/* * Copyright (C) 2011-2018 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "se_memcpy.h" #include "thread_data.h" #include "global_data.h" #include "rts.h" #include "util.h" #include "xsave.h" #include "sgx_trts.h" #include "sgx_lfence.h" #include "sgx_spinlock.h" #include "global_init.h" #include "trts_internal.h" #include "trts_inst.h" #include "trts_emodpr.h" #include "metadata.h" # include "linux/elf_parser.h" # define GET_TLS_INFO elf_tls_info // is_ecall_allowed() // check the index in the dynamic entry table static sgx_status_t is_ecall_allowed(uint32_t ordinal) { if(ordinal >= g_ecall_table.nr_ecall) { return SGX_ERROR_INVALID_FUNCTION; } thread_data_t *thread_data = get_thread_data(); sgx_lfence(); if(thread_data->last_sp == thread_data->stack_base_addr) { // root ECALL, check the priv bits. if (g_ecall_table.ecall_table[ordinal].is_priv) return SGX_ERROR_ECALL_NOT_ALLOWED; return SGX_SUCCESS; } ocall_context_t *context = reinterpret_cast(thread_data->last_sp); if(context->ocall_flag != OCALL_FLAG) { // abort the enclave if ocall frame is invalid abort(); } uintptr_t ocall_index = context->ocall_index; if(ocall_index >= g_dyn_entry_table.nr_ocall) { return SGX_ERROR_INVALID_FUNCTION; } return (g_dyn_entry_table.entry_table[ocall_index * g_ecall_table.nr_ecall + ordinal] ? SGX_SUCCESS : SGX_ERROR_ECALL_NOT_ALLOWED); } // get_func_addr() // Get the address of ecall function from the ecall table // Parameters: // [IN] ordinal - the index of the ecall function in the ecall table // Return Value: // non-zero - success // zero - fail // static sgx_status_t get_func_addr(uint32_t ordinal, void **addr) { sgx_status_t status = is_ecall_allowed(ordinal); if(SGX_SUCCESS != status) { return status; } *addr = const_cast(g_ecall_table.ecall_table[ordinal].ecall_addr); if(!sgx_is_within_enclave(*addr, 0)) { return SGX_ERROR_UNEXPECTED; } return SGX_SUCCESS; } static bool is_utility_thread() { thread_data_t *thread_data = get_thread_data(); if ((thread_data != NULL) && (thread_data->flags & SGX_UTILITY_THREAD)) { return true; } return false; } typedef struct _tcs_node_t { uintptr_t tcs; struct _tcs_node_t *next; } tcs_node_t; static tcs_node_t *g_tcs_node = NULL; static uintptr_t g_tcs_cookie = 0; #define ENC_TCS_POINTER(x) (uintptr_t)(x) ^ g_tcs_cookie #define DEC_TCS_POINTER(x) (void *)((x) ^ g_tcs_cookie) // do_save_tcs() // Save tcs while function do_ecall_add_thread invoked. // Parameters: // [IN] ptcs - the tcs_t pointer which need to be saved // Return Value: // zero - success // non-zero - fail // static sgx_status_t do_save_tcs(void *ptcs) { if(!is_utility_thread()) return SGX_ERROR_UNEXPECTED; if(unlikely(g_tcs_cookie == 0)) { uintptr_t rand = 0; do { if(SGX_SUCCESS != sgx_read_rand((unsigned char *)&rand, sizeof(rand))) { return SGX_ERROR_UNEXPECTED; } } while(rand == 0); if(g_tcs_cookie == 0) { g_tcs_cookie = rand; } } tcs_node_t *tcs_node = (tcs_node_t *)malloc(sizeof(tcs_node_t)); if(!tcs_node) { return SGX_ERROR_UNEXPECTED; } tcs_node->tcs = ENC_TCS_POINTER(ptcs); tcs_node->next = g_tcs_node; g_tcs_node = tcs_node; return SGX_SUCCESS; } // do_del_tcs() // Delete tcs from the global tcs list. // Parameters: // [IN] ptcs - the tcs_t pointer which need to be deleted // Return Value: // N/A // static void do_del_tcs(void *ptcs) { if(!is_utility_thread()) return; if (g_tcs_node != NULL) { if (DEC_TCS_POINTER(g_tcs_node->tcs) == ptcs) { tcs_node_t *tmp = g_tcs_node; g_tcs_node = g_tcs_node->next; free(tmp); } else { tcs_node_t *tcs_node = g_tcs_node->next; tcs_node_t *pre_tcs_node = g_tcs_node; while (tcs_node != NULL) { if (DEC_TCS_POINTER(tcs_node->tcs) == ptcs) { pre_tcs_node->next = tcs_node->next; free(tcs_node); break; } pre_tcs_node = tcs_node; tcs_node = tcs_node->next; } } } } static volatile bool g_is_first_ecall = true; static volatile sgx_spinlock_t g_ife_lock = SGX_SPINLOCK_INITIALIZER; typedef sgx_status_t (*ecall_func_t)(void *ms); static sgx_status_t trts_ecall(uint32_t ordinal, void *ms) { sgx_status_t status = SGX_ERROR_UNEXPECTED; if (unlikely(g_is_first_ecall)) { // The thread performing the global initialization cannot do a nested ECall thread_data_t *thread_data = get_thread_data(); if (thread_data->last_sp != thread_data->stack_base_addr) { // nested ecall return SGX_ERROR_ECALL_NOT_ALLOWED; } sgx_spin_lock(&g_ife_lock); if (g_is_first_ecall) { #ifndef SE_SIM if(EDMM_supported) { //change back the page permission size_t enclave_start = (size_t)&__ImageBase; if((status = change_protection((void *)enclave_start)) != SGX_SUCCESS) { sgx_spin_unlock(&g_ife_lock); return status; } } #endif //invoke global object's construction init_global_object(); g_is_first_ecall = false; } sgx_spin_unlock(&g_ife_lock); } void *addr = NULL; status = get_func_addr(ordinal, &addr); if(status == SGX_SUCCESS) { ecall_func_t func = (ecall_func_t)addr; sgx_lfence(); status = func(ms); } return status; } extern "C" uintptr_t __stack_chk_guard; static void init_static_stack_canary(void *tcs) { size_t *canary = TCS2CANARY(tcs); *canary = (size_t)__stack_chk_guard; } sgx_status_t do_init_thread(void *tcs, bool enclave_init) { thread_data_t *thread_data = GET_PTR(thread_data_t, tcs, g_global_data.td_template.self_addr); #ifndef SE_SIM size_t saved_stack_commit_addr = thread_data->stack_commit_addr; bool thread_first_init = (saved_stack_commit_addr == 0) ? true : false; #endif size_t stack_guard = thread_data->stack_guard; size_t thread_flags = thread_data->flags; memcpy_s(thread_data, SE_PAGE_SIZE, const_cast(&g_global_data.td_template), sizeof(thread_data_t)); thread_data->last_sp += (size_t)tcs; thread_data->self_addr += (size_t)tcs; thread_data->stack_base_addr += (size_t)tcs; thread_data->stack_limit_addr += (size_t)tcs; thread_data->stack_commit_addr = thread_data->stack_limit_addr; thread_data->first_ssa_gpr += (size_t)tcs; thread_data->tls_array += (size_t)tcs; thread_data->tls_addr += (size_t)tcs; thread_data->last_sp -= (size_t)STATIC_STACK_SIZE; thread_data->stack_base_addr -= (size_t)STATIC_STACK_SIZE; thread_data->stack_guard = stack_guard; thread_data->flags = thread_flags; init_static_stack_canary(tcs); if (enclave_init) { thread_data->flags = SGX_UTILITY_THREAD; } #ifndef SE_SIM if (thread_first_init) { if (EDMM_supported && (enclave_init || is_dynamic_thread(tcs))) { uint32_t page_count = get_dynamic_stack_max_page(); thread_data->stack_commit_addr += ((sys_word_t)page_count << SE_PAGE_SHIFT); } } else { thread_data->stack_commit_addr = saved_stack_commit_addr; } #endif uintptr_t tls_addr = 0; size_t tdata_size = 0; if(0 != GET_TLS_INFO(&__ImageBase, &tls_addr, &tdata_size)) { return SGX_ERROR_UNEXPECTED; } if(tls_addr) { memset((void *)TRIM_TO_PAGE(thread_data->tls_addr), 0, ROUND_TO_PAGE(thread_data->self_addr - thread_data->tls_addr)); memcpy_s((void *)(thread_data->tls_addr), thread_data->self_addr - thread_data->tls_addr, (void *)tls_addr, tdata_size); } return SGX_SUCCESS; } sgx_status_t do_ecall(int index, void *ms, void *tcs) { sgx_status_t status = SGX_ERROR_UNEXPECTED; if(ENCLAVE_INIT_DONE != get_enclave_state()) { return status; } thread_data_t *thread_data = get_thread_data(); if( (NULL == thread_data) || ((thread_data->stack_base_addr == thread_data->last_sp) && (0 != g_global_data.thread_policy))) { status = do_init_thread(tcs, false); if(0 != status) { return status; } } status = trts_ecall(index, ms); return status; } sgx_status_t do_ecall_add_thread(void *ms) { sgx_status_t status = SGX_ERROR_UNEXPECTED; if(!is_utility_thread()) return status; struct ms_tcs *tcs = (struct ms_tcs*)ms; if (tcs == NULL) { return status; } if (!sgx_is_outside_enclave(tcs, sizeof(struct ms_tcs))) { abort(); } const struct ms_tcs mtcs = *tcs; void* ptcs = mtcs.ptcs; if (ptcs == NULL) { return status; } __builtin_ia32_lfence(); status = do_save_tcs(ptcs); if(SGX_SUCCESS != status) { return status; } status = do_add_thread(ptcs); if (SGX_SUCCESS != status) { do_del_tcs(ptcs); return status; } return status; } // do_uninit_enclave() // Run the global uninitialized functions when the enclave is destroyed. // Parameters: // [IN] tcs - used for running this task // Return Value: // zero - success // non-zero - fail // sgx_status_t do_uninit_enclave(void *tcs) { #ifndef SE_SIM if(is_dynamic_thread_exist() && !is_utility_thread()) return SGX_ERROR_UNEXPECTED; #endif tcs_node_t *tcs_node = g_tcs_node; g_tcs_node = NULL; while (tcs_node != NULL) { if (DEC_TCS_POINTER(tcs_node->tcs) == tcs) { tcs_node_t *tmp = tcs_node; tcs_node = tcs_node->next; free(tmp); continue; } size_t start = (size_t)DEC_TCS_POINTER(tcs_node->tcs); size_t end = start + (1 << SE_PAGE_SHIFT); int rc = sgx_accept_forward(SI_FLAG_TRIM | SI_FLAG_MODIFIED, start, end); if(rc != 0) { return SGX_ERROR_UNEXPECTED; } tcs_node_t *tmp = tcs_node; tcs_node = tcs_node->next; free(tmp); } sgx_spin_lock(&g_ife_lock); if (!g_is_first_ecall) { uninit_global_object(); } sgx_spin_unlock(&g_ife_lock); set_enclave_state(ENCLAVE_CRASHED); return SGX_SUCCESS; } extern sdk_version_t g_sdk_version; extern "C" sgx_status_t trts_mprotect(size_t start, size_t size, uint64_t perms) { int rc = -1; size_t page; sgx_status_t ret = SGX_SUCCESS; SE_DECLSPEC_ALIGN(sizeof(sec_info_t)) sec_info_t si; //Error return if start or size is not page-aligned or size is zero. if (!IS_PAGE_ALIGNED(start) || (size == 0) || !IS_PAGE_ALIGNED(size)) return SGX_ERROR_INVALID_PARAMETER; if (g_sdk_version == SDK_VERSION_2_0) { ret = change_permissions_ocall(start, size, perms); if (ret != SGX_SUCCESS) return ret; } si.flags = perms|SI_FLAG_REG|SI_FLAG_PR; memset(&si.reserved, 0, sizeof(si.reserved)); for(page = start; page < start + size; page += SE_PAGE_SIZE) { do_emodpe(&si, page); // If the target permission to set is RWX, no EMODPR, hence no EACCEPT. if ((perms & (SI_FLAG_W|SI_FLAG_X)) != (SI_FLAG_W|SI_FLAG_X)) { rc = do_eaccept(&si, page); if(rc != 0) return (sgx_status_t)rc; } } return SGX_SUCCESS; }