/* * * * Copyright (c) 1994 * Hewlett-Packard Company * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Copyright (c) 1997 * Moscow Center for SPARC Technology * * Copyright (c) 1999 * Boris Fomitchev * * This material is provided "as is", with absolutely no warranty expressed * or implied. Any use is at your own risk. * * Permission to use or copy this software for any purpose is hereby granted * without fee, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * * Modified CRP 7/10/00 for improved conformance / efficiency on insert_unique / * insert_equal with valid hint -- efficiency is improved all around, and it is * should now be standard conforming for complexity on insert point immediately * after hint (amortized constant time). * */ #ifndef _STLP_TREE_C #define _STLP_TREE_C #ifndef _STLP_INTERNAL_TREE_H # include #endif #if defined (_STLP_DEBUG) # define _Rb_tree _STLP_NON_DBG_NAME(Rb_tree) #endif // fbp: these defines are for outline methods definitions. // needed for definitions to be portable. Should not be used in method bodies. #if defined (_STLP_NESTED_TYPE_PARAM_BUG) # define __iterator__ _Rb_tree_iterator<_Value, _STLP_HEADER_TYPENAME _Traits::_NonConstTraits> # define __size_type__ size_t # define iterator __iterator__ #else # define __iterator__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::iterator # define __size_type__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::size_type #endif _STLP_BEGIN_NAMESPACE _STLP_MOVE_TO_PRIV_NAMESPACE #if defined (_STLP_EXPOSE_GLOBALS_IMPLEMENTATION) template void _STLP_CALL _Rb_global<_Dummy>::_Rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root) { _Rb_tree_node_base* __y = __x->_M_right; __x->_M_right = __y->_M_left; if (__y->_M_left != 0) __y->_M_left->_M_parent = __x; __y->_M_parent = __x->_M_parent; if (__x == __root) __root = __y; else if (__x == __x->_M_parent->_M_left) __x->_M_parent->_M_left = __y; else __x->_M_parent->_M_right = __y; __y->_M_left = __x; __x->_M_parent = __y; } template void _STLP_CALL _Rb_global<_Dummy>::_Rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root) { _Rb_tree_node_base* __y = __x->_M_left; __x->_M_left = __y->_M_right; if (__y->_M_right != 0) __y->_M_right->_M_parent = __x; __y->_M_parent = __x->_M_parent; if (__x == __root) __root = __y; else if (__x == __x->_M_parent->_M_right) __x->_M_parent->_M_right = __y; else __x->_M_parent->_M_left = __y; __y->_M_right = __x; __x->_M_parent = __y; } template void _STLP_CALL _Rb_global<_Dummy>::_Rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root) { __x->_M_color = _S_rb_tree_red; while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) { if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) { _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right; if (__y && __y->_M_color == _S_rb_tree_red) { __x->_M_parent->_M_color = _S_rb_tree_black; __y->_M_color = _S_rb_tree_black; __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; __x = __x->_M_parent->_M_parent; } else { if (__x == __x->_M_parent->_M_right) { __x = __x->_M_parent; _Rotate_left(__x, __root); } __x->_M_parent->_M_color = _S_rb_tree_black; __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; _Rotate_right(__x->_M_parent->_M_parent, __root); } } else { _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left; if (__y && __y->_M_color == _S_rb_tree_red) { __x->_M_parent->_M_color = _S_rb_tree_black; __y->_M_color = _S_rb_tree_black; __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; __x = __x->_M_parent->_M_parent; } else { if (__x == __x->_M_parent->_M_left) { __x = __x->_M_parent; _Rotate_right(__x, __root); } __x->_M_parent->_M_color = _S_rb_tree_black; __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; _Rotate_left(__x->_M_parent->_M_parent, __root); } } } __root->_M_color = _S_rb_tree_black; } template _Rb_tree_node_base* _STLP_CALL _Rb_global<_Dummy>::_Rebalance_for_erase(_Rb_tree_node_base* __z, _Rb_tree_node_base*& __root, _Rb_tree_node_base*& __leftmost, _Rb_tree_node_base*& __rightmost) { _Rb_tree_node_base* __y = __z; _Rb_tree_node_base* __x; _Rb_tree_node_base* __x_parent; if (__y->_M_left == 0) // __z has at most one non-null child. y == z. __x = __y->_M_right; // __x might be null. else { if (__y->_M_right == 0) // __z has exactly one non-null child. y == z. __x = __y->_M_left; // __x is not null. else { // __z has two non-null children. Set __y to __y = _Rb_tree_node_base::_S_minimum(__y->_M_right); // __z's successor. __x might be null. __x = __y->_M_right; } } if (__y != __z) { // relink y in place of z. y is z's successor __z->_M_left->_M_parent = __y; __y->_M_left = __z->_M_left; if (__y != __z->_M_right) { __x_parent = __y->_M_parent; if (__x) __x->_M_parent = __y->_M_parent; __y->_M_parent->_M_left = __x; // __y must be a child of _M_left __y->_M_right = __z->_M_right; __z->_M_right->_M_parent = __y; } else __x_parent = __y; if (__root == __z) __root = __y; else if (__z->_M_parent->_M_left == __z) __z->_M_parent->_M_left = __y; else __z->_M_parent->_M_right = __y; __y->_M_parent = __z->_M_parent; _STLP_STD::swap(__y->_M_color, __z->_M_color); __y = __z; // __y now points to node to be actually deleted } else { // __y == __z __x_parent = __y->_M_parent; if (__x) __x->_M_parent = __y->_M_parent; if (__root == __z) __root = __x; else { if (__z->_M_parent->_M_left == __z) __z->_M_parent->_M_left = __x; else __z->_M_parent->_M_right = __x; } if (__leftmost == __z) { if (__z->_M_right == 0) // __z->_M_left must be null also __leftmost = __z->_M_parent; // makes __leftmost == _M_header if __z == __root else __leftmost = _Rb_tree_node_base::_S_minimum(__x); } if (__rightmost == __z) { if (__z->_M_left == 0) // __z->_M_right must be null also __rightmost = __z->_M_parent; // makes __rightmost == _M_header if __z == __root else // __x == __z->_M_left __rightmost = _Rb_tree_node_base::_S_maximum(__x); } } if (__y->_M_color != _S_rb_tree_red) { while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black)) if (__x == __x_parent->_M_left) { _Rb_tree_node_base* __w = __x_parent->_M_right; if (__w->_M_color == _S_rb_tree_red) { __w->_M_color = _S_rb_tree_black; __x_parent->_M_color = _S_rb_tree_red; _Rotate_left(__x_parent, __root); __w = __x_parent->_M_right; } if ((__w->_M_left == 0 || __w->_M_left->_M_color == _S_rb_tree_black) && (__w->_M_right == 0 || __w->_M_right->_M_color == _S_rb_tree_black)) { __w->_M_color = _S_rb_tree_red; __x = __x_parent; __x_parent = __x_parent->_M_parent; } else { if (__w->_M_right == 0 || __w->_M_right->_M_color == _S_rb_tree_black) { if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black; __w->_M_color = _S_rb_tree_red; _Rotate_right(__w, __root); __w = __x_parent->_M_right; } __w->_M_color = __x_parent->_M_color; __x_parent->_M_color = _S_rb_tree_black; if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black; _Rotate_left(__x_parent, __root); break; } } else { // same as above, with _M_right <-> _M_left. _Rb_tree_node_base* __w = __x_parent->_M_left; if (__w->_M_color == _S_rb_tree_red) { __w->_M_color = _S_rb_tree_black; __x_parent->_M_color = _S_rb_tree_red; _Rotate_right(__x_parent, __root); __w = __x_parent->_M_left; } if ((__w->_M_right == 0 || __w->_M_right->_M_color == _S_rb_tree_black) && (__w->_M_left == 0 || __w->_M_left->_M_color == _S_rb_tree_black)) { __w->_M_color = _S_rb_tree_red; __x = __x_parent; __x_parent = __x_parent->_M_parent; } else { if (__w->_M_left == 0 || __w->_M_left->_M_color == _S_rb_tree_black) { if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black; __w->_M_color = _S_rb_tree_red; _Rotate_left(__w, __root); __w = __x_parent->_M_left; } __w->_M_color = __x_parent->_M_color; __x_parent->_M_color = _S_rb_tree_black; if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black; _Rotate_right(__x_parent, __root); break; } } if (__x) __x->_M_color = _S_rb_tree_black; } return __y; } template _Rb_tree_node_base* _STLP_CALL _Rb_global<_Dummy>::_M_decrement(_Rb_tree_node_base* _M_node) { if (_M_node->_M_color == _S_rb_tree_red && _M_node->_M_parent->_M_parent == _M_node) _M_node = _M_node->_M_right; else if (_M_node->_M_left != 0) { _M_node = _Rb_tree_node_base::_S_maximum(_M_node->_M_left); } else { _Base_ptr __y = _M_node->_M_parent; while (_M_node == __y->_M_left) { _M_node = __y; __y = __y->_M_parent; } _M_node = __y; } return _M_node; } template _Rb_tree_node_base* _STLP_CALL _Rb_global<_Dummy>::_M_increment(_Rb_tree_node_base* _M_node) { if (_M_node->_M_right != 0) { _M_node = _Rb_tree_node_base::_S_minimum(_M_node->_M_right); } else { _Base_ptr __y = _M_node->_M_parent; while (_M_node == __y->_M_right) { _M_node = __y; __y = __y->_M_parent; } // check special case: This is necessary if _M_node is the // _M_head and the tree contains only a single node __y. In // that case parent, left and right all point to __y! if (_M_node->_M_right != __y) _M_node = __y; } return _M_node; } #endif /* _STLP_EXPOSE_GLOBALS_IMPLEMENTATION */ template _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>& _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::operator=( const _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>& __x) { if (this != &__x) { // Note that _Key may be a constant type. clear(); _M_node_count = 0; _M_key_compare = __x._M_key_compare; if (__x._M_root() == 0) { _M_root() = 0; _M_leftmost() = &this->_M_header._M_data; _M_rightmost() = &this->_M_header._M_data; } else { _M_root() = _M_copy(__x._M_root(), &this->_M_header._M_data); _M_leftmost() = _S_minimum(_M_root()); _M_rightmost() = _S_maximum(_M_root()); _M_node_count = __x._M_node_count; } } return *this; } // CRP 7/10/00 inserted argument __on_right, which is another hint (meant to // act like __on_left and ignore a portion of the if conditions -- specify // __on_right != 0 to bypass comparison as false or __on_left != 0 to bypass // comparison as true) template __iterator__ _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_insert(_Rb_tree_node_base * __parent, const _Value& __val, _Rb_tree_node_base * __on_left, _Rb_tree_node_base * __on_right) { // We do not create the node here as, depending on tests, we might call // _M_key_compare that can throw an exception. _Base_ptr __new_node; if ( __parent == &this->_M_header._M_data ) { __new_node = _M_create_node(__val); _S_left(__parent) = __new_node; // also makes _M_leftmost() = __new_node _M_root() = __new_node; _M_rightmost() = __new_node; } else if ( __on_right == 0 && // If __on_right != 0, the remainder fails to false ( __on_left != 0 || // If __on_left != 0, the remainder succeeds to true _M_key_compare( _KeyOfValue()(__val), _S_key(__parent) ) ) ) { __new_node = _M_create_node(__val); _S_left(__parent) = __new_node; if (__parent == _M_leftmost()) _M_leftmost() = __new_node; // maintain _M_leftmost() pointing to min node } else { __new_node = _M_create_node(__val); _S_right(__parent) = __new_node; if (__parent == _M_rightmost()) _M_rightmost() = __new_node; // maintain _M_rightmost() pointing to max node } _S_parent(__new_node) = __parent; _Rb_global_inst::_Rebalance(__new_node, this->_M_header._M_data._M_parent); ++_M_node_count; return iterator(__new_node); } template __iterator__ _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(const _Value& __val) { _Base_ptr __y = &this->_M_header._M_data; _Base_ptr __x = _M_root(); while (__x != 0) { __y = __x; if (_M_key_compare(_KeyOfValue()(__val), _S_key(__x))) { __x = _S_left(__x); } else __x = _S_right(__x); } return _M_insert(__y, __val, __x); } template pair<__iterator__, bool> _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(const _Value& __val) { _Base_ptr __y = &this->_M_header._M_data; _Base_ptr __x = _M_root(); bool __comp = true; while (__x != 0) { __y = __x; __comp = _M_key_compare(_KeyOfValue()(__val), _S_key(__x)); __x = __comp ? _S_left(__x) : _S_right(__x); } iterator __j = iterator(__y); if (__comp) { if (__j == begin()) return pair(_M_insert(__y, __val, /* __x*/ __y), true); else --__j; } if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__val))) { return pair(_M_insert(__y, __val, __x), true); } return pair(__j, false); } // Modifications CRP 7/10/00 as noted to improve conformance and // efficiency. template __iterator__ _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(iterator __position, const _Value& __val) { if (__position._M_node == this->_M_header._M_data._M_left) { // begin() // if the container is empty, fall back on insert_unique. if (empty()) return insert_unique(__val).first; if (_M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node))) { return _M_insert(__position._M_node, __val, __position._M_node); } // first argument just needs to be non-null else { bool __comp_pos_v = _M_key_compare( _S_key(__position._M_node), _KeyOfValue()(__val) ); if (__comp_pos_v == false) // compare > and compare < both false so compare equal return __position; //Below __comp_pos_v == true // Standard-conformance - does the insertion point fall immediately AFTER // the hint? iterator __after = __position; ++__after; // Check for only one member -- in that case, __position points to itself, // and attempting to increment will cause an infinite loop. if (__after._M_node == &this->_M_header._M_data) // Check guarantees exactly one member, so comparison was already // performed and we know the result; skip repeating it in _M_insert // by specifying a non-zero fourth argument. return _M_insert(__position._M_node, __val, 0, __position._M_node); // All other cases: // Optimization to catch insert-equivalent -- save comparison results, // and we get this for free. if (_M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) )) { if (_S_right(__position._M_node) == 0) return _M_insert(__position._M_node, __val, 0, __position._M_node); else return _M_insert(__after._M_node, __val, __after._M_node); } else { return insert_unique(__val).first; } } } else if (__position._M_node == &this->_M_header._M_data) { // end() if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__val))) { // pass along to _M_insert that it can skip comparing // v, Key ; since compare Key, v was true, compare v, Key must be false. return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null } else return insert_unique(__val).first; } else { iterator __before = __position; --__before; bool __comp_v_pos = _M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node)); if (__comp_v_pos && _M_key_compare( _S_key(__before._M_node), _KeyOfValue()(__val) )) { if (_S_right(__before._M_node) == 0) return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null else return _M_insert(__position._M_node, __val, __position._M_node); // first argument just needs to be non-null } else { // Does the insertion point fall immediately AFTER the hint? iterator __after = __position; ++__after; // Optimization to catch equivalent cases and avoid unnecessary comparisons bool __comp_pos_v = !__comp_v_pos; // Stored this result earlier // If the earlier comparison was true, this comparison doesn't need to be // performed because it must be false. However, if the earlier comparison // was false, we need to perform this one because in the equal case, both will // be false. if (!__comp_v_pos) { __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)); } if ( (!__comp_v_pos) // comp_v_pos true implies comp_v_pos false && __comp_pos_v && (__after._M_node == &this->_M_header._M_data || _M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) ))) { if (_S_right(__position._M_node) == 0) return _M_insert(__position._M_node, __val, 0, __position._M_node); else return _M_insert(__after._M_node, __val, __after._M_node); } else { // Test for equivalent case if (__comp_v_pos == __comp_pos_v) return __position; else return insert_unique(__val).first; } } } } template __iterator__ _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(iterator __position, const _Value& __val) { if (__position._M_node == this->_M_header._M_data._M_left) { // begin() // Check for zero members if (size() <= 0) return insert_equal(__val); if (!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val))) return _M_insert(__position._M_node, __val, __position._M_node); else { // Check for only one member if (__position._M_node->_M_left == __position._M_node) // Unlike insert_unique, can't avoid doing a comparison here. return _M_insert(__position._M_node, __val); // All other cases: // Standard-conformance - does the insertion point fall immediately AFTER // the hint? iterator __after = __position; ++__after; // Already know that compare(pos, v) must be true! // Therefore, we want to know if compare(after, v) is false. // (i.e., we now pos < v, now we want to know if v <= after) // If not, invalid hint. if ( __after._M_node == &this->_M_header._M_data || !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) { if (_S_right(__position._M_node) == 0) return _M_insert(__position._M_node, __val, 0, __position._M_node); else return _M_insert(__after._M_node, __val, __after._M_node); } else { // Invalid hint return insert_equal(__val); } } } else if (__position._M_node == &this->_M_header._M_data) { // end() if (!_M_key_compare(_KeyOfValue()(__val), _S_key(_M_rightmost()))) return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null else { return insert_equal(__val); } } else { iterator __before = __position; --__before; // store the result of the comparison between pos and v so // that we don't have to do it again later. Note that this reverses the shortcut // on the if, possibly harming efficiency in comparisons; I think the harm will // be negligible, and to do what I want to do (save the result of a comparison so // that it can be re-used) there is no alternative. Test here is for before <= v <= pos. bool __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)); if (!__comp_pos_v && !_M_key_compare(_KeyOfValue()(__val), _S_key(__before._M_node))) { if (_S_right(__before._M_node) == 0) return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null else return _M_insert(__position._M_node, __val, __position._M_node); } else { // Does the insertion point fall immediately AFTER the hint? // Test for pos < v <= after iterator __after = __position; ++__after; if (__comp_pos_v && ( __after._M_node == &this->_M_header._M_data || !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) ) { if (_S_right(__position._M_node) == 0) return _M_insert(__position._M_node, __val, 0, __position._M_node); else return _M_insert(__after._M_node, __val, __after._M_node); } else { // Invalid hint return insert_equal(__val); } } } } template _Rb_tree_node_base* _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_copy(_Rb_tree_node_base* __x, _Rb_tree_node_base* __p) { // structural copy. __x and __p must be non-null. _Base_ptr __top = _M_clone_node(__x); _S_parent(__top) = __p; _STLP_TRY { if (_S_right(__x)) _S_right(__top) = _M_copy(_S_right(__x), __top); __p = __top; __x = _S_left(__x); while (__x != 0) { _Base_ptr __y = _M_clone_node(__x); _S_left(__p) = __y; _S_parent(__y) = __p; if (_S_right(__x)) _S_right(__y) = _M_copy(_S_right(__x), __y); __p = __y; __x = _S_left(__x); } } _STLP_UNWIND(_M_erase(__top)) return __top; } // this has to stay out-of-line : it's recursive template void _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::_M_erase(_Rb_tree_node_base *__x) { // erase without rebalancing while (__x != 0) { _M_erase(_S_right(__x)); _Base_ptr __y = _S_left(__x); _STLP_STD::_Destroy(&_S_value(__x)); this->_M_header.deallocate(__STATIC_CAST(_Link_type, __x),1); __x = __y; } } #if defined (_STLP_DEBUG) inline int __black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root) { if (__node == 0) return 0; else { int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0; if (__node == __root) return __bc; else return __bc + __black_count(__node->_M_parent, __root); } } template bool _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::__rb_verify() const { if (_M_node_count == 0 || begin() == end()) return ((_M_node_count == 0) && (begin() == end()) && (this->_M_header._M_data._M_left == &this->_M_header._M_data) && (this->_M_header._M_data._M_right == &this->_M_header._M_data)); int __len = __black_count(_M_leftmost(), _M_root()); for (const_iterator __it = begin(); __it != end(); ++__it) { _Base_ptr __x = __it._M_node; _Base_ptr __L = _S_left(__x); _Base_ptr __R = _S_right(__x); if (__x->_M_color == _S_rb_tree_red) if ((__L && __L->_M_color == _S_rb_tree_red) || (__R && __R->_M_color == _S_rb_tree_red)) return false; if (__L && _M_key_compare(_S_key(__x), _S_key(__L))) return false; if (__R && _M_key_compare(_S_key(__R), _S_key(__x))) return false; if (!__L && !__R && __black_count(__x, _M_root()) != __len) return false; } if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root())) return false; if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root())) return false; return true; } #endif /* _STLP_DEBUG */ _STLP_MOVE_TO_STD_NAMESPACE _STLP_END_NAMESPACE #undef _Rb_tree #undef __iterator__ #undef iterator #undef __size_type__ #endif /* _STLP_TREE_C */ // Local Variables: // mode:C++ // End: