/* * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Copyright (c) 1999 * Boris Fomitchev * * This material is provided "as is", with absolutely no warranty expressed * or implied. Any use is at your own risk. * * Permission to use or copy this software for any purpose is hereby granted * without fee, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ // Set buf_start, buf_end, and buf_ptr appropriately, filling tmp_buf // if necessary. Assumes path_end[leaf_index] and leaf_pos are correct. // Results in a valid buf_ptr if the iterator can be legitimately // dereferenced. #ifndef _STLP_ROPEIMPL_H #define _STLP_ROPEIMPL_H #ifndef _STLP_INTERNAL_ROPE_H # include #endif #ifndef _STLP_INTERNAL_CSTDIO # include #endif #if !defined (_STLP_USE_NO_IOSTREAMS) # ifndef _STLP_INTERNAL_OSTREAM_H # include # endif # ifndef _STLP_INTERNAL_ISTREAM # include # endif #endif #include _STLP_BEGIN_NAMESPACE #if defined ( _STLP_NESTED_TYPE_PARAM_BUG ) # define __allocator__ _Alloc #else # define __allocator__ allocator_type #endif template _Rope_iterator<_CharT, _Alloc>::_Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos) : _Rope_iterator_base<_CharT,_Alloc>(__r->_M_tree_ptr._M_data, __pos), _M_root_rope(__r) { _RopeRep::_S_ref(this->_M_root); } template _Rope_iterator<_CharT, _Alloc>::_Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos): _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr._M_data, __pos), _M_root_rope(&__r) { #if !defined (__DMC__) _RopeRep::_S_ref(this->_M_root); if (!(__r.empty()))_S_setcache(*this); #else _Rope_iterator_base<_CharT, _Alloc>* __x = this; _RopeRep::_S_ref(this->_M_root); if (!(__r.empty()))_S_setcache(*__x); #endif } template void _Rope_RopeRep<_CharT, _Alloc>::_M_free_c_string() { _CharT* __cstr = _M_c_string; if (0 != __cstr) { size_t _p_size = _M_size._M_data + 1; _STLP_STD::_Destroy_Range(__cstr, __cstr + _p_size); _M_size.deallocate(__cstr, _p_size); } } // Set buf_start, buf_end, and buf_ptr appropriately, filling tmp_buf // if necessary. Assumes _M_path_end[leaf_index] and leaf_pos are correct. // Results in a valid buf_ptr if the iterator can be legitimately // dereferenced. template void _Rope_iterator_base<_CharT,_Alloc>::_S_setbuf( _Rope_iterator_base<_CharT,_Alloc>& __x) { const _RopeRep* __leaf = __x._M_path_end._M_data[__x._M_leaf_index]; size_t __leaf_pos = __x._M_leaf_pos; size_t __pos = __x._M_current_pos; switch(__leaf->_M_tag) { case _RopeRep::_S_leaf: typedef _Rope_RopeLeaf<_CharT, _Alloc> _RopeLeaf; __x._M_buf_start = __STATIC_CAST(const _RopeLeaf*, __leaf)->_M_data; __x._M_buf_ptr = __x._M_buf_start + (__pos - __leaf_pos); __x._M_buf_end = __x._M_buf_start + __leaf->_M_size._M_data; break; case _RopeRep::_S_function: case _RopeRep::_S_substringfn: { size_t __len = _S_iterator_buf_len; size_t __buf_start_pos = __leaf_pos; size_t __leaf_end = __leaf_pos + __leaf->_M_size._M_data; typedef _Rope_RopeFunction<_CharT, _Alloc> _RopeFunction; char_producer<_CharT>* __fn = __STATIC_CAST(const _RopeFunction*, __leaf)->_M_fn; if (__buf_start_pos + __len <= __pos) { __buf_start_pos = __pos - __len/4; if (__buf_start_pos + __len > __leaf_end) { __buf_start_pos = __leaf_end - __len; } } if (__buf_start_pos + __len > __leaf_end) { __len = __leaf_end - __buf_start_pos; } (*__fn)(__buf_start_pos - __leaf_pos, __len, __x._M_tmp_buf._M_data); __x._M_buf_ptr = __x._M_tmp_buf._M_data + (__pos - __buf_start_pos); __x._M_buf_start = __x._M_tmp_buf._M_data; __x._M_buf_end = __x._M_tmp_buf._M_data + __len; } break; default: _STLP_ASSERT(0) ; } } // Set path and buffer inside a rope iterator. We assume that // pos and root are already set. template void _Rope_iterator_base<_CharT,_Alloc>::_S_setcache( _Rope_iterator_base<_CharT,_Alloc>& __x) { const _RopeRep* __path[_RopeRep::_S_max_rope_depth+1]; const _RopeRep* __curr_rope; int __curr_depth = -1; /* index into path */ size_t __curr_start_pos = 0; size_t __pos = __x._M_current_pos; unsigned char __dirns = 0; // Bit vector marking right turns in the path _STLP_ASSERT(__pos <= __x._M_root->_M_size._M_data) if (__pos >= __x._M_root->_M_size._M_data) { __x._M_buf_ptr = 0; return; } __curr_rope = __x._M_root; if (0 != __curr_rope->_M_c_string) { /* Treat the root as a leaf. */ __x._M_buf_start = __curr_rope->_M_c_string; __x._M_buf_end = __curr_rope->_M_c_string + __curr_rope->_M_size._M_data; __x._M_buf_ptr = __curr_rope->_M_c_string + __pos; __x._M_path_end._M_data[0] = __curr_rope; __x._M_leaf_index = 0; __x._M_leaf_pos = 0; return; } for(;;) { ++__curr_depth; _STLP_ASSERT(__curr_depth <= _RopeRep::_S_max_rope_depth) __path[__curr_depth] = __curr_rope; switch(__curr_rope->_M_tag) { case _RopeRep::_S_leaf: case _RopeRep::_S_function: case _RopeRep::_S_substringfn: __x._M_leaf_pos = __curr_start_pos; goto done; case _RopeRep::_S_concat: { const _RopeConcat* __c = __STATIC_CAST(const _RopeConcat*, __curr_rope); _RopeRep* __left = __c->_M_left; size_t __left_len = __left->_M_size._M_data; __dirns <<= 1; if (__pos >= __curr_start_pos + __left_len) { __dirns |= 1; __curr_rope = __c->_M_right; __curr_start_pos += __left_len; } else { __curr_rope = __left; } } break; } } done: // Copy last section of path into _M_path_end. { int __i = -1; int __j = __curr_depth + 1 - _S_path_cache_len; if (__j < 0) __j = 0; while (__j <= __curr_depth) { __x._M_path_end._M_data[++__i] = __path[__j++]; } __x._M_leaf_index = __i; } __x._M_path_directions = __dirns; _S_setbuf(__x); } // Specialized version of the above. Assumes that // the path cache is valid for the previous position. template void _Rope_iterator_base<_CharT,_Alloc>::_S_setcache_for_incr( _Rope_iterator_base<_CharT,_Alloc>& __x) { int __current_index = __x._M_leaf_index; const _RopeRep* __current_node = __x._M_path_end._M_data[__current_index]; size_t __len = __current_node->_M_size._M_data; size_t __node_start_pos = __x._M_leaf_pos; unsigned char __dirns = __x._M_path_directions; const _RopeConcat* __c; _STLP_ASSERT(__x._M_current_pos <= __x._M_root->_M_size._M_data) if (__x._M_current_pos - __node_start_pos < __len) { /* More stuff in this leaf, we just didn't cache it. */ _S_setbuf(__x); return; } _STLP_ASSERT(__node_start_pos + __len == __x._M_current_pos) // node_start_pos is starting position of last_node. while (--__current_index >= 0) { if (!(__dirns & 1) /* Path turned left */) break; __current_node = __x._M_path_end._M_data[__current_index]; __c = __STATIC_CAST(const _RopeConcat*, __current_node); // Otherwise we were in the right child. Thus we should pop // the concatenation node. __node_start_pos -= __c->_M_left->_M_size._M_data; __dirns >>= 1; } if (__current_index < 0) { // We underflowed the cache. Punt. _S_setcache(__x); return; } __current_node = __x._M_path_end._M_data[__current_index]; __c = __STATIC_CAST(const _RopeConcat*, __current_node); // current_node is a concatenation node. We are positioned on the first // character in its right child. // node_start_pos is starting position of current_node. __node_start_pos += __c->_M_left->_M_size._M_data; __current_node = __c->_M_right; __x._M_path_end._M_data[++__current_index] = __current_node; __dirns |= 1; while (_RopeRep::_S_concat == __current_node->_M_tag) { ++__current_index; if (_S_path_cache_len == __current_index) { int __i; for (__i = 0; __i < _S_path_cache_len-1; ++__i) { __x._M_path_end._M_data[__i] = __x._M_path_end._M_data[__i+1]; } --__current_index; } __current_node = __STATIC_CAST(const _RopeConcat*, __current_node)->_M_left; __x._M_path_end._M_data[__current_index] = __current_node; __dirns <<= 1; // node_start_pos is unchanged. } __x._M_leaf_index = __current_index; __x._M_leaf_pos = __node_start_pos; __x._M_path_directions = __dirns; _S_setbuf(__x); } template void _Rope_iterator_base<_CharT,_Alloc>::_M_incr(size_t __n) { _M_current_pos += __n; if (0 != _M_buf_ptr) { size_t __chars_left = _M_buf_end - _M_buf_ptr; if (__chars_left > __n) { _M_buf_ptr += __n; } else if (__chars_left == __n) { _M_buf_ptr += __n; _S_setcache_for_incr(*this); } else { _M_buf_ptr = 0; } } } template void _Rope_iterator_base<_CharT,_Alloc>::_M_decr(size_t __n) { if (0 != _M_buf_ptr) { size_t __chars_left = _M_buf_ptr - _M_buf_start; if (__chars_left >= __n) { _M_buf_ptr -= __n; } else { _M_buf_ptr = 0; } } _M_current_pos -= __n; } template void _Rope_iterator<_CharT,_Alloc>::_M_check() { if (_M_root_rope->_M_tree_ptr._M_data != this->_M_root) { // _Rope was modified. Get things fixed up. _RopeRep::_S_unref(this->_M_root); this->_M_root = _M_root_rope->_M_tree_ptr._M_data; _RopeRep::_S_ref(this->_M_root); this->_M_buf_ptr = 0; } } // There are several reasons for not doing this with virtual destructors // and a class specific delete operator: // - A class specific delete operator can't easily get access to // allocator instances if we need them. // - Any virtual function would need a 4 or byte vtable pointer; // this only requires a one byte tag per object. template void _Rope_RopeRep<_CharT,_Alloc>::_M_free_tree() { switch (_M_tag) { case _S_leaf: { typedef _Rope_RopeLeaf<_CharT, _Alloc> _RopeLeaf; _RopeLeaf* __l = __STATIC_CAST(_RopeLeaf*, this); _STLP_STD::_Destroy(__l); // ->_Rope_RopeLeaf<_CharT,_Alloc>::~_Rope_RopeLeaf(); _STLP_CREATE_ALLOCATOR(allocator_type,(const allocator_type&)_M_size, _RopeLeaf).deallocate(__l, 1); break; } case _S_concat: { typedef _Rope_RopeConcatenation<_CharT, _Alloc> _RopeConcatenation; _RopeConcatenation* __c = __STATIC_CAST(_RopeConcatenation*, this); _STLP_STD::_Destroy(__c); _STLP_CREATE_ALLOCATOR(allocator_type,(const allocator_type&)_M_size, _RopeConcatenation).deallocate(__c, 1); break; } case _S_function: { typedef _Rope_RopeFunction<_CharT, _Alloc> _RopeFunction; _RopeFunction* __f = __STATIC_CAST(_RopeFunction*, this); _STLP_STD::_Destroy(__f); _STLP_CREATE_ALLOCATOR(allocator_type, (const allocator_type&)_M_size, _RopeFunction).deallocate(__f, 1); break; } case _S_substringfn: { typedef _Rope_RopeSubstring<_CharT, _Alloc> _RopeSubstring; _RopeSubstring* __rss = __STATIC_CAST(_RopeSubstring*, this); _STLP_STD::_Destroy(__rss); _STLP_CREATE_ALLOCATOR(allocator_type, (const allocator_type&)_M_size, _RopeSubstring).deallocate(__rss, 1); break; } } } # if defined ( _STLP_NESTED_TYPE_PARAM_BUG ) # define __RopeLeaf__ _Rope_RopeLeaf<_CharT,_Alloc> # define __RopeRep__ _Rope_RopeRep<_CharT,_Alloc> # define _RopeLeaf _Rope_RopeLeaf<_CharT,_Alloc> # define _RopeRep _Rope_RopeRep<_CharT,_Alloc> # define size_type size_t # else # define __RopeLeaf__ _STLP_TYPENAME_ON_RETURN_TYPE rope<_CharT,_Alloc>::_RopeLeaf # define __RopeRep__ _STLP_TYPENAME_ON_RETURN_TYPE rope<_CharT,_Alloc>::_RopeRep # endif template void rope<_CharT, _Alloc>::_M_throw_out_of_range() const { __stl_throw_out_of_range("rope"); } // Concatenate a C string onto a leaf rope by copying the rope data. // Used for short ropes. template __RopeLeaf__* rope<_CharT,_Alloc>::_S_leaf_concat_char_iter ( _RopeLeaf* __r, const _CharT* __iter, size_t __len) { size_t __old_len = __r->_M_size._M_data; _CharT* __new_data = __r->_M_size.allocate(_S_rounded_up_size(__old_len + __len)); _RopeLeaf* __result; _STLP_PRIV __ucopy_n(__r->_M_data, __old_len, __new_data); _STLP_PRIV __ucopy_n(__iter, __len, __new_data + __old_len); _S_construct_null(__new_data + __old_len + __len); _STLP_TRY { __result = _S_new_RopeLeaf(__new_data, __old_len + __len, __r->get_allocator()); } _STLP_UNWIND(_RopeRep::_S_free_string(__new_data, __old_len + __len, __r->get_allocator())) return __result; } template void _Terminate_RopeLeaf(_Rope_RopeLeaf<_CharT,_Alloc> *__r, size_t __size, const __true_type& /*basic char type*/) { _S_construct_null(__r->_M_data + __size); _STLP_ASSERT(__r->_M_c_string == __r->_M_data) } template void _Terminate_RopeLeaf(_Rope_RopeLeaf<_CharT,_Alloc> *__r, size_t, const __false_type& /*basic char type*/) { if (__r->_M_c_string != __r->_M_data && 0 != __r->_M_c_string) { __r->_M_free_c_string(); __r->_M_c_string = 0; } } // As above, but it's OK to clobber original if refcount is 1 template __RopeLeaf__* rope<_CharT,_Alloc>::_S_destr_leaf_concat_char_iter (_RopeLeaf* __r, const _CharT* __iter, size_t __len) { //_STLP_ASSERT(__r->_M_ref_count >= 1) if ( /* __r->_M_ref_count > 1 */ __r->_M_incr() > 2 ) { // - ptr __r->_M_decr(); // - ptr return _S_leaf_concat_char_iter(__r, __iter, __len); } __r->_M_decr(); // - ptr, __r->_M_ref_count == 1 or 0 size_t __old_len = __r->_M_size._M_data; if (_S_rounded_up_size(__old_len) == _S_rounded_up_size(__old_len + __len)) { // The space has been partially initialized for the standard // character types. But that doesn't matter for those types. _STLP_PRIV __ucopy_n(__iter, __len, __r->_M_data + __old_len); _Terminate_RopeLeaf(__r, __old_len + __len, _IsBasicCharType()); __r->_M_size._M_data = __old_len + __len; // _STLP_ASSERT(__r->_M_ref_count == 1) // __r->_M_ref_count = 2; __r->_M_incr(); // i.e. __r->_M_ref_count = 2 return __r; } else { _RopeLeaf* __result = _S_leaf_concat_char_iter(__r, __iter, __len); //_STLP_ASSERT(__result->_M_ref_count == 1) return __result; } } // Assumes left and right are not 0. // Does not increment (nor decrement on exception) child reference counts. // Result has ref count 1. template __RopeRep__* rope<_CharT,_Alloc>::_S_tree_concat (_RopeRep* __left, _RopeRep* __right) { _RopeConcatenation* __result = _S_new_RopeConcatenation(__left, __right, __left->get_allocator()); size_t __depth = __result->_M_depth; _STLP_ASSERT(__left->get_allocator() == __right->get_allocator()) if (__depth > 20 && (__result->_M_size._M_data < 1000 || __depth > _RopeRep::_S_max_rope_depth)) { _RopeRep* __balanced; _STLP_TRY { __balanced = _S_balance(__result); // _STLP_ASSERT(__result == __balanced || // 1 == __result->_M_ref_count && // 1 == __balanced->_M_ref_count) __result->_M_unref_nonnil(); } _STLP_UNWIND((_STLP_CREATE_ALLOCATOR(allocator_type,(allocator_type&)__left->_M_size, _RopeConcatenation).deallocate(__result,1))) // In case of exception, we need to deallocate // otherwise dangling result node. But caller // still owns its children. Thus unref is // inappropriate. return __balanced; } else { return __result; } } template __RopeRep__* rope<_CharT,_Alloc>::_S_concat_char_iter (_RopeRep* __r, const _CharT*__s, size_t __slen) { _RopeRep* __result; if (0 == __slen) { _S_ref(__r); return __r; } if (0 == __r) return _S_RopeLeaf_from_unowned_char_ptr(__s, __slen, __r->get_allocator()); if (_RopeRep::_S_leaf == __r->_M_tag && __r->_M_size._M_data + __slen <= _S_copy_max) { __result = _S_leaf_concat_char_iter((_RopeLeaf*)__r, __s, __slen); // _STLP_ASSERT(1 == __result->_M_ref_count) return __result; } if (_RopeRep::_S_concat == __r->_M_tag && _RopeRep::_S_leaf == ((_RopeConcatenation*)__r)->_M_right->_M_tag) { _RopeLeaf* __right = (_RopeLeaf* )(((_RopeConcatenation* )__r)->_M_right); if (__right->_M_size._M_data + __slen <= _S_copy_max) { _RopeRep* __left = ((_RopeConcatenation*)__r)->_M_left; _RopeRep* __nright = _S_leaf_concat_char_iter((_RopeLeaf*)__right, __s, __slen); __left->_M_ref_nonnil(); _STLP_TRY { __result = _S_tree_concat(__left, __nright); } _STLP_UNWIND(_S_unref(__left); _S_unref(__nright)) // _STLP_ASSERT(1 == __result->_M_ref_count) return __result; } } _RopeRep* __nright = _S_RopeLeaf_from_unowned_char_ptr(__s, __slen, __r->get_allocator()); _STLP_TRY { __r->_M_ref_nonnil(); __result = _S_tree_concat(__r, __nright); } _STLP_UNWIND(_S_unref(__r); _S_unref(__nright)) // _STLP_ASSERT(1 == __result->_M_ref_count) return __result; } template __RopeRep__* rope<_CharT,_Alloc>::_S_destr_concat_char_iter( _RopeRep* __r, const _CharT* __s, size_t __slen) { _RopeRep* __result; if (0 == __r) return _S_RopeLeaf_from_unowned_char_ptr(__s, __slen, __r->get_allocator()); // size_t __count = __r->_M_ref_count; size_t __orig_size = __r->_M_size._M_data; // _STLP_ASSERT(__count >= 1) if ( /* __count > 1 */ __r->_M_incr() > 2 ) { __r->_M_decr(); return _S_concat_char_iter(__r, __s, __slen); } if (0 == __slen) { return __r; } __r->_M_decr(); if (__orig_size + __slen <= _S_copy_max && _RopeRep::_S_leaf == __r->_M_tag) { return _S_destr_leaf_concat_char_iter((_RopeLeaf*)__r, __s, __slen); } if (_RopeRep::_S_concat == __r->_M_tag) { _RopeLeaf* __right = __STATIC_CAST(_RopeLeaf*, __STATIC_CAST(_RopeConcatenation*, __r)->_M_right); if (_RopeRep::_S_leaf == __right->_M_tag && __right->_M_size._M_data + __slen <= _S_copy_max) { _RopeRep* __new_right = _S_destr_leaf_concat_char_iter(__right, __s, __slen); if (__right == __new_right) { // _STLP_ASSERT(__new_right->_M_ref_count == 2) // __new_right->_M_ref_count = 1; __new_right->_M_decr(); } else { // _STLP_ASSERT(__new_right->_M_ref_count >= 1) __right->_M_unref_nonnil(); } // _STLP_ASSERT(__r->_M_ref_count == 1) // __r->_M_ref_count = 2; // One more than before. __r->_M_incr(); __STATIC_CAST(_RopeConcatenation*, __r)->_M_right = __new_right; // E.Musser : moved below // __r->_M_size._M_data = __orig_size + __slen; if (0 != __r->_M_c_string) { __r->_M_free_c_string(); __r->_M_c_string = 0; } __r->_M_size._M_data = __orig_size + __slen; return __r; } } _RopeRep* __right = _S_RopeLeaf_from_unowned_char_ptr(__s, __slen, __r->get_allocator()); __r->_M_ref_nonnil(); _STLP_TRY { __result = _S_tree_concat(__r, __right); } _STLP_UNWIND(_S_unref(__r); _S_unref(__right)) // _STLP_ASSERT(1 == __result->_M_ref_count) return __result; } template __RopeRep__* rope<_CharT,_Alloc>::_S_concat_rep(_RopeRep* __left, _RopeRep* __right) { if (0 == __left) { _S_ref(__right); return __right; } if (0 == __right) { __left->_M_ref_nonnil(); return __left; } if (_RopeRep::_S_leaf == __right->_M_tag) { if (_RopeRep::_S_leaf == __left->_M_tag) { if (__right->_M_size._M_data + __left->_M_size._M_data <= _S_copy_max) { return _S_leaf_concat_char_iter(__STATIC_CAST(_RopeLeaf*, __left), __STATIC_CAST(_RopeLeaf*, __right)->_M_data, __right->_M_size._M_data); } } else if (_RopeRep::_S_concat == __left->_M_tag && _RopeRep::_S_leaf == __STATIC_CAST(_RopeConcatenation*, __left)->_M_right->_M_tag) { _RopeLeaf* __leftright = __STATIC_CAST(_RopeLeaf*, __STATIC_CAST(_RopeConcatenation*, __left)->_M_right); if (__leftright->_M_size._M_data + __right->_M_size._M_data <= _S_copy_max) { _RopeRep* __leftleft = __STATIC_CAST(_RopeConcatenation*, __left)->_M_left; _RopeRep* __rest = _S_leaf_concat_char_iter(__leftright, __STATIC_CAST(_RopeLeaf*, __right)->_M_data, __right->_M_size._M_data); __leftleft->_M_ref_nonnil(); _STLP_TRY { return _S_tree_concat(__leftleft, __rest); } _STLP_UNWIND(_S_unref(__leftleft); _S_unref(__rest)) } } } __left->_M_ref_nonnil(); __right->_M_ref_nonnil(); _STLP_TRY { return _S_tree_concat(__left, __right); } _STLP_UNWIND(_S_unref(__left); _S_unref(__right)) _STLP_RET_AFTER_THROW(0) } template __RopeRep__* rope<_CharT,_Alloc>::_S_substring(_RopeRep* __base, size_t __start, size_t __endp1) { if (0 == __base) return 0; size_t __len = __base->_M_size._M_data; size_t __adj_endp1; const size_t __lazy_threshold = 128; if (__endp1 >= __len) { if (0 == __start) { __base->_M_ref_nonnil(); return __base; } else { __adj_endp1 = __len; } } else { __adj_endp1 = __endp1; } switch(__base->_M_tag) { case _RopeRep::_S_concat: { _RopeConcatenation* __c = __STATIC_CAST(_RopeConcatenation*, __base); _RopeRep* __left = __c->_M_left; _RopeRep* __right = __c->_M_right; size_t __left_len = __left->_M_size._M_data; _RopeRep* __result; if (__adj_endp1 <= __left_len) { return _S_substring(__left, __start, __endp1); } else if (__start >= __left_len) { return _S_substring(__right, __start - __left_len, __adj_endp1 - __left_len); } _Self_destruct_ptr __left_result(_S_substring(__left, __start, __left_len)); _Self_destruct_ptr __right_result(_S_substring(__right, 0, __endp1 - __left_len)); _STLP_MPWFIX_TRY //*TY 06/01/2000 - mpw forgets to call dtor on __left_result and __right_result without this try block __result = _S_concat_rep(__left_result, __right_result); // _STLP_ASSERT(1 == __result->_M_ref_count) return __result; _STLP_MPWFIX_CATCH //*TY 06/01/2000 - } case _RopeRep::_S_leaf: { _RopeLeaf* __l = __STATIC_CAST(_RopeLeaf*, __base); _RopeLeaf* __result; size_t __result_len; if (__start >= __adj_endp1) return 0; __result_len = __adj_endp1 - __start; if (__result_len > __lazy_threshold) goto lazy; const _CharT* __section = __l->_M_data + __start; // We should sometimes create substring node instead. __result = _S_RopeLeaf_from_unowned_char_ptr(__section, __result_len, __base->get_allocator()); return __result; } case _RopeRep::_S_substringfn: // Avoid introducing multiple layers of substring nodes. { _RopeSubstring* __old = __STATIC_CAST(_RopeSubstring*, __base); size_t __result_len; if (__start >= __adj_endp1) return 0; __result_len = __adj_endp1 - __start; if (__result_len > __lazy_threshold) { _RopeSubstring* __result = _S_new_RopeSubstring(__old->_M_base, __start + __old->_M_start, __adj_endp1 - __start, __base->get_allocator()); return __result; } // *** else fall through: *** } case _RopeRep::_S_function: { _RopeFunction* __f = __STATIC_CAST(_RopeFunction*, __base); if (__start >= __adj_endp1) return 0; size_t __result_len = __adj_endp1 - __start; if (__result_len > __lazy_threshold) goto lazy; _CharT* __section = __base->_M_size.allocate(_S_rounded_up_size(__result_len)); _STLP_TRY { (*(__f->_M_fn))(__start, __result_len, __section); } _STLP_UNWIND(_RopeRep::_S_free_string(__section, __result_len, __base->get_allocator())) _S_construct_null(__section + __result_len); return _S_new_RopeLeaf(__section, __result_len, __base->get_allocator()); } } /*NOTREACHED*/ _STLP_ASSERT(false) lazy: { // Create substring node. return _S_new_RopeSubstring(__base, __start, __adj_endp1 - __start, __base->get_allocator()); } } template class _Rope_flatten_char_consumer : public _Rope_char_consumer<_CharT> { private: _CharT* _M_buf_ptr; public: _Rope_flatten_char_consumer(_CharT* __buffer) { _M_buf_ptr = __buffer; } ~_Rope_flatten_char_consumer() {} bool operator() (const _CharT* __leaf, size_t __n) { _STLP_PRIV __ucopy_n(__leaf, __n, _M_buf_ptr); _M_buf_ptr += __n; return true; } }; template class _Rope_find_char_char_consumer : public _Rope_char_consumer<_CharT> { private: _CharT _M_pattern; public: size_t _M_count; // Number of nonmatching characters _Rope_find_char_char_consumer(_CharT __p) : _M_pattern(__p), _M_count(0) {} ~_Rope_find_char_char_consumer() {} bool operator() (const _CharT* __leaf, size_t __n) { size_t __i; for (__i = 0; __i < __n; ++__i) { if (__leaf[__i] == _M_pattern) { _M_count += __i; return false; } } _M_count += __n; return true; } }; #if !defined (_STLP_USE_NO_IOSTREAMS) template // Here _CharT is both the stream and rope character type. class _Rope_insert_char_consumer : public _Rope_char_consumer<_CharT> { private: typedef basic_ostream<_CharT,_Traits> _Insert_ostream; typedef _Rope_insert_char_consumer<_CharT,_Traits> _Self; _Insert_ostream& _M_o; //explicitely defined as private to avoid warnings: _Self& operator = (_Self const&); public: _Rope_insert_char_consumer(_Insert_ostream& __writer) : _M_o(__writer) {} ~_Rope_insert_char_consumer() {} // Caller is presumed to own the ostream bool operator() (const _CharT* __leaf, size_t __n); // Returns true to continue traversal. }; template bool _Rope_insert_char_consumer<_CharT, _Traits>::operator() (const _CharT* __leaf, size_t __n) { size_t __i; // We assume that formatting is set up correctly for each element. for (__i = 0; __i < __n; ++__i) _M_o.put(__leaf[__i]); return true; } #endif /* !_STLP_USE_NO_IOSTREAMS */ template bool _S_apply_to_pieces(_CharConsumer& __c, _Rope_RopeRep<_CharT, _Alloc> * __r, size_t __begin, size_t __end) { typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep; typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation; typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf; typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction; if (0 == __r) return true; switch(__r->_M_tag) { case _RopeRep::_S_concat: { _RopeConcatenation* __conc = __STATIC_CAST(_RopeConcatenation*, __r); _RopeRep* __left = __conc->_M_left; size_t __left_len = __left->_M_size._M_data; if (__begin < __left_len) { size_t __left_end = (min) (__left_len, __end); if (!_S_apply_to_pieces(__c, __left, __begin, __left_end)) return false; } if (__end > __left_len) { _RopeRep* __right = __conc->_M_right; size_t __right_start = (max)(__left_len, __begin); if (!_S_apply_to_pieces(__c, __right, __right_start - __left_len, __end - __left_len)) { return false; } } } return true; case _RopeRep::_S_leaf: { _RopeLeaf* __l = __STATIC_CAST(_RopeLeaf*, __r); return __c(__l->_M_data + __begin, __end - __begin); } case _RopeRep::_S_function: case _RopeRep::_S_substringfn: { _RopeFunction* __f = __STATIC_CAST(_RopeFunction*, __r); size_t __len = __end - __begin; bool __result; _CharT* __buffer = __r->get_allocator().allocate(__len); _STLP_TRY { (*(__f->_M_fn))(__begin, __len, __buffer); __result = __c(__buffer, __len); __r->get_allocator().deallocate(__buffer, __len); } _STLP_UNWIND((__r->get_allocator().deallocate(__buffer, __len))) return __result; } default: _STLP_ASSERT(false) /*NOTREACHED*/ return false; } } #if !defined (_STLP_USE_NO_IOSTREAMS) template inline void _Rope_fill(basic_ostream<_CharT, _Traits>& __o, streamsize __n) { char __f = __o.fill(); for (streamsize __i = 0; __i < __n; ++__i) __o.put(__f); } template basic_ostream<_CharT, _Traits>& _S_io_get(basic_ostream<_CharT, _Traits>& __o, const rope<_CharT, _Alloc>& __r, const __true_type& /*_IsBasicCharType*/) { streamsize __w = __o.width(); const bool __left = (__o.flags() & ios::left) != 0; size_t __rope_len = __r.size(); _Rope_insert_char_consumer<_CharT, _Traits> __c(__o); const bool __need_pad = (((sizeof(streamsize) > sizeof(size_t)) && (__STATIC_CAST(streamsize, __rope_len) < __w)) || ((sizeof(streamsize) <= sizeof(size_t)) && (__rope_len < __STATIC_CAST(size_t, __w)))); streamsize __pad_len = __need_pad ? __w - __rope_len : 0; if (!__left && __pad_len > 0) { _Rope_fill(__o, __pad_len); } __r.apply_to_pieces(0, __rope_len, __c); if (__left && __pad_len > 0) { _Rope_fill(__o, __pad_len); } return __o; } template basic_ostream<_CharT, _Traits>& _S_io_get(basic_ostream<_CharT, _Traits>& __o, const rope<_CharT, _Alloc>& __r, const __false_type& /*_IsBasicCharType*/) { streamsize __w = __o.width(); size_t __rope_len = __r.size(); _Rope_insert_char_consumer<_CharT, _Traits> __c(__o); __o.width(__w /__rope_len); _STLP_TRY { __r.apply_to_pieces(0, __rope_len, __c); __o.width(__w); } _STLP_UNWIND(__o.width(__w)) return __o; } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __o, const rope<_CharT, _Alloc>& __r) { typedef typename _IsIntegral<_CharT>::_Ret _Char_Is_Integral; return _S_io_get(__o, __r, _Char_Is_Integral()); } #endif /* NO_IOSTREAMS */ template _CharT* rope<_CharT,_Alloc>::_S_flatten(_RopeRep* __r, size_t __start, size_t __len, _CharT* __buffer) { _Rope_flatten_char_consumer<_CharT> __c(__buffer); _S_apply_to_pieces(__c, __r, __start, __start + __len); return(__buffer + __len); } template size_t rope<_CharT,_Alloc>::find(_CharT __pattern, size_t __start) const { _Rope_find_char_char_consumer<_CharT> __c(__pattern); _S_apply_to_pieces(__c, _M_tree_ptr._M_data, __start, size()); size_type __result_pos = __start + __c._M_count; #ifndef _STLP_OLD_ROPE_SEMANTICS if (__result_pos == size()) __result_pos = npos; #endif return __result_pos; } template _CharT* rope<_CharT,_Alloc>::_S_flatten(_Rope_RopeRep<_CharT, _Alloc>* __r, _CharT* __buffer) { if (0 == __r) return __buffer; switch(__r->_M_tag) { case _RopeRep::_S_concat: { _RopeConcatenation* __c = __STATIC_CAST(_RopeConcatenation*, __r); _RopeRep* __left = __c->_M_left; _RopeRep* __right = __c->_M_right; _CharT* __rest = _S_flatten(__left, __buffer); return _S_flatten(__right, __rest); } case _RopeRep::_S_leaf: { _RopeLeaf* __l = __STATIC_CAST(_RopeLeaf*, __r); return _STLP_PRIV __ucopy_n(__l->_M_data, __l->_M_size._M_data, __buffer).second; } case _RopeRep::_S_function: case _RopeRep::_S_substringfn: // We dont yet do anything with substring nodes. // This needs to be fixed before ropefiles will work well. { _RopeFunction* __f = __STATIC_CAST(_RopeFunction*, __r); (*(__f->_M_fn))(0, __f->_M_size._M_data, __buffer); return __buffer + __f->_M_size._M_data; } default: _STLP_ASSERT(false) /*NOTREACHED*/ return 0; } } #ifdef _STLP_DEBUG // This needs work for _CharT != char template void rope<_CharT,_Alloc>::_S_dump(_RopeRep* __r, int __indent) { for (int __i = 0; __i < __indent; ++__i) putchar(' '); if (0 == __r) { printf("NULL\n"); return; } if (_RopeRep::_S_concat == __r->_M_tag) { _RopeConcatenation* __c = __STATIC_CAST(_RopeConcatenation*, __r); _RopeRep* __left = __c->_M_left; _RopeRep* __right = __c->_M_right; printf("Concatenation %p (rc = %ld, depth = %d, len = %ld, %s balanced)\n", __r, __r->_M_ref_count, __r->_M_depth, __r->_M_size._M_data, __r->_M_is_balanced? "" : "not"); _S_dump(__left, __indent + 2); _S_dump(__right, __indent + 2); return; } else { const char* __kind; switch (__r->_M_tag) { case _RopeRep::_S_leaf: __kind = "Leaf"; break; case _RopeRep::_S_function: __kind = "Function"; break; case _RopeRep::_S_substringfn: __kind = "Function representing substring"; break; default: __kind = "(corrupted kind field!)"; } printf("%s %p (rc = %ld, depth = %d, len = %ld) ", __kind, __r, __r->_M_ref_count, __r->_M_depth, __r->_M_size._M_data); if (sizeof(_CharT) == 1) { const int __max_len = 40; _Self_destruct_ptr __prefix(_S_substring(__r, 0, __max_len)); _CharT __buffer[__max_len + 1]; bool __too_big = __r->_M_size._M_data > __prefix->_M_size._M_data; _S_flatten(__prefix, __buffer); __buffer[__prefix->_M_size._M_data] = _STLP_DEFAULT_CONSTRUCTED(_CharT); printf("%s%s\n", (char*)__buffer, __too_big? "...\n" : "\n"); } else { printf("\n"); } } } #endif /* _STLP_DEBUG */ # define __ROPE_TABLE_BODY = { \ /* 0 */1, /* 1 */2, /* 2 */3, /* 3 */5, /* 4 */8, /* 5 */13, /* 6 */21, \ /* 7 */34, /* 8 */55, /* 9 */89, /* 10 */144, /* 11 */233, /* 12 */377, \ /* 13 */610, /* 14 */987, /* 15 */1597, /* 16 */2584, /* 17 */4181, \ /* 18 */6765ul, /* 19 */10946ul, /* 20 */17711ul, /* 21 */28657ul, /* 22 */46368ul, \ /* 23 */75025ul, /* 24 */121393ul, /* 25 */196418ul, /* 26 */317811ul, \ /* 27 */514229ul, /* 28 */832040ul, /* 29 */1346269ul, /* 30 */2178309ul, \ /* 31 */3524578ul, /* 32 */5702887ul, /* 33 */9227465ul, /* 34 */14930352ul, \ /* 35 */24157817ul, /* 36 */39088169ul, /* 37 */63245986ul, /* 38 */102334155ul, \ /* 39 */165580141ul, /* 40 */267914296ul, /* 41 */433494437ul, \ /* 42 */701408733ul, /* 43 */1134903170ul, /* 44 */1836311903ul, \ /* 45 */2971215073ul } template const unsigned long rope<_CharT,_Alloc>::_S_min_len[__ROPE_DEPTH_SIZE] __ROPE_TABLE_BODY; # undef __ROPE_DEPTH_SIZE # undef __ROPE_MAX_DEPTH # undef __ROPE_TABLE_BODY // These are Fibonacci numbers < 2**32. template __RopeRep__* rope<_CharT,_Alloc>::_S_balance(_RopeRep* __r) { _RopeRep* __forest[_RopeRep::_S_max_rope_depth + 1] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0}; _RopeRep* __result = 0; int __i; // Invariant: // The concatenation of forest in descending order is equal to __r. // __forest[__i]._M_size._M_data >= _S_min_len[__i] // __forest[__i]._M_depth = __i // References from forest are included in refcount. _STLP_TRY { _S_add_to_forest(__r, __forest); for (__i = 0; __i <= _RopeRep::_S_max_rope_depth; ++__i) if (0 != __forest[__i]) { _Self_destruct_ptr __old(__result); __result = _S_concat_rep(__forest[__i], __result); __forest[__i]->_M_unref_nonnil(); # ifdef _STLP_USE_EXCEPTIONS __forest[__i] = 0; # endif } } _STLP_UNWIND(for(__i = 0; __i <= _RopeRep::_S_max_rope_depth; ++__i) _S_unref(__forest[__i])) if (__result->_M_depth > _RopeRep::_S_max_rope_depth) { __stl_throw_range_error("rope too long"); } return(__result); } template void rope<_CharT,_Alloc>::_S_add_to_forest(_RopeRep* __r, _RopeRep** __forest) { if (__r -> _M_is_balanced) { _S_add_leaf_to_forest(__r, __forest); return; } _STLP_ASSERT(__r->_M_tag == _RopeRep::_S_concat) { _RopeConcatenation* __c = (_RopeConcatenation*)__r; _S_add_to_forest(__c->_M_left, __forest); _S_add_to_forest(__c->_M_right, __forest); } } template void rope<_CharT,_Alloc>::_S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest) { _RopeRep* __insertee; // included in refcount _RopeRep* __too_tiny = 0; // included in refcount int __i; // forest[0..__i-1] is empty size_t __s = __r->_M_size._M_data; for (__i = 0; __s >= _S_min_len[__i+1]/* not this bucket */; ++__i) { if (0 != __forest[__i]) { _Self_destruct_ptr __old(__too_tiny); __too_tiny = _S_concat_and_set_balanced(__forest[__i], __too_tiny); __forest[__i]->_M_unref_nonnil(); __forest[__i] = 0; } } { _Self_destruct_ptr __old(__too_tiny); __insertee = _S_concat_and_set_balanced(__too_tiny, __r); } // Too_tiny dead, and no longer included in refcount. // Insertee is live and included. _STLP_ASSERT(_S_is_almost_balanced(__insertee)) _STLP_ASSERT(__insertee->_M_depth <= __r->_M_depth + 1) for (;; ++__i) { if (0 != __forest[__i]) { _Self_destruct_ptr __old(__insertee); __insertee = _S_concat_and_set_balanced(__forest[__i], __insertee); __forest[__i]->_M_unref_nonnil(); __forest[__i] = 0; _STLP_ASSERT(_S_is_almost_balanced(__insertee)) } _STLP_ASSERT(_S_min_len[__i] <= __insertee->_M_size._M_data) _STLP_ASSERT(__forest[__i] == 0) if (__i == _RopeRep::_S_max_rope_depth || __insertee->_M_size._M_data < _S_min_len[__i+1]) { __forest[__i] = __insertee; // refcount is OK since __insertee is now dead. return; } } } template _CharT rope<_CharT,_Alloc>::_S_fetch(_RopeRep* __r, size_type __i) { _CharT* __cstr = __r->_M_c_string; _STLP_ASSERT(__i < __r->_M_size._M_data) if (0 != __cstr) return __cstr[__i]; for(;;) { switch(__r->_M_tag) { case _RopeRep::_S_concat: { _RopeConcatenation* __c = (_RopeConcatenation*)__r; _RopeRep* __left = __c->_M_left; size_t __left_len = __left->_M_size._M_data; if (__i >= __left_len) { __i -= __left_len; __r = __c->_M_right; } else { __r = __left; } } break; case _RopeRep::_S_leaf: { _RopeLeaf* __l = (_RopeLeaf*)__r; return __l->_M_data[__i]; } case _RopeRep::_S_function: case _RopeRep::_S_substringfn: { _RopeFunction* __f = (_RopeFunction*)__r; _CharT __result; (*(__f->_M_fn))(__i, 1, &__result); return __result; } } } #if defined(_STLP_NEED_UNREACHABLE_RETURN) return 0; #endif } // Return a uniquely referenced character slot for the given // position, or 0 if that's not possible. template _CharT* rope<_CharT,_Alloc>::_S_fetch_ptr(_RopeRep* __r, size_type __i) { _RopeRep* __clrstack[_RopeRep::_S_max_rope_depth]; size_t __csptr = 0; for(;;) { // if (__r->_M_ref_count > 1) return 0; if ( __r->_M_incr() > 2 ) { __r->_M_decr(); return 0; } switch(__r->_M_tag) { case _RopeRep::_S_concat: { _RopeConcatenation* __c = (_RopeConcatenation*)__r; _RopeRep* __left = __c->_M_left; size_t __left_len = __left->_M_size._M_data; if (__c->_M_c_string != 0) __clrstack[__csptr++] = __c; if (__i >= __left_len) { __i -= __left_len; __r = __c->_M_right; } else { __r = __left; } } break; case _RopeRep::_S_leaf: { _RopeLeaf* __l = (_RopeLeaf*)__r; if (__l->_M_c_string != __l->_M_data && __l->_M_c_string != 0) __clrstack[__csptr++] = __l; while (__csptr > 0) { -- __csptr; _RopeRep* __d = __clrstack[__csptr]; __d->_M_free_c_string(); __d->_M_c_string = 0; } return __l->_M_data + __i; } case _RopeRep::_S_function: case _RopeRep::_S_substringfn: return 0; } } #if defined(_STLP_NEED_UNREACHABLE_RETURN) return 0; #endif } // The following could be implemented trivially using // lexicographical_compare_3way. // We do a little more work to avoid dealing with rope iterators for // flat strings. template int rope<_CharT,_Alloc>::_S_compare (const _RopeRep* __left, const _RopeRep* __right) { size_t __left_len; size_t __right_len; if (0 == __right) return 0 != __left; if (0 == __left) return -1; __left_len = __left->_M_size._M_data; __right_len = __right->_M_size._M_data; if (_RopeRep::_S_leaf == __left->_M_tag) { const _RopeLeaf* __l = __STATIC_CAST(const _RopeLeaf*, __left); if (_RopeRep::_S_leaf == __right->_M_tag) { const _RopeLeaf* __r = __STATIC_CAST(const _RopeLeaf*, __right); return _STLP_PRIV __lexicographical_compare_3way(__l->_M_data, __l->_M_data + __left_len, __r->_M_data, __r->_M_data + __right_len); } else { const_iterator __rstart(__right, 0); const_iterator __rend(__right, __right_len); return _STLP_PRIV __lexicographical_compare_3way(__l->_M_data, __l->_M_data + __left_len, __rstart, __rend); } } else { const_iterator __lstart(__left, 0); const_iterator __lend(__left, __left_len); if (_RopeRep::_S_leaf == __right->_M_tag) { const _RopeLeaf* __r = __STATIC_CAST(const _RopeLeaf*, __right); return _STLP_PRIV __lexicographical_compare_3way(__lstart, __lend, __r->_M_data, __r->_M_data + __right_len); } else { const_iterator __rstart(__right, 0); const_iterator __rend(__right, __right_len); return _STLP_PRIV __lexicographical_compare_3way(__lstart, __lend, __rstart, __rend); } } } // Assignment to reference proxies. template _Rope_char_ref_proxy<_CharT, _Alloc>& _Rope_char_ref_proxy<_CharT, _Alloc>::operator= (_CharT __c) { _RopeRep* __old = _M_root->_M_tree_ptr._M_data; // First check for the case in which everything is uniquely // referenced. In that case we can do this destructively. _CharT* __ptr = _My_rope::_S_fetch_ptr(__old, _M_pos); if (0 != __ptr) { *__ptr = __c; return *this; } _Self_destruct_ptr __left( _My_rope::_S_substring(__old, 0, _M_pos)); _Self_destruct_ptr __right( _My_rope::_S_substring(__old, _M_pos+1, __old->_M_size._M_data)); _Self_destruct_ptr __result_left( _My_rope::_S_destr_concat_char_iter(__left, &__c, 1)); // _STLP_ASSERT(__left == __result_left || 1 == __result_left->_M_ref_count) _RopeRep* __result = _My_rope::_S_concat_rep(__result_left, __right); // _STLP_ASSERT(1 <= __result->_M_ref_count) _RopeRep::_S_unref(__old); _M_root->_M_tree_ptr._M_data = __result; return *this; } template _Rope_char_ptr_proxy<_CharT, _Alloc> _Rope_char_ref_proxy<_CharT, _Alloc>::operator& () const { return _Rope_char_ptr_proxy<_CharT, _Alloc>(*this); } template _CharT rope<_CharT,_Alloc>::_S_empty_c_str[1] = { _CharT() }; // # endif #if !defined (_STLP_STATIC_CONST_INIT_BUG) && !defined (_STLP_NO_STATIC_CONST_DEFINITION) template const size_t rope<_CharT, _Alloc>::npos; #endif template const _CharT* rope<_CharT,_Alloc>::c_str() const { if (0 == _M_tree_ptr._M_data) { // Possibly redundant, but probably fast. _S_empty_c_str[0] = _STLP_DEFAULT_CONSTRUCTED(_CharT); return _S_empty_c_str; } _CharT* __old_c_string = _M_tree_ptr._M_data->_M_c_string; if (0 != __old_c_string) return __old_c_string; size_t __s = size(); _CharT* __result = _STLP_CREATE_ALLOCATOR(allocator_type,(const allocator_type&)_M_tree_ptr, _CharT).allocate(__s + 1); _S_flatten(_M_tree_ptr._M_data, __result); _S_construct_null(__result + __s); __old_c_string = __STATIC_CAST(_CharT*, _Atomic_swap_ptr(__REINTERPRET_CAST(void* _STLP_VOLATILE*, &(_M_tree_ptr._M_data->_M_c_string)), __result)); if (0 != __old_c_string) { // It must have been added in the interim. Hence it had to have been // separately allocated. Deallocate the old copy, since we just // replaced it. _STLP_STD::_Destroy_Range(__old_c_string, __old_c_string + __s + 1); _STLP_CREATE_ALLOCATOR(allocator_type,(const allocator_type&)_M_tree_ptr, _CharT).deallocate(__old_c_string, __s + 1); } return __result; } template const _CharT* rope<_CharT,_Alloc>::replace_with_c_str() { if (0 == _M_tree_ptr._M_data) { _S_empty_c_str[0] = _STLP_DEFAULT_CONSTRUCTED(_CharT); return _S_empty_c_str; } _CharT* __old_c_string = _M_tree_ptr._M_data->_M_c_string; if (_RopeRep::_S_leaf == _M_tree_ptr._M_data->_M_tag && 0 != __old_c_string) { return __old_c_string; } size_t __s = size(); _CharT* __result = _M_tree_ptr.allocate(_S_rounded_up_size(__s)); _S_flatten(_M_tree_ptr._M_data, __result); _S_construct_null(__result + __s); _M_tree_ptr._M_data->_M_unref_nonnil(); _M_tree_ptr._M_data = _S_new_RopeLeaf(__result, __s, _M_tree_ptr); return __result; } // Algorithm specializations. More should be added. #if (!defined (_STLP_MSVC) || (_STLP_MSVC >= 1310)) && !defined (__DMC__) // I couldn't get this to work with VC++ template void _Rope_rotate(_Rope_iterator<_CharT,_Alloc> __first, _Rope_iterator<_CharT,_Alloc> __middle, _Rope_iterator<_CharT,_Alloc> __last) { _STLP_ASSERT(__first.container() == __middle.container() && __middle.container() == __last.container()) rope<_CharT,_Alloc>& __r(__first.container()); rope<_CharT,_Alloc> __prefix = __r.substr(0, __first.index()); rope<_CharT,_Alloc> __suffix = __r.substr(__last.index(), __r.size() - __last.index()); rope<_CharT,_Alloc> __part1 = __r.substr(__middle.index(), __last.index() - __middle.index()); rope<_CharT,_Alloc> __part2 = __r.substr(__first.index(), __middle.index() - __first.index()); __r = __prefix; __r += __part1; __r += __part2; __r += __suffix; } # if 0 // Probably not useful for several reasons: // - for SGIs 7.1 compiler and probably some others, // this forces lots of rope instantiations, creating a // code bloat and compile time problem. (Fixed in 7.2.) // - wchar_t is 4 bytes wide on most UNIX platforms, making it unattractive // for unicode strings. Unsigned short may be a better character // type. inline void rotate( _Rope_iterator > __first, _Rope_iterator > __middle, _Rope_iterator > __last) { _Rope_rotate(__first, __middle, __last); } # endif #endif /* _STLP_MSVC */ # undef __RopeLeaf__ # undef __RopeRep__ # undef __RopeLeaf # undef __RopeRep # undef size_type _STLP_END_NAMESPACE # endif /* ROPEIMPL_H */ // Local Variables: // mode:C++ // End: