finish._M_node + 1)) } } #endif /* _STLP_MEMBER_TEMPLATES */ iterator _M_reserve_elements_at_front(size_type __n) { size_type __vacancies = this->_M_start._M_cur - this->_M_start._M_first; if (__n > __vacancies) _M_new_elements_at_front(__n - __vacancies); return this->_M_start - difference_type(__n); } iterator _M_reserve_elements_at_back(size_type __n) { size_type __vacancies = (this->_M_finish._M_last - this->_M_finish._M_cur) - 1; if (__n > __vacancies) _M_new_elements_at_back(__n - __vacancies); return this->_M_finish + difference_type(__n); } void _M_new_elements_at_front(size_type __new_elements); void _M_new_elements_at_back(size_type __new_elements); protected: // Allocation of _M_map and nodes // Makes sure the _M_map has space for new nodes. Does not actually // add the nodes. Can invalidate _M_map pointers. (And consequently, // deque iterators.) void _M_reserve_map_at_back (size_type __nodes_to_add = 1) { if (__nodes_to_add + 1 > this->_M_map_size._M_data - (this->_M_finish._M_node - this->_M_map._M_data)) _M_reallocate_map(__nodes_to_add, false); } void _M_reserve_map_at_front (size_type __nodes_to_add = 1) { if (__nodes_to_add > size_type(this->_M_start._M_node - this->_M_map._M_data)) _M_reallocate_map(__nodes_to_add, true); } void _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); }; #if defined (deque) # undef deque _STLP_MOVE_TO_STD_NAMESPACE #endif _STLP_END_NAMESPACE #if !defined (_STLP_LINK_TIME_INSTANTIATION) # include #endif #if defined (_STLP_USE_PTR_SPECIALIZATIONS) # include #endif #if defined (_STLP_DEBUG) # include #endif _STLP_BEGIN_NAMESPACE #define _STLP_TEMPLATE_CONTAINER deque<_Tp, _Alloc> #define _STLP_TEMPLATE_HEADER template #include #undef _STLP_TEMPLATE_CONTAINER #undef _STLP_TEMPLATE_HEADER #if defined (_STLP_CLASS_PARTIAL_SPECIALIZATION) && !defined (_STLP_NO_MOVE_SEMANTIC) template struct __move_traits > { typedef __true_type implemented; typedef typename __move_traits<_Alloc>::complete complete; }; #endif _STLP_END_NAMESPACE #endif /* _STLP_INTERNAL_DEQUE_H */ // Local Variables: // mode:C++ // End: