/* * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Copyright (c) 1997 * Moscow Center for SPARC Technology * * Copyright (c) 1999 * Boris Fomitchev * * This material is provided "as is", with absolutely no warranty expressed * or implied. Any use is at your own risk. * * Permission to use or copy this software for any purpose is hereby granted * without fee, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ // rope<_CharT,_Alloc> is a sequence of _CharT. // Ropes appear to be mutable, but update operations // really copy enough of the data structure to leave the original // valid. Thus ropes can be logically copied by just copying // a pointer value. #ifndef _STLP_INTERNAL_ROPE_H #define _STLP_INTERNAL_ROPE_H #ifndef _STLP_INTERNAL_ALGOBASE_H # include #endif #if !defined (_STLP_USE_NO_IOSTREAMS) && !defined (_STLP_INTERNAL_IOSFWD) # include #endif #ifndef _STLP_INTERNAL_ALLOC_H # include #endif #ifndef _STLP_INTERNAL_ITERATOR_H # include #endif #ifndef _STLP_INTERNAL_ALGO_H # include #endif #ifndef _STLP_INTERNAL_FUNCTION_BASE_H # include #endif #ifndef _STLP_INTERNAL_NUMERIC_H # include #endif #ifndef _STLP_INTERNAL_HASH_FUN_H # include #endif #ifndef _STLP_CHAR_TRAITS_H # include #endif #ifndef _STLP_INTERNAL_THREADS_H # include #endif #ifdef _STLP_SGI_THREADS # include #endif #ifndef _STLP_DONT_SUPPORT_REBIND_MEMBER_TEMPLATE # define _STLP_CREATE_ALLOCATOR(__atype,__a, _Tp) (_Alloc_traits<_Tp,__atype>::create_allocator(__a)) #else # define _STLP_CREATE_ALLOCATOR(__atype,__a, _Tp) __stl_alloc_create(__a,(_Tp*)0) #endif _STLP_BEGIN_NAMESPACE // First a lot of forward declarations. The standard seems to require // much stricter "declaration before use" than many of the implementations // that preceded it. template) > class rope; template struct _Rope_RopeConcatenation; template struct _Rope_RopeRep; template struct _Rope_RopeLeaf; template struct _Rope_RopeFunction; template struct _Rope_RopeSubstring; template class _Rope_iterator; template class _Rope_const_iterator; template class _Rope_char_ref_proxy; template class _Rope_char_ptr_proxy; _STLP_MOVE_TO_PRIV_NAMESPACE template struct _BasicCharType { typedef __false_type _Ret; }; _STLP_TEMPLATE_NULL struct _BasicCharType { typedef __true_type _Ret; }; #ifdef _STLP_HAS_WCHAR_T _STLP_TEMPLATE_NULL struct _BasicCharType { typedef __true_type _Ret; }; #endif // Some helpers, so we can use the power algorithm on ropes. // See below for why this isn't local to the implementation. // This uses a nonstandard refcount convention. // The result has refcount 0. template struct _Rope_Concat_fn : public binary_function, rope<_CharT,_Alloc>, rope<_CharT,_Alloc> > { rope<_CharT,_Alloc> operator() (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return __x + __y; } }; template inline rope<_CharT,_Alloc> __identity_element(_Rope_Concat_fn<_CharT, _Alloc>) { return rope<_CharT,_Alloc>(); } _STLP_MOVE_TO_STD_NAMESPACE // Store an eos template inline void _S_construct_null_aux(_CharT *__p, const __true_type&) { *__p = 0; } template inline void _S_construct_null_aux(_CharT *__p, const __false_type&) { _STLP_STD::_Construct(__p); } template inline void _S_construct_null(_CharT *__p) { typedef typename _IsIntegral<_CharT>::_Ret _Char_Is_Integral; _S_construct_null_aux(__p, _Char_Is_Integral()); } // char_producers are logically functions that generate a section of // a string. These can be converted to ropes. The resulting rope // invokes the char_producer on demand. This allows, for example, // files to be viewed as ropes without reading the entire file. template class char_producer { public: virtual ~char_producer() {} virtual void operator()(size_t __start_pos, size_t __len, _CharT* __buffer) = 0; // Buffer should really be an arbitrary output iterator. // That way we could flatten directly into an ostream, etc. // This is thoroughly impossible, since iterator types don't // have runtime descriptions. }; // Sequence buffers: // // Sequence must provide an append operation that appends an // array to the sequence. Sequence buffers are useful only if // appending an entire array is cheaper than appending element by element. // This is true for many string representations. // This should perhaps inherit from ostream // and be implemented correspondingly, so that they can be used // for formatted. For the sake of portability, we don't do this yet. // // For now, sequence buffers behave as output iterators. But they also // behave a little like basic_ostringstream and a // little like containers. template // The 3rd parameter works around a common compiler bug. class sequence_buffer : public iterator { public: # ifndef __TYPEDEF_WORKAROUND typedef typename _Sequence::value_type value_type; typedef sequence_buffer<_Sequence # if !(defined (_STLP_NON_TYPE_TMPL_PARAM_BUG) || \ defined ( _STLP_NO_DEFAULT_NON_TYPE_PARAM )) , _Buf_sz > _Self; # else /* _STLP_NON_TYPE_TMPL_PARAM_BUG */ > _Self; enum { _Buf_sz = 100}; # endif /* _STLP_NON_TYPE_TMPL_PARAM_BUG */ // # endif # else /* __TYPEDEF_WORKAROUND */ typedef _V value_type; typedef sequence_buffer<_Sequence, _Buf_sz, _V> _Self; # endif /* __TYPEDEF_WORKAROUND */ protected: _Sequence* _M_prefix; value_type _M_buffer[_Buf_sz]; size_t _M_buf_count; public: void flush() { _M_prefix->append(_M_buffer, _M_buffer + _M_buf_count); _M_buf_count = 0; } ~sequence_buffer() { flush(); } sequence_buffer() : _M_prefix(0), _M_buf_count(0) {} sequence_buffer(const _Self& __x) { _M_prefix = __x._M_prefix; _M_buf_count = __x._M_buf_count; _STLP_STD::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer); } sequence_buffer(_Self& __x) { __x.flush(); _M_prefix = __x._M_prefix; _M_buf_count = 0; } sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {} _Self& operator= (_Self& __x) { __x.flush(); _M_prefix = __x._M_prefix; _M_buf_count = 0; return *this; } _Self& operator= (const _Self& __x) { _M_prefix = __x._M_prefix; _M_buf_count = __x._M_buf_count; _STLP_STD::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer); return *this; } void push_back(value_type __x) { if (_M_buf_count < _Buf_sz) { _M_buffer[_M_buf_count] = __x; ++_M_buf_count; } else { flush(); _M_buffer[0] = __x; _M_buf_count = 1; } } void append(const value_type *__s, size_t __len) { if (__len + _M_buf_count <= _Buf_sz) { size_t __i = _M_buf_count; size_t __j = 0; for (; __j < __len; __i++, __j++) { _M_buffer[__i] = __s[__j]; } _M_buf_count += __len; } else if (0 == _M_buf_count) { _M_prefix->append(__s, __s + __len); } else { flush(); append(__s, __len); } } _Self& write(const value_type *__s, size_t __len) { append(__s, __len); return *this; } _Self& put(value_type __x) { push_back(__x); return *this; } _Self& operator=(const value_type& __rhs) { push_back(__rhs); return *this; } _Self& operator*() { return *this; } _Self& operator++() { return *this; } _Self& operator++(int) { return *this; } }; // The following should be treated as private, at least for now. template class _Rope_char_consumer { #if !defined (_STLP_MEMBER_TEMPLATES) public: //Without member templates we have to use run-time parameterization. // The symmetry with char_producer is accidental and temporary. virtual ~_Rope_char_consumer() {} virtual bool operator()(const _CharT* __buffer, size_t __len) = 0; #endif }; // // What follows should really be local to rope. Unfortunately, // that doesn't work, since it makes it impossible to define generic // equality on rope iterators. According to the draft standard, the // template parameters for such an equality operator cannot be inferred // from the occurence of a member class as a parameter. // (SGI compilers in fact allow this, but the __result wouldn't be // portable.) // Similarly, some of the static member functions are member functions // only to avoid polluting the global namespace, and to circumvent // restrictions on type inference for template functions. // // // The internal data structure for representing a rope. This is // private to the implementation. A rope is really just a pointer // to one of these. // // A few basic functions for manipulating this data structure // are members of _RopeRep. Most of the more complex algorithms // are implemented as rope members. // // Some of the static member functions of _RopeRep have identically // named functions in rope that simply invoke the _RopeRep versions. // template struct _Rope_RopeRep : public _Refcount_Base { typedef _Rope_RopeRep<_CharT, _Alloc> _Self; public: // // GAB: 11/09/05 // // "__ROPE_DEPTH_SIZE" is set to one more then the "__ROPE_MAX_DEPTH". // This was originally just an addition of "__ROPE_MAX_DEPTH + 1" // but this addition causes the sunpro compiler to complain about // multiple declarations during the initialization of "_S_min_len". // Changed to be a fixed value and the sunpro compiler appears to // be happy??? // # define __ROPE_MAX_DEPTH 45 # define __ROPE_DEPTH_SIZE 46 // __ROPE_MAX_DEPTH + 1 enum { _S_max_rope_depth = __ROPE_MAX_DEPTH }; enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function}; // Apparently needed by VC++ // The data fields of leaves are allocated with some // extra space, to accomodate future growth and for basic // character types, to hold a trailing eos character. enum { _S_alloc_granularity = 8 }; _Tag _M_tag:8; bool _M_is_balanced:8; _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) typedef _Alloc allocator_type; allocator_type get_allocator() const { return allocator_type(_M_size); } unsigned char _M_depth; _CharT* _STLP_VOLATILE _M_c_string; _STLP_PRIV _STLP_alloc_proxy _M_size; #ifdef _STLP_NO_ARROW_OPERATOR _Rope_RopeRep() : _Refcount_Base(1), _M_size(allocator_type(), 0) { # if defined (_STLP_CHECK_RUNTIME_COMPATIBILITY) _STLP_CHECK_RUNTIME_COMPATIBILITY(); # endif } #endif /* Flattened version of string, if needed. */ /* typically 0. */ /* If it's not 0, then the memory is owned */ /* by this node. */ /* In the case of a leaf, this may point to */ /* the same memory as the data field. */ _Rope_RopeRep(_Tag __t, unsigned char __d, bool __b, size_t _p_size, allocator_type __a) : _Refcount_Base(1), _M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0), _M_size(__a, _p_size) { #if defined (_STLP_CHECK_RUNTIME_COMPATIBILITY) _STLP_CHECK_RUNTIME_COMPATIBILITY(); #endif } typedef _STLP_TYPENAME _STLP_PRIV _BasicCharType<_CharT>::_Ret _IsBasicCharType; #if 0 /* Please tell why this code is necessary if you uncomment it. * Problem with it is that rope implementation expect that _S_rounded_up_size(n) * returns a size > n in order to store the terminating null charater. When * instanciation type is not a char or wchar_t this is not guaranty resulting in * memory overrun. */ static size_t _S_rounded_up_size_aux(size_t __n, __true_type const& /*_IsBasicCharType*/) { // Allow slop for in-place expansion. return (__n + _S_alloc_granularity) & ~(_S_alloc_granularity - 1); } static size_t _S_rounded_up_size_aux(size_t __n, __false_type const& /*_IsBasicCharType*/) { // Allow slop for in-place expansion. return (__n + _S_alloc_granularity - 1) & ~(_S_alloc_granularity - 1); } #endif // fbp : moved from RopeLeaf static size_t _S_rounded_up_size(size_t __n) //{ return _S_rounded_up_size_aux(__n, _IsBasicCharType()); } { return (__n + _S_alloc_granularity) & ~(_S_alloc_granularity - 1); } static void _S_free_string( _CharT* __s, size_t __len, allocator_type __a) { _STLP_STD::_Destroy_Range(__s, __s + __len); // This has to be a static member, so this gets a bit messy # ifndef _STLP_DONT_SUPPORT_REBIND_MEMBER_TEMPLATE __a.deallocate(__s, _S_rounded_up_size(__len)); //*ty 03/24/2001 - restored not to use __stl_alloc_rebind() since it is not defined under _STLP_MEMBER_TEMPLATE_CLASSES # else __stl_alloc_rebind (__a, (_CharT*)0).deallocate(__s, _S_rounded_up_size(__len)); # endif } // Deallocate data section of a leaf. // This shouldn't be a member function. // But its hard to do anything else at the // moment, because it's templatized w.r.t. // an allocator. // Does nothing if __GC is defined. void _M_free_c_string(); void _M_free_tree(); // Deallocate t. Assumes t is not 0. void _M_unref_nonnil() { if (_M_decr() == 0) _M_free_tree(); } void _M_ref_nonnil() { _M_incr(); } static void _S_unref(_Self* __t) { if (0 != __t) { __t->_M_unref_nonnil(); } } static void _S_ref(_Self* __t) { if (0 != __t) __t->_M_incr(); } //static void _S_free_if_unref(_Self* __t) { // if (0 != __t && 0 == __t->_M_ref_count) __t->_M_free_tree(); //} }; template struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> { public: _CharT* _M_data; /* Not necessarily 0 terminated. */ /* The allocated size is */ /* _S_rounded_up_size(size), except */ /* in the GC case, in which it */ /* doesn't matter. */ private: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; typedef typename _RopeRep::_IsBasicCharType _IsBasicCharType; void _M_init(__true_type const& /*_IsBasicCharType*/) { this->_M_c_string = _M_data; } void _M_init(__false_type const& /*_IsBasicCharType*/) {} public: _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) typedef typename _RopeRep::allocator_type allocator_type; _Rope_RopeLeaf( _CharT* __d, size_t _p_size, allocator_type __a) : _Rope_RopeRep<_CharT,_Alloc>(_RopeRep::_S_leaf, 0, true, _p_size, __a), _M_data(__d) { _STLP_ASSERT(_p_size > 0) _M_init(_IsBasicCharType()); } # ifdef _STLP_NO_ARROW_OPERATOR _Rope_RopeLeaf() {} _Rope_RopeLeaf(const _Rope_RopeLeaf<_CharT, _Alloc>& ) {} # endif // The constructor assumes that d has been allocated with // the proper allocator and the properly padded size. // In contrast, the destructor deallocates the data: ~_Rope_RopeLeaf() { if (_M_data != this->_M_c_string) { this->_M_free_c_string(); } _RopeRep::_S_free_string(_M_data, this->_M_size._M_data, this->get_allocator()); } }; template struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT, _Alloc> { private: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; public: _RopeRep* _M_left; _RopeRep* _M_right; _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) typedef typename _RopeRep::allocator_type allocator_type; _Rope_RopeConcatenation(_RopeRep* __l, _RopeRep* __r, allocator_type __a) : _Rope_RopeRep<_CharT,_Alloc>(_RopeRep::_S_concat, (max)(__l->_M_depth, __r->_M_depth) + 1, false, __l->_M_size._M_data + __r->_M_size._M_data, __a), _M_left(__l), _M_right(__r) {} # ifdef _STLP_NO_ARROW_OPERATOR _Rope_RopeConcatenation() {} _Rope_RopeConcatenation(const _Rope_RopeConcatenation<_CharT, _Alloc>&) {} # endif ~_Rope_RopeConcatenation() { this->_M_free_c_string(); _M_left->_M_unref_nonnil(); _M_right->_M_unref_nonnil(); } }; template struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT, _Alloc> { private: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; public: char_producer<_CharT>* _M_fn; /* * Char_producer is owned by the * rope and should be explicitly * deleted when the rope becomes * inaccessible. */ bool _M_delete_when_done; _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) typedef typename _Rope_RopeRep<_CharT,_Alloc>::allocator_type allocator_type; # ifdef _STLP_NO_ARROW_OPERATOR _Rope_RopeFunction() {} _Rope_RopeFunction(const _Rope_RopeFunction<_CharT, _Alloc>& ) {} # endif _Rope_RopeFunction(char_producer<_CharT>* __f, size_t _p_size, bool __d, allocator_type __a) : _Rope_RopeRep<_CharT,_Alloc>(_RopeRep::_S_function, 0, true, _p_size, __a), _M_fn(__f) , _M_delete_when_done(__d) { _STLP_ASSERT(_p_size > 0) } ~_Rope_RopeFunction() { this->_M_free_c_string(); if (_M_delete_when_done) { delete _M_fn; } } }; /* * Substring results are usually represented using just * concatenation nodes. But in the case of very long flat ropes * or ropes with a functional representation that isn't practical. * In that case, we represent the __result as a special case of * RopeFunction, whose char_producer points back to the rope itself. * In all cases except repeated substring operations and * deallocation, we treat the __result as a RopeFunction. */ template struct _Rope_RopeSubstring : public char_producer<_CharT>, public _Rope_RopeFunction<_CharT,_Alloc> { public: // XXX this whole class should be rewritten. typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; _RopeRep *_M_base; // not 0 size_t _M_start; /* virtual */ void operator()(size_t __start_pos, size_t __req_len, _CharT* __buffer) { typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction; typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf; switch (_M_base->_M_tag) { case _RopeRep::_S_function: case _RopeRep::_S_substringfn: { char_producer<_CharT>* __fn = __STATIC_CAST(_RopeFunction*, _M_base)->_M_fn; _STLP_ASSERT(__start_pos + __req_len <= this->_M_size._M_data) _STLP_ASSERT(_M_start + this->_M_size._M_data <= _M_base->_M_size._M_data) (*__fn)(__start_pos + _M_start, __req_len, __buffer); } break; case _RopeRep::_S_leaf: { _CharT* __s = __STATIC_CAST(_RopeLeaf*, _M_base)->_M_data; _STLP_PRIV __ucopy_n(__s + __start_pos + _M_start, __req_len, __buffer); } break; default: _STLP_ASSERT(false) ; } } _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) typedef typename _RopeRep::allocator_type allocator_type; _Rope_RopeSubstring(_RopeRep* __b, size_t __s, size_t __l, allocator_type __a) : _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a), _M_base(__b), _M_start(__s) { _STLP_ASSERT(__l > 0) _STLP_ASSERT(__s + __l <= __b->_M_size._M_data) _M_base->_M_ref_nonnil(); this->_M_tag = _RopeRep::_S_substringfn; } virtual ~_Rope_RopeSubstring() { _M_base->_M_unref_nonnil(); } }; /* * Self-destructing pointers to Rope_rep. * These are not conventional smart pointers. Their * only purpose in life is to ensure that unref is called * on the pointer either at normal exit or if an exception * is raised. It is the caller's responsibility to * adjust reference counts when these pointers are initialized * or assigned to. (This convention significantly reduces * the number of potentially expensive reference count * updates.) */ template struct _Rope_self_destruct_ptr { _Rope_RopeRep<_CharT,_Alloc>* _M_ptr; ~_Rope_self_destruct_ptr() { _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); } # ifdef _STLP_USE_EXCEPTIONS _Rope_self_destruct_ptr() : _M_ptr(0) {} # else _Rope_self_destruct_ptr() {} # endif _Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {} _Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; } _Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; } operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; } _Rope_self_destruct_ptr<_CharT, _Alloc>& operator= (_Rope_RopeRep<_CharT,_Alloc>* __x) { _M_ptr = __x; return *this; } }; /* * Dereferencing a nonconst iterator has to return something * that behaves almost like a reference. It's not possible to * return an actual reference since assignment requires extra * work. And we would get into the same problems as with the * CD2 version of basic_string. */ template class _Rope_char_ref_proxy { typedef _Rope_char_ref_proxy<_CharT, _Alloc> _Self; friend class rope<_CharT,_Alloc>; friend class _Rope_iterator<_CharT,_Alloc>; friend class _Rope_char_ptr_proxy<_CharT,_Alloc>; typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr; typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; typedef rope<_CharT,_Alloc> _My_rope; size_t _M_pos; _CharT _M_current; bool _M_current_valid; _My_rope* _M_root; // The whole rope. public: _Rope_char_ref_proxy(_My_rope* __r, size_t __p) : _M_pos(__p), _M_current_valid(false), _M_root(__r) {} _Rope_char_ref_proxy(const _Self& __x) : _M_pos(__x._M_pos), _M_current_valid(false), _M_root(__x._M_root) {} // Don't preserve cache if the reference can outlive the // expression. We claim that's not possible without calling // a copy constructor or generating reference to a proxy // reference. We declare the latter to have undefined semantics. _Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c) : _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {} inline operator _CharT () const; _Self& operator= (_CharT __c); _Rope_char_ptr_proxy<_CharT, _Alloc> operator& () const; _Self& operator= (const _Self& __c) { return operator=((_CharT)__c); } }; #ifdef _STLP_FUNCTION_TMPL_PARTIAL_ORDER template inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a, _Rope_char_ref_proxy <_CharT, __Alloc > __b) { _CharT __tmp = __a; __a = __b; __b = __tmp; } #else // There is no really acceptable way to handle this. The default // definition of swap doesn't work for proxy references. // It can't really be made to work, even with ugly hacks, since // the only unusual operation it uses is the copy constructor, which // is needed for other purposes. We provide a macro for // full specializations, and instantiate the most common case. # define _ROPE_SWAP_SPECIALIZATION(_CharT, __Alloc) \ inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a, \ _Rope_char_ref_proxy <_CharT, __Alloc > __b) { \ _CharT __tmp = __a; \ __a = __b; \ __b = __tmp; \ } _ROPE_SWAP_SPECIALIZATION(char, allocator) # ifndef _STLP_NO_WCHAR_T _ROPE_SWAP_SPECIALIZATION(wchar_t, allocator) # endif #endif /* !_STLP_FUNCTION_TMPL_PARTIAL_ORDER */ template class _Rope_char_ptr_proxy { // XXX this class should be rewritten. public: typedef _Rope_char_ptr_proxy<_CharT, _Alloc> _Self; friend class _Rope_char_ref_proxy<_CharT,_Alloc>; size_t _M_pos; rope<_CharT,_Alloc>* _M_root; // The whole rope. _Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x) : _M_pos(__x._M_pos), _M_root(__x._M_root) {} _Rope_char_ptr_proxy(const _Self& __x) : _M_pos(__x._M_pos), _M_root(__x._M_root) {} _Rope_char_ptr_proxy() {} _Rope_char_ptr_proxy(_CharT* __x) : _M_pos(0), _M_root(0) { _STLP_ASSERT(0 == __x) } _Self& operator= (const _Self& __x) { _M_pos = __x._M_pos; _M_root = __x._M_root; return *this; } _Rope_char_ref_proxy<_CharT,_Alloc> operator*() const { return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos); } }; /* * Rope iterators: * Unlike in the C version, we cache only part of the stack * for rope iterators, since they must be efficiently copyable. * When we run out of cache, we have to reconstruct the iterator * value. * Pointers from iterators are not included in reference counts. * Iterators are assumed to be thread private. Ropes can * be shared. */ template class _Rope_iterator_base /* : public random_access_iterator<_CharT, ptrdiff_t> */ { friend class rope<_CharT,_Alloc>; typedef _Rope_iterator_base<_CharT, _Alloc> _Self; typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcat; public: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; enum { _S_path_cache_len = 4 }; // Must be <= 9 because of _M_path_direction. enum { _S_iterator_buf_len = 15 }; size_t _M_current_pos; // The whole rope. _RopeRep* _M_root; // Starting position for current leaf size_t _M_leaf_pos; // Buffer possibly containing current char. _CharT* _M_buf_start; // Pointer to current char in buffer, != 0 ==> buffer valid. _CharT* _M_buf_ptr; // One past __last valid char in buffer. _CharT* _M_buf_end; // What follows is the path cache. We go out of our // way to make this compact. // Path_end contains the bottom section of the path from // the root to the current leaf. struct { # if defined (__BORLANDC__) && (__BORLANDC__ < 0x560) _RopeRep const*_M_data[4]; # else _RopeRep const*_M_data[_S_path_cache_len]; # endif } _M_path_end; // Last valid __pos in path_end; // _M_path_end[0] ... _M_path_end[_M_leaf_index-1] // point to concatenation nodes. int _M_leaf_index; // (_M_path_directions >> __i) & 1 is 1 // if we got from _M_path_end[leaf_index - __i - 1] // to _M_path_end[leaf_index - __i] by going to the // __right. Assumes path_cache_len <= 9. unsigned char _M_path_directions; // Short buffer for surrounding chars. // This is useful primarily for // RopeFunctions. We put the buffer // here to avoid locking in the // multithreaded case. // The cached path is generally assumed to be valid // only if the buffer is valid. struct { # if defined (__BORLANDC__) && (__BORLANDC__ < 0x560) _CharT _M_data[15]; # else _CharT _M_data[_S_iterator_buf_len]; # endif } _M_tmp_buf; // Set buffer contents given path cache. static void _S_setbuf(_Rope_iterator_base<_CharT, _Alloc>& __x); // Set buffer contents and path cache. static void _S_setcache(_Rope_iterator_base<_CharT, _Alloc>& __x); // As above, but assumes path cache is valid for previous posn. static void _S_setcache_for_incr(_Rope_iterator_base<_CharT, _Alloc>& __x); _Rope_iterator_base() {} _Rope_iterator_base(_RopeRep* __root, size_t __pos) : _M_current_pos(__pos),_M_root(__root), _M_buf_ptr(0) {} void _M_incr(size_t __n); void _M_decr(size_t __n); public: size_t index() const { return _M_current_pos; } private: void _M_copy_buf(const _Self& __x) { _M_tmp_buf = __x._M_tmp_buf; if (__x._M_buf_start == __x._M_tmp_buf._M_data) { _M_buf_start = _M_tmp_buf._M_data; _M_buf_end = _M_buf_start + (__x._M_buf_end - __x._M_buf_start); _M_buf_ptr = _M_buf_start + (__x._M_buf_ptr - __x._M_buf_start); } else { _M_buf_end = __x._M_buf_end; } } public: _Rope_iterator_base(const _Self& __x) : _M_current_pos(__x._M_current_pos), _M_root(__x._M_root), _M_leaf_pos( __x._M_leaf_pos ), _M_buf_start(__x._M_buf_start), _M_buf_ptr(__x._M_buf_ptr), _M_path_end(__x._M_path_end), _M_leaf_index(__x._M_leaf_index), _M_path_directions(__x._M_path_directions) { if (0 != __x._M_buf_ptr) { _M_copy_buf(__x); } } _Self& operator = (const _Self& __x) { _M_current_pos = __x._M_current_pos; _M_root = __x._M_root; _M_buf_start = __x._M_buf_start; _M_buf_ptr = __x._M_buf_ptr; _M_path_end = __x._M_path_end; _M_leaf_index = __x._M_leaf_index; _M_path_directions = __x._M_path_directions; _M_leaf_pos = __x._M_leaf_pos; if (0 != __x._M_buf_ptr) { _M_copy_buf(__x); } return *this; } }; template class _Rope_iterator; template class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> { friend class rope<_CharT,_Alloc>; typedef _Rope_const_iterator<_CharT, _Alloc> _Self; typedef _Rope_iterator_base<_CharT,_Alloc> _Base; // protected: public: # ifndef _STLP_HAS_NO_NAMESPACES typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; // The one from the base class may not be directly visible. # endif _Rope_const_iterator(const _RopeRep* __root, size_t __pos): _Rope_iterator_base<_CharT,_Alloc>(__CONST_CAST(_RopeRep*,__root), __pos) // Only nonconst iterators modify root ref count {} public: typedef _CharT reference; // Really a value. Returning a reference // Would be a mess, since it would have // to be included in refcount. typedef const _CharT* pointer; typedef _CharT value_type; typedef ptrdiff_t difference_type; typedef random_access_iterator_tag iterator_category; public: _Rope_const_iterator() {} _Rope_const_iterator(const _Self& __x) : _Rope_iterator_base<_CharT,_Alloc>(__x) { } _Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x): _Rope_iterator_base<_CharT,_Alloc>(__x) {} _Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) : _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr._M_data, __pos) {} _Self& operator= (const _Self& __x) { _Base::operator=(__x); return *this; } reference operator*() { if (0 == this->_M_buf_ptr) #if !defined (__DMC__) _S_setcache(*this); #else { _Rope_iterator_base<_CharT, _Alloc>* __x = this; _S_setcache(*__x); } #endif return *(this->_M_buf_ptr); } _Self& operator++() { if ( this->_M_buf_ptr != 0 ) { _CharT *__next = this->_M_buf_ptr + 1; if ( __next < this->_M_buf_end ) { this->_M_buf_ptr = __next; ++this->_M_current_pos; return *this; } } this->_M_incr(1); return *this; } _Self& operator+=(ptrdiff_t __n) { if (__n >= 0) { this->_M_incr(__n); } else { this->_M_decr(-__n); } return *this; } _Self& operator--() { this->_M_decr(1); return *this; } _Self& operator-=(ptrdiff_t __n) { if (__n >= 0) { this->_M_decr(__n); } else { this->_M_incr(-__n); } return *this; } _Self operator++(int) { size_t __old_pos = this->_M_current_pos; this->_M_incr(1); return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos); // This makes a subsequent dereference expensive. // Perhaps we should instead copy the iterator // if it has a valid cache? } _Self operator--(int) { size_t __old_pos = this->_M_current_pos; this->_M_decr(1); return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos); } inline reference operator[](size_t __n); }; template class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> { friend class rope<_CharT,_Alloc>; typedef _Rope_iterator<_CharT, _Alloc> _Self; typedef _Rope_iterator_base<_CharT,_Alloc> _Base; typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; public: rope<_CharT,_Alloc>* _M_root_rope; // root is treated as a cached version of this, // and is used to detect changes to the underlying // rope. // Root is included in the reference count. // This is necessary so that we can detect changes reliably. // Unfortunately, it requires careful bookkeeping for the // nonGC case. _Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos); void _M_check(); public: typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference; typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer; typedef _CharT value_type; typedef ptrdiff_t difference_type; typedef random_access_iterator_tag iterator_category; public: ~_Rope_iterator() { //*TY 5/6/00 - added dtor to balance reference count _RopeRep::_S_unref(this->_M_root); } rope<_CharT,_Alloc>& container() { return *_M_root_rope; } _Rope_iterator() { this->_M_root = 0; // Needed for reference counting. } _Rope_iterator(const _Self& __x) : _Rope_iterator_base<_CharT,_Alloc>(__x) { _M_root_rope = __x._M_root_rope; _RopeRep::_S_ref(this->_M_root); } _Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos); _Self& operator= (const _Self& __x) { _RopeRep* __old = this->_M_root; _RopeRep::_S_ref(__x._M_root); _Base::operator=(__x); _M_root_rope = __x._M_root_rope; _RopeRep::_S_unref(__old); return *this; } reference operator*() { _M_check(); if (0 == this->_M_buf_ptr) { return reference(_M_root_rope, this->_M_current_pos); } else { return reference(_M_root_rope, this->_M_current_pos, *(this->_M_buf_ptr)); } } _Self& operator++() { this->_M_incr(1); return *this; } _Self& operator+=(ptrdiff_t __n) { if (__n >= 0) { this->_M_incr(__n); } else { this->_M_decr(-__n); } return *this; } _Self& operator--() { this->_M_decr(1); return *this; } _Self& operator-=(ptrdiff_t __n) { if (__n >= 0) { this->_M_decr(__n); } else { this->_M_incr(-__n); } return *this; } _Self operator++(int) { size_t __old_pos = this->_M_current_pos; this->_M_incr(1); return _Self(_M_root_rope, __old_pos); } _Self operator--(int) { size_t __old_pos = this->_M_current_pos; this->_M_decr(1); return _Self(_M_root_rope, __old_pos); } reference operator[](ptrdiff_t __n) { return reference(_M_root_rope, this->_M_current_pos + __n); } }; # ifdef _STLP_USE_OLD_HP_ITERATOR_QUERIES template inline random_access_iterator_tag iterator_category(const _Rope_iterator<_CharT,_Alloc>&) { return random_access_iterator_tag();} template inline _CharT* value_type(const _Rope_iterator<_CharT,_Alloc>&) { return 0; } template inline ptrdiff_t* distance_type(const _Rope_iterator<_CharT,_Alloc>&) { return 0; } template inline random_access_iterator_tag iterator_category(const _Rope_const_iterator<_CharT,_Alloc>&) { return random_access_iterator_tag(); } template inline _CharT* value_type(const _Rope_const_iterator<_CharT,_Alloc>&) { return 0; } template inline ptrdiff_t* distance_type(const _Rope_const_iterator<_CharT,_Alloc>&) { return 0; } #endif /* _STLP_USE_OLD_HP_ITERATOR_QUERIES */ template bool _S_apply_to_pieces(_CharConsumer& __c, _Rope_RopeRep<_CharT, _Alloc> *__r, size_t __begin, size_t __end); // begin and end are assumed to be in range. template class rope #if defined (_STLP_USE_PARTIAL_SPEC_WORKAROUND) : public __stlport_class > #endif { typedef rope<_CharT,_Alloc> _Self; public: typedef _CharT value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef _CharT const_reference; typedef const _CharT* const_pointer; typedef _Rope_iterator<_CharT,_Alloc> iterator; typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator; typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference; typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer; friend class _Rope_iterator<_CharT,_Alloc>; friend class _Rope_const_iterator<_CharT,_Alloc>; friend struct _Rope_RopeRep<_CharT,_Alloc>; friend class _Rope_iterator_base<_CharT,_Alloc>; friend class _Rope_char_ptr_proxy<_CharT,_Alloc>; friend class _Rope_char_ref_proxy<_CharT,_Alloc>; friend struct _Rope_RopeSubstring<_CharT,_Alloc>; _STLP_DECLARE_RANDOM_ACCESS_REVERSE_ITERATORS; protected: typedef _CharT* _Cstrptr; static _CharT _S_empty_c_str[1]; enum { _S_copy_max = 23 }; // For strings shorter than _S_copy_max, we copy to // concatenate. typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep; typedef typename _RopeRep::_IsBasicCharType _IsBasicCharType; public: _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) typedef _Alloc allocator_type; public: // The only data member of a rope: _STLP_PRIV _STLP_alloc_proxy<_RopeRep*, _CharT, allocator_type> _M_tree_ptr; public: allocator_type get_allocator() const { return allocator_type(_M_tree_ptr); } public: typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation; typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf; typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction; typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring; // Retrieve a character at the indicated position. static _CharT _S_fetch(_RopeRep* __r, size_type __pos); // Obtain a pointer to the character at the indicated position. // The pointer can be used to change the character. // If such a pointer cannot be produced, as is frequently the // case, 0 is returned instead. // (Returns nonzero only if all nodes in the path have a refcount // of 1.) static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos); static void _S_unref(_RopeRep* __t) { _RopeRep::_S_unref(__t); } static void _S_ref(_RopeRep* __t) { _RopeRep::_S_ref(__t); } typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr; // _Result is counted in refcount. static _RopeRep* _S_substring(_RopeRep* __base, size_t __start, size_t __endp1); static _RopeRep* _S_concat_char_iter(_RopeRep* __r, const _CharT* __iter, size_t __slen); // Concatenate rope and char ptr, copying __s. // Should really take an arbitrary iterator. // Result is counted in refcount. static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r, const _CharT* __iter, size_t __slen); // As above, but one reference to __r is about to be // destroyed. Thus the pieces may be recycled if all // relevent reference counts are 1. // General concatenation on _RopeRep. _Result // has refcount of 1. Adjusts argument refcounts. static _RopeRep* _S_concat_rep(_RopeRep* __left, _RopeRep* __right); public: #if defined (_STLP_MEMBER_TEMPLATES) template #else typedef _Rope_char_consumer<_CharT> _CharConsumer; #endif void apply_to_pieces(size_t __begin, size_t __end, _CharConsumer& __c) const { _S_apply_to_pieces(__c, _M_tree_ptr._M_data, __begin, __end); } protected: static size_t _S_rounded_up_size(size_t __n) { return _RopeRep::_S_rounded_up_size(__n); } // Allocate and construct a RopeLeaf using the supplied allocator // Takes ownership of s instead of copying. static _RopeLeaf* _S_new_RopeLeaf(_CharT *__s, size_t _p_size, allocator_type __a) { _RopeLeaf* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a, _RopeLeaf).allocate(1); _STLP_TRY { new(__space) _RopeLeaf(__s, _p_size, __a); } _STLP_UNWIND(_STLP_CREATE_ALLOCATOR(allocator_type,__a, _RopeLeaf).deallocate(__space, 1)) return __space; } static _RopeConcatenation* _S_new_RopeConcatenation(_RopeRep* __left, _RopeRep* __right, allocator_type __a) { _RopeConcatenation* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a, _RopeConcatenation).allocate(1); return new(__space) _RopeConcatenation(__left, __right, __a); } static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f, size_t _p_size, bool __d, allocator_type __a) { _RopeFunction* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a, _RopeFunction).allocate(1); return new(__space) _RopeFunction(__f, _p_size, __d, __a); } static _RopeSubstring* _S_new_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s, size_t __l, allocator_type __a) { _RopeSubstring* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a, _RopeSubstring).allocate(1); return new(__space) _RopeSubstring(__b, __s, __l, __a); } static _RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s, size_t _p_size, allocator_type __a) { if (0 == _p_size) return 0; _CharT* __buf = _STLP_CREATE_ALLOCATOR(allocator_type,__a, _CharT).allocate(_S_rounded_up_size(_p_size)); _STLP_PRIV __ucopy_n(__s, _p_size, __buf); _S_construct_null(__buf + _p_size); _STLP_TRY { return _S_new_RopeLeaf(__buf, _p_size, __a); } _STLP_UNWIND(_RopeRep::_S_free_string(__buf, _p_size, __a)) _STLP_RET_AFTER_THROW(0) } // Concatenation of nonempty strings. // Always builds a concatenation node. // Rebalances if the result is too deep. // Result has refcount 1. // Does not increment left and right ref counts even though // they are referenced. static _RopeRep* _S_tree_concat(_RopeRep* __left, _RopeRep* __right); // Concatenation helper functions static _RopeLeaf* _S_leaf_concat_char_iter(_RopeLeaf* __r, const _CharT* __iter, size_t __slen); // Concatenate by copying leaf. // should take an arbitrary iterator // result has refcount 1. static _RopeLeaf* _S_destr_leaf_concat_char_iter (_RopeLeaf* __r, const _CharT* __iter, size_t __slen); // A version that potentially clobbers __r if __r->_M_ref_count == 1. // A helper function for exponentiating strings. // This uses a nonstandard refcount convention. // The result has refcount 0. typedef _STLP_PRIV _Rope_Concat_fn<_CharT,_Alloc> _Concat_fn; #if !defined (__GNUC__) || (__GNUC__ < 3) friend _Concat_fn; #else friend struct _STLP_PRIV _Rope_Concat_fn<_CharT,_Alloc>; #endif public: static size_t _S_char_ptr_len(const _CharT* __s) { return char_traits<_CharT>::length(__s); } public: /* for operators */ rope(_RopeRep* __t, const allocator_type& __a = allocator_type()) : _M_tree_ptr(__a, __t) { } private: // Copy __r to the _CharT buffer. // Returns __buffer + __r->_M_size._M_data. // Assumes that buffer is uninitialized. static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer); // Again, with explicit starting position and length. // Assumes that buffer is uninitialized. static _CharT* _S_flatten(_RopeRep* __r, size_t __start, size_t __len, _CharT* __buffer); // fbp : HP aCC prohibits access to protected min_len from within static methods ( ?? ) public: static const unsigned long _S_min_len[__ROPE_DEPTH_SIZE]; protected: static bool _S_is_balanced(_RopeRep* __r) { return (__r->_M_size._M_data >= _S_min_len[__r->_M_depth]); } static bool _S_is_almost_balanced(_RopeRep* __r) { return (__r->_M_depth == 0 || __r->_M_size._M_data >= _S_min_len[__r->_M_depth - 1]); } static bool _S_is_roughly_balanced(_RopeRep* __r) { return (__r->_M_depth <= 1 || __r->_M_size._M_data >= _S_min_len[__r->_M_depth - 2]); } // Assumes the result is not empty. static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left, _RopeRep* __right) { _RopeRep* __result = _S_concat_rep(__left, __right); if (_S_is_balanced(__result)) __result->_M_is_balanced = true; return __result; } // The basic rebalancing operation. Logically copies the // rope. The result has refcount of 1. The client will // usually decrement the reference count of __r. // The result is within height 2 of balanced by the above // definition. static _RopeRep* _S_balance(_RopeRep* __r); // Add all unbalanced subtrees to the forest of balanceed trees. // Used only by balance. static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest); // Add __r to forest, assuming __r is already balanced. static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest); #ifdef _STLP_DEBUG // Print to stdout, exposing structure static void _S_dump(_RopeRep* __r, int __indent = 0); #endif // Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp. static int _S_compare(const _RopeRep* __x, const _RopeRep* __y); void _STLP_FUNCTION_THROWS _M_throw_out_of_range() const; void _M_reset(_RopeRep* __r) { //if (__r != _M_tree_ptr._M_data) { _S_unref(_M_tree_ptr._M_data); _M_tree_ptr._M_data = __r; //} } public: bool empty() const { return 0 == _M_tree_ptr._M_data; } // Comparison member function. This is public only for those // clients that need a ternary comparison. Others // should use the comparison operators below. int compare(const _Self& __y) const { return _S_compare(_M_tree_ptr._M_data, __y._M_tree_ptr._M_data); } rope(const _CharT* __s, const allocator_type& __a = allocator_type()) : _M_tree_ptr(__a, _S_RopeLeaf_from_unowned_char_ptr(__s, _S_char_ptr_len(__s),__a)) {} rope(const _CharT* __s, size_t __len, const allocator_type& __a = allocator_type()) : _M_tree_ptr(__a, (_S_RopeLeaf_from_unowned_char_ptr(__s, __len, __a))) {} // Should perhaps be templatized with respect to the iterator type // and use Sequence_buffer. (It should perhaps use sequence_buffer // even now.) rope(const _CharT *__s, const _CharT *__e, const allocator_type& __a = allocator_type()) : _M_tree_ptr(__a, _S_RopeLeaf_from_unowned_char_ptr(__s, __e - __s, __a)) {} rope(const const_iterator& __s, const const_iterator& __e, const allocator_type& __a = allocator_type()) : _M_tree_ptr(__a, _S_substring(__s._M_root, __s._M_current_pos, __e._M_current_pos)) {} rope(const iterator& __s, const iterator& __e, const allocator_type& __a = allocator_type()) : _M_tree_ptr(__a, _S_substring(__s._M_root, __s._M_current_pos, __e._M_current_pos)) {} rope(_CharT __c, const allocator_type& __a = allocator_type()) : _M_tree_ptr(__a, (_RopeRep*)0) { _CharT* __buf = _M_tree_ptr.allocate(_S_rounded_up_size(1)); _Copy_Construct(__buf, __c); _S_construct_null(__buf + 1); _STLP_TRY { _M_tree_ptr._M_data = _S_new_RopeLeaf(__buf, 1, __a); } _STLP_UNWIND(_RopeRep::_S_free_string(__buf, 1, __a)) } rope(size_t __n, _CharT __c, const allocator_type& __a = allocator_type()): _M_tree_ptr(__a, (_RopeRep*)0) { if (0 == __n) return; rope<_CharT,_Alloc> __result; # define __exponentiate_threshold size_t(32) _RopeRep* __remainder; rope<_CharT,_Alloc> __remainder_rope; // gcc-2.7.2 bugs typedef _STLP_PRIV _Rope_Concat_fn<_CharT,_Alloc> _Concat_fn; size_t __exponent = __n / __exponentiate_threshold; size_t __rest = __n % __exponentiate_threshold; if (0 == __rest) { __remainder = 0; } else { _CharT* __rest_buffer = _M_tree_ptr.allocate(_S_rounded_up_size(__rest)); uninitialized_fill_n(__rest_buffer, __rest, __c); _S_construct_null(__rest_buffer + __rest); _STLP_TRY { __remainder = _S_new_RopeLeaf(__rest_buffer, __rest, __a); } _STLP_UNWIND(_RopeRep::_S_free_string(__rest_buffer, __rest, __a)) } __remainder_rope._M_tree_ptr._M_data = __remainder; if (__exponent != 0) { _CharT* __base_buffer = _M_tree_ptr.allocate(_S_rounded_up_size(__exponentiate_threshold)); _RopeLeaf* __base_leaf; rope<_CharT,_Alloc> __base_rope; uninitialized_fill_n(__base_buffer, __exponentiate_threshold, __c); _S_construct_null(__base_buffer + __exponentiate_threshold); _STLP_TRY { __base_leaf = _S_new_RopeLeaf(__base_buffer, __exponentiate_threshold, __a); } _STLP_UNWIND(_RopeRep::_S_free_string(__base_buffer, __exponentiate_threshold, __a)) __base_rope._M_tree_ptr._M_data = __base_leaf; if (1 == __exponent) { __result = __base_rope; // One each for base_rope and __result //_STLP_ASSERT(2 == __result._M_tree_ptr._M_data->_M_ref_count) } else { __result = _STLP_PRIV __power(__base_rope, __exponent, _Concat_fn()); } if (0 != __remainder) { __result += __remainder_rope; } } else { __result = __remainder_rope; } _M_tree_ptr._M_data = __result._M_tree_ptr._M_data; _M_tree_ptr._M_data->_M_ref_nonnil(); # undef __exponentiate_threshold } rope(const allocator_type& __a = allocator_type()) : _M_tree_ptr(__a, (_RopeRep*)0) {} // Construct a rope from a function that can compute its members rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn, const allocator_type& __a = allocator_type()) : _M_tree_ptr(__a, (_RopeRep*)0) { _M_tree_ptr._M_data = (0 == __len) ? 0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a); } rope(const _Self& __x) : _M_tree_ptr(__x._M_tree_ptr, __x._M_tree_ptr._M_data) { _S_ref(_M_tree_ptr._M_data); } #if !defined (_STLP_NO_MOVE_SEMANTIC) rope(__move_source<_Self> __src) : _M_tree_ptr(__src.get()._M_tree_ptr, __src.get()._M_tree_ptr._M_data) { __src.get()._M_tree_ptr._M_data = 0; } #endif ~rope() { _S_unref(_M_tree_ptr._M_data); } _Self& operator=(const _Self& __x) { _STLP_ASSERT(get_allocator() == __x.get_allocator()) _S_ref(__x._M_tree_ptr._M_data); _M_reset(__x._M_tree_ptr._M_data); return *this; } void clear() { _S_unref(_M_tree_ptr._M_data); _M_tree_ptr._M_data = 0; } void push_back(_CharT __x) { _M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, &__x, 1)); } void pop_back() { _RopeRep* __old = _M_tree_ptr._M_data; _M_tree_ptr._M_data = _S_substring(_M_tree_ptr._M_data, 0, _M_tree_ptr._M_data->_M_size._M_data - 1); _S_unref(__old); } _CharT back() const { return _S_fetch(_M_tree_ptr._M_data, _M_tree_ptr._M_data->_M_size._M_data - 1); } void push_front(_CharT __x) { _RopeRep* __old = _M_tree_ptr._M_data; _RopeRep* __left = _S_RopeLeaf_from_unowned_char_ptr(&__x, 1, _M_tree_ptr); _STLP_TRY { _M_tree_ptr._M_data = _S_concat_rep(__left, _M_tree_ptr._M_data); _S_unref(__old); _S_unref(__left); } _STLP_UNWIND(_S_unref(__left)) } void pop_front() { _RopeRep* __old = _M_tree_ptr._M_data; _M_tree_ptr._M_data = _S_substring(_M_tree_ptr._M_data, 1, _M_tree_ptr._M_data->_M_size._M_data); _S_unref(__old); } _CharT front() const { return _S_fetch(_M_tree_ptr._M_data, 0); } void balance() { _RopeRep* __old = _M_tree_ptr._M_data; _M_tree_ptr._M_data = _S_balance(_M_tree_ptr._M_data); _S_unref(__old); } void copy(_CharT* __buffer) const { _STLP_STD::_Destroy_Range(__buffer, __buffer + size()); _S_flatten(_M_tree_ptr._M_data, __buffer); } /* * This is the copy function from the standard, but * with the arguments reordered to make it consistent with the * rest of the interface. * Note that this guaranteed not to compile if the draft standard * order is assumed. */ size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const { size_t _p_size = size(); size_t __len = (__pos + __n > _p_size? _p_size - __pos : __n); _STLP_STD::_Destroy_Range(__buffer, __buffer + __len); _S_flatten(_M_tree_ptr._M_data, __pos, __len, __buffer); return __len; } # ifdef _STLP_DEBUG // Print to stdout, exposing structure. May be useful for // performance debugging. void dump() { _S_dump(_M_tree_ptr._M_data); } # endif // Convert to 0 terminated string in new allocated memory. // Embedded 0s in the input do not terminate the copy. const _CharT* c_str() const; // As above, but also use the flattened representation as the // the new rope representation. const _CharT* replace_with_c_str(); // Reclaim memory for the c_str generated flattened string. // Intentionally undocumented, since it's hard to say when this // is safe for multiple threads. void delete_c_str () { if (0 == _M_tree_ptr._M_data) return; if (_RopeRep::_S_leaf == _M_tree_ptr._M_data->_M_tag && ((_RopeLeaf*)_M_tree_ptr._M_data)->_M_data == _M_tree_ptr._M_data->_M_c_string) { // Representation shared return; } _M_tree_ptr._M_data->_M_free_c_string(); _M_tree_ptr._M_data->_M_c_string = 0; } _CharT operator[] (size_type __pos) const { return _S_fetch(_M_tree_ptr._M_data, __pos); } _CharT at(size_type __pos) const { if (__pos >= size()) _M_throw_out_of_range(); return (*this)[__pos]; } const_iterator begin() const { return(const_iterator(_M_tree_ptr._M_data, 0)); } // An easy way to get a const iterator from a non-const container. const_iterator const_begin() const { return(const_iterator(_M_tree_ptr._M_data, 0)); } const_iterator end() const { return(const_iterator(_M_tree_ptr._M_data, size())); } const_iterator const_end() const { return(const_iterator(_M_tree_ptr._M_data, size())); } size_type size() const { return(0 == _M_tree_ptr._M_data? 0 : _M_tree_ptr._M_data->_M_size._M_data); } size_type length() const { return size(); } size_type max_size() const { return _S_min_len[__ROPE_MAX_DEPTH-1] - 1; // Guarantees that the result can be sufficiently // balanced. Longer ropes will probably still work, // but it's harder to make guarantees. } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } const_reverse_iterator const_rbegin() const { return const_reverse_iterator(end()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } const_reverse_iterator const_rend() const { return const_reverse_iterator(begin()); } // The symmetric cases are intentionally omitted, since they're presumed // to be less common, and we don't handle them as well. // The following should really be templatized. // The first argument should be an input iterator or // forward iterator with value_type _CharT. _Self& append(const _CharT* __iter, size_t __n) { _M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, __iter, __n)); return *this; } _Self& append(const _CharT* __c_string) { size_t __len = _S_char_ptr_len(__c_string); append(__c_string, __len); return *this; } _Self& append(const _CharT* __s, const _CharT* __e) { _M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, __s, __e - __s)); return *this; } _Self& append(const_iterator __s, const_iterator __e) { _STLP_ASSERT(__s._M_root == __e._M_root) _STLP_ASSERT(get_allocator() == __s._M_root->get_allocator()) _Self_destruct_ptr __appendee(_S_substring(__s._M_root, __s._M_current_pos, __e._M_current_pos)); _M_reset(_S_concat_rep(_M_tree_ptr._M_data, (_RopeRep*)__appendee)); return *this; } _Self& append(_CharT __c) { _M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, &__c, 1)); return *this; } _Self& append() { return append(_CharT()); } // XXX why? _Self& append(const _Self& __y) { _STLP_ASSERT(__y.get_allocator() == get_allocator()) _M_reset(_S_concat_rep(_M_tree_ptr._M_data, __y._M_tree_ptr._M_data)); return *this; } _Self& append(size_t __n, _CharT __c) { rope<_CharT,_Alloc> __last(__n, __c); return append(__last); } void swap(_Self& __b) { _M_tree_ptr.swap(__b._M_tree_ptr); } #if defined (_STLP_USE_PARTIAL_SPEC_WORKAROUND) && !defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER) void _M_swap_workaround(_Self& __x) { swap(__x); } #endif protected: // Result is included in refcount. static _RopeRep* replace(_RopeRep* __old, size_t __pos1, size_t __pos2, _RopeRep* __r) { if (0 == __old) { _S_ref(__r); return __r; } _Self_destruct_ptr __left(_S_substring(__old, 0, __pos1)); _Self_destruct_ptr __right(_S_substring(__old, __pos2, __old->_M_size._M_data)); _STLP_MPWFIX_TRY //*TY 06/01/2000 - _RopeRep* __result; if (0 == __r) { __result = _S_concat_rep(__left, __right); } else { _STLP_ASSERT(__old->get_allocator() == __r->get_allocator()) _Self_destruct_ptr __left_result(_S_concat_rep(__left, __r)); __result = _S_concat_rep(__left_result, __right); } return __result; _STLP_MPWFIX_CATCH //*TY 06/01/2000 - } public: void insert(size_t __p, const _Self& __r) { if (__p > size()) _M_throw_out_of_range(); _STLP_ASSERT(get_allocator() == __r.get_allocator()) _M_reset(replace(_M_tree_ptr._M_data, __p, __p, __r._M_tree_ptr._M_data)); } void insert(size_t __p, size_t __n, _CharT __c) { rope<_CharT,_Alloc> __r(__n,__c); insert(__p, __r); } void insert(size_t __p, const _CharT* __i, size_t __n) { if (__p > size()) _M_throw_out_of_range(); _Self_destruct_ptr __left(_S_substring(_M_tree_ptr._M_data, 0, __p)); _Self_destruct_ptr __right(_S_substring(_M_tree_ptr._M_data, __p, size())); _Self_destruct_ptr __left_result( _S_concat_char_iter(__left, __i, __n)); // _S_ destr_concat_char_iter should be safe here. // But as it stands it's probably not a win, since __left // is likely to have additional references. _M_reset(_S_concat_rep(__left_result, __right)); } void insert(size_t __p, const _CharT* __c_string) { insert(__p, __c_string, _S_char_ptr_len(__c_string)); } void insert(size_t __p, _CharT __c) { insert(__p, &__c, 1); } void insert(size_t __p) { _CharT __c = _CharT(); insert(__p, &__c, 1); } void insert(size_t __p, const _CharT* __i, const _CharT* __j) { _Self __r(__i, __j); insert(__p, __r); } void insert(size_t __p, const const_iterator& __i, const const_iterator& __j) { _Self __r(__i, __j); insert(__p, __r); } void insert(size_t __p, const iterator& __i, const iterator& __j) { _Self __r(__i, __j); insert(__p, __r); } // (position, length) versions of replace operations: void replace(size_t __p, size_t __n, const _Self& __r) { if (__p > size()) _M_throw_out_of_range(); _M_reset(replace(_M_tree_ptr._M_data, __p, __p + __n, __r._M_tree_ptr._M_data)); } void replace(size_t __p, size_t __n, const _CharT* __i, size_t __i_len) { _Self __r(__i, __i_len); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, _CharT __c) { _Self __r(__c); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, const _CharT* __c_string) { _Self __r(__c_string); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, const _CharT* __i, const _CharT* __j) { _Self __r(__i, __j); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, const const_iterator& __i, const const_iterator& __j) { _Self __r(__i, __j); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, const iterator& __i, const iterator& __j) { _Self __r(__i, __j); replace(__p, __n, __r); } // Single character variants: void replace(size_t __p, _CharT __c) { if (__p > size()) _M_throw_out_of_range(); iterator __i(this, __p); *__i = __c; } void replace(size_t __p, const _Self& __r) { replace(__p, 1, __r); } void replace(size_t __p, const _CharT* __i, size_t __i_len) { replace(__p, 1, __i, __i_len); } void replace(size_t __p, const _CharT* __c_string) { replace(__p, 1, __c_string); } void replace(size_t __p, const _CharT* __i, const _CharT* __j) { replace(__p, 1, __i, __j); } void replace(size_t __p, const const_iterator& __i, const const_iterator& __j) { replace(__p, 1, __i, __j); } void replace(size_t __p, const iterator& __i, const iterator& __j) { replace(__p, 1, __i, __j); } // Erase, (position, size) variant. void erase(size_t __p, size_t __n) { if (__p > size()) _M_throw_out_of_range(); _M_reset(replace(_M_tree_ptr._M_data, __p, __p + __n, 0)); } // Erase, single character void erase(size_t __p) { erase(__p, __p + 1); } // Insert, iterator variants. iterator insert(const iterator& __p, const _Self& __r) { insert(__p.index(), __r); return __p; } iterator insert(const iterator& __p, size_t __n, _CharT __c) { insert(__p.index(), __n, __c); return __p; } iterator insert(const iterator& __p, _CharT __c) { insert(__p.index(), __c); return __p; } iterator insert(const iterator& __p ) { insert(__p.index()); return __p; } iterator insert(const iterator& __p, const _CharT* c_string) { insert(__p.index(), c_string); return __p; } iterator insert(const iterator& __p, const _CharT* __i, size_t __n) { insert(__p.index(), __i, __n); return __p; } iterator insert(const iterator& __p, const _CharT* __i, const _CharT* __j) { insert(__p.index(), __i, __j); return __p; } iterator insert(const iterator& __p, const const_iterator& __i, const const_iterator& __j) { insert(__p.index(), __i, __j); return __p; } iterator insert(const iterator& __p, const iterator& __i, const iterator& __j) { insert(__p.index(), __i, __j); return __p; } // Replace, range variants. void replace(const iterator& __p, const iterator& __q, const _Self& __r) { replace(__p.index(), __q.index() - __p.index(), __r); } void replace(const iterator& __p, const iterator& __q, _CharT __c) { replace(__p.index(), __q.index() - __p.index(), __c); } void replace(const iterator& __p, const iterator& __q, const _CharT* __c_string) { replace(__p.index(), __q.index() - __p.index(), __c_string); } void replace(const iterator& __p, const iterator& __q, const _CharT* __i, size_t __n) { replace(__p.index(), __q.index() - __p.index(), __i, __n); } void replace(const iterator& __p, const iterator& __q, const _CharT* __i, const _CharT* __j) { replace(__p.index(), __q.index() - __p.index(), __i, __j); } void replace(const iterator& __p, const iterator& __q, const const_iterator& __i, const const_iterator& __j) { replace(__p.index(), __q.index() - __p.index(), __i, __j); } void replace(const iterator& __p, const iterator& __q, const iterator& __i, const iterator& __j) { replace(__p.index(), __q.index() - __p.index(), __i, __j); } // Replace, iterator variants. void replace(const iterator& __p, const _Self& __r) { replace(__p.index(), __r); } void replace(const iterator& __p, _CharT __c) { replace(__p.index(), __c); } void replace(const iterator& __p, const _CharT* __c_string) { replace(__p.index(), __c_string); } void replace(const iterator& __p, const _CharT* __i, size_t __n) { replace(__p.index(), __i, __n); } void replace(const iterator& __p, const _CharT* __i, const _CharT* __j) { replace(__p.index(), __i, __j); } void replace(const iterator& __p, const_iterator __i, const_iterator __j) { replace(__p.index(), __i, __j); } void replace(const iterator& __p, iterator __i, iterator __j) { replace(__p.index(), __i, __j); } // Iterator and range variants of erase iterator erase(const iterator& __p, const iterator& __q) { size_t __p_index = __p.index(); erase(__p_index, __q.index() - __p_index); return iterator(this, __p_index); } iterator erase(const iterator& __p) { size_t __p_index = __p.index(); erase(__p_index, 1); return iterator(this, __p_index); } _Self substr(size_t __start, size_t __len = 1) const { if (__start > size()) _M_throw_out_of_range(); return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __start, __start + __len)); } _Self substr(iterator __start, iterator __end) const { return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __start.index(), __end.index())); } _Self substr(iterator __start) const { size_t __pos = __start.index(); return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __pos, __pos + 1)); } _Self substr(const_iterator __start, const_iterator __end) const { // This might eventually take advantage of the cache in the // iterator. return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __start.index(), __end.index())); } rope<_CharT,_Alloc> substr(const_iterator __start) { size_t __pos = __start.index(); return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __pos, __pos + 1)); } #include size_type find(const _Self& __s, size_type __pos = 0) const { if (__pos >= size()) # ifndef _STLP_OLD_ROPE_SEMANTICS return npos; # else return size(); # endif size_type __result_pos; const_iterator __result = _STLP_STD::search(const_begin() + (ptrdiff_t)__pos, const_end(), __s.begin(), __s.end() ); __result_pos = __result.index(); # ifndef _STLP_OLD_ROPE_SEMANTICS if (__result_pos == size()) __result_pos = npos; # endif return __result_pos; } size_type find(_CharT __c, size_type __pos = 0) const; size_type find(const _CharT* __s, size_type __pos = 0) const { size_type __result_pos; const_iterator __result = _STLP_STD::search(const_begin() + (ptrdiff_t)__pos, const_end(), __s, __s + _S_char_ptr_len(__s)); __result_pos = __result.index(); # ifndef _STLP_OLD_ROPE_SEMANTICS if (__result_pos == size()) __result_pos = npos; # endif return __result_pos; } iterator mutable_begin() { return(iterator(this, 0)); } iterator mutable_end() { return(iterator(this, size())); } reverse_iterator mutable_rbegin() { return reverse_iterator(mutable_end()); } reverse_iterator mutable_rend() { return reverse_iterator(mutable_begin()); } reference mutable_reference_at(size_type __pos) { return reference(this, __pos); } # ifdef __STD_STUFF reference operator[] (size_type __pos) { return reference(this, __pos); } reference at(size_type __pos) { if (__pos >= size()) _M_throw_out_of_range(); return (*this)[__pos]; } void resize(size_type, _CharT) {} void resize(size_type) {} void reserve(size_type = 0) {} size_type capacity() const { return max_size(); } // Stuff below this line is dangerous because it's error prone. // I would really like to get rid of it. // copy function with funny arg ordering. size_type copy(_CharT* __buffer, size_type __n, size_type __pos = 0) const { return copy(__pos, __n, __buffer); } iterator end() { return mutable_end(); } iterator begin() { return mutable_begin(); } reverse_iterator rend() { return mutable_rend(); } reverse_iterator rbegin() { return mutable_rbegin(); } # else const_iterator end() { return const_end(); } const_iterator begin() { return const_begin(); } const_reverse_iterator rend() { return const_rend(); } const_reverse_iterator rbegin() { return const_rbegin(); } # endif }; //class rope #if defined (__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ == 96) template const size_t rope<_CharT, _Alloc>::npos = ~(size_t) 0; #endif template inline _CharT _Rope_const_iterator< _CharT, _Alloc>::operator[](size_t __n) { return rope<_CharT,_Alloc>::_S_fetch(this->_M_root, this->_M_current_pos + __n); } template inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return (__x._M_current_pos == __y._M_current_pos && __x._M_root == __y._M_root); } template inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return (__x._M_current_pos < __y._M_current_pos); } #ifdef _STLP_USE_SEPARATE_RELOPS_NAMESPACE template inline bool operator!= (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return !(__x == __y); } template inline bool operator> (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return __y < __x; } template inline bool operator<= (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return !(__y < __x); } template inline bool operator>= (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return !(__x < __y); } #endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */ template inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; } #if !defined( __MWERKS__ ) || __MWERKS__ >= 0x2000 // dwa 8/21/97 - "ambiguous access to overloaded function" bug. template inline _Rope_const_iterator<_CharT,_Alloc> operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) { return _Rope_const_iterator<_CharT,_Alloc>(__x._M_root, __x._M_current_pos - __n); } # endif template inline _Rope_const_iterator<_CharT,_Alloc> operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) { return _Rope_const_iterator<_CharT,_Alloc>(__x._M_root, __x._M_current_pos + __n); } template inline _Rope_const_iterator<_CharT,_Alloc> operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x) { return _Rope_const_iterator<_CharT,_Alloc>(__x._M_root, __x._M_current_pos + __n); } template inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return (__x._M_current_pos == __y._M_current_pos && __x._M_root_rope == __y._M_root_rope); } template inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return (__x._M_current_pos < __y._M_current_pos); } #if defined (_STLP_USE_SEPARATE_RELOPS_NAMESPACE) template inline bool operator!= (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return !(__x == __y); } template inline bool operator> (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return __y < __x; } template inline bool operator<= (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return !(__y < __x); } template inline bool operator>= (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return !(__x < __y); } #endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */ template inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; } #if !defined( __MWERKS__ ) || __MWERKS__ >= 0x2000 // dwa 8/21/97 - "ambiguous access to overloaded function" bug. template inline _Rope_iterator<_CharT,_Alloc> operator-(const _Rope_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) { return _Rope_iterator<_CharT,_Alloc>(__x._M_root_rope, __x._M_current_pos - __n); } # endif template inline _Rope_iterator<_CharT,_Alloc> operator+(const _Rope_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) { return _Rope_iterator<_CharT,_Alloc>(__x._M_root_rope, __x._M_current_pos + __n); } template inline _Rope_iterator<_CharT,_Alloc> operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) { return _Rope_iterator<_CharT,_Alloc>(__x._M_root_rope, __x._M_current_pos + __n); } template inline rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left, const rope<_CharT,_Alloc>& __right) { _STLP_ASSERT(__left.get_allocator() == __right.get_allocator()) return rope<_CharT,_Alloc>(rope<_CharT,_Alloc>::_S_concat_rep(__left._M_tree_ptr._M_data, __right._M_tree_ptr._M_data)); // Inlining this should make it possible to keep __left and __right in registers. } template inline rope<_CharT,_Alloc>& operator+= (rope<_CharT,_Alloc>& __left, const rope<_CharT,_Alloc>& __right) { __left.append(__right); return __left; } template inline rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left, const _CharT* __right) { size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right); return rope<_CharT,_Alloc>(rope<_CharT,_Alloc>::_S_concat_char_iter(__left._M_tree_ptr._M_data, __right, __rlen)); } template inline rope<_CharT,_Alloc>& operator+= (rope<_CharT,_Alloc>& __left, const _CharT* __right) { __left.append(__right); return __left; } template inline rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) { return rope<_CharT,_Alloc>(rope<_CharT,_Alloc>::_S_concat_char_iter(__left._M_tree_ptr._M_data, &__right, 1)); } template inline rope<_CharT,_Alloc>& operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) { __left.append(__right); return __left; } template inline bool operator< (const rope<_CharT,_Alloc>& __left, const rope<_CharT,_Alloc>& __right) { return __left.compare(__right) < 0; } template inline bool operator== (const rope<_CharT,_Alloc>& __left, const rope<_CharT,_Alloc>& __right) { return __left.compare(__right) == 0; } #ifdef _STLP_USE_SEPARATE_RELOPS_NAMESPACE template inline bool operator!= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return !(__x == __y); } template inline bool operator> (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return __y < __x; } template inline bool operator<= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return !(__y < __x); } template inline bool operator>= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return !(__x < __y); } template inline bool operator!= (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x, const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) { return !(__x == __y); } #endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */ template inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x, const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) { return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root); } #if !defined (_STLP_USE_NO_IOSTREAMS) template basic_ostream<_CharT, _Traits>& operator<< (basic_ostream<_CharT, _Traits>& __o, const rope<_CharT, _Alloc>& __r); #endif typedef rope > crope; #if defined (_STLP_HAS_WCHAR_T) typedef rope > wrope; #endif inline crope::reference __mutable_reference_at(crope& __c, size_t __i) { return __c.mutable_reference_at(__i); } #if defined (_STLP_HAS_WCHAR_T) inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i) { return __c.mutable_reference_at(__i); } #endif #if defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER) template inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y) { __x.swap(__y); } #else inline void swap(crope& __x, crope& __y) { __x.swap(__y); } # ifdef _STLP_HAS_WCHAR_T // dwa 8/21/97 inline void swap(wrope& __x, wrope& __y) { __x.swap(__y); } # endif #endif /* _STLP_FUNCTION_TMPL_PARTIAL_ORDER */ // Hash functions should probably be revisited later: _STLP_TEMPLATE_NULL struct hash { size_t operator()(const crope& __str) const { size_t _p_size = __str.size(); if (0 == _p_size) return 0; return 13*__str[0] + 5*__str[_p_size - 1] + _p_size; } }; #if defined (_STLP_HAS_WCHAR_T) // dwa 8/21/97 _STLP_TEMPLATE_NULL struct hash { size_t operator()(const wrope& __str) const { size_t _p_size = __str.size(); if (0 == _p_size) return 0; return 13*__str[0] + 5*__str[_p_size - 1] + _p_size; } }; #endif #if (!defined (_STLP_MSVC) || (_STLP_MSVC >= 1310)) // I couldn't get this to work with VC++ template # if defined (__DMC__) extern # endif void _Rope_rotate(_Rope_iterator<_CharT, _Alloc> __first, _Rope_iterator<_CharT, _Alloc> __middle, _Rope_iterator<_CharT, _Alloc> __last); inline void rotate(_Rope_iterator > __first, _Rope_iterator > __middle, _Rope_iterator > __last) { _Rope_rotate(__first, __middle, __last); } #endif template inline _Rope_char_ref_proxy<_CharT, _Alloc>::operator _CharT () const { if (_M_current_valid) { return _M_current; } else { return _My_rope::_S_fetch(_M_root->_M_tree_ptr._M_data, _M_pos); } } #if defined (_STLP_CLASS_PARTIAL_SPECIALIZATION) && !defined (_STLP_NO_MOVE_SEMANTIC) template struct __move_traits > { typedef __true_type implemented; //Completness depends on the allocator: typedef typename __move_traits<_Alloc>::complete complete; }; #endif _STLP_END_NAMESPACE #if !defined (_STLP_LINK_TIME_INSTANTIATION) # include #endif #endif /* _STLP_INTERNAL_ROPE_H */ // Local Variables: // mode:C++ // End: