#include "pir_client.hpp" using namespace std; using namespace seal; using namespace seal::util; PIRClient::PIRClient(const EncryptionParameters ¶ms, const PirParams &pir_parms) : params_(params){ newcontext_ = SEALContext::Create(params_); pir_params_ = pir_parms; keygen_ = make_unique(newcontext_); encryptor_ = make_unique(newcontext_, keygen_->public_key()); SecretKey secret_key = keygen_->secret_key(); decryptor_ = make_unique(newcontext_, secret_key); evaluator_ = make_unique(newcontext_); uint64_t t = params_.plain_modulus().value(); // int logt = floor(log2(params_.plain_modulus().value())); for(int i = 0; i < pir_params_.nvec.size(); i++){ uint64_t inverse_scale; int logm = ceil(log2(pir_params_.nvec[i])); int quo = logm / logt; int mod = logm % logt; inverse_scale = pow(2, logt - mod); if ((quo +1) %2 != 0){ inverse_scale = params_.plain_modulus().value() - pow(2, logt - mod); } inverse_scales_.push_back(inverse_scale); if ( (inverse_scale << logm) % t != 1){ throw logic_error("something wrong"); } cout << "logm, inverse scale, t = " << logm << ", " << inverse_scale << ", " << t << endl; } } // void PIRClient::update_parameters(const EncryptionParameters &expanded_params, // const PirParams &pir_params) // { // // The only thing that can change is the plaintext modulus and pir_params // assert(expanded_params.poly_modulus_degree() == params_.poly_modulus_degree()); // assert(expanded_params.coeff_modulus() == params_.coeff_modulus()); // params_ = expanded_params; // pir_params_ = pir_params; // auto newcontext = SEALContext::Create(expanded_params); // SecretKey secret_key = keygen_->secret_key(); // secret_key.parms_id() = expanded_params.parms_id(); // decryptor_ = make_unique(newcontext, secret_key); // evaluator_ = make_unique(newcontext); // } PirQuery PIRClient::generate_query(uint64_t desiredIndex) { vector indices = compute_indices(desiredIndex, pir_params_.nvec); vector result; Plaintext pt(params_.poly_modulus_degree()); for (uint32_t i = 0; i < indices.size(); i++) { pt.set_zero(); pt[indices[i]] = 1; Ciphertext dest; encryptor_->encrypt(pt, dest); dest.parms_id() = params_.parms_id(); result.push_back(dest); } return result; } uint64_t PIRClient::get_fv_index(uint64_t element_idx, uint64_t ele_size) { auto N = params_.poly_modulus_degree(); auto logtp = ceil(log2(params_.plain_modulus().value())); auto ele_per_ptxt = elements_per_ptxt(logtp, N, ele_size); return static_cast(element_idx / ele_per_ptxt); } uint64_t PIRClient::get_fv_offset(uint64_t element_idx, uint64_t ele_size) { uint32_t N = params_.poly_modulus_degree(); uint32_t logtp = ceil(log2(params_.plain_modulus().value())); uint64_t ele_per_ptxt = elements_per_ptxt(logtp, N, ele_size); return element_idx % ele_per_ptxt; } Plaintext PIRClient::decode_reply(PirReply reply) { uint32_t exp_ratio = pir_params_.expansion_ratio; uint32_t recursion_level = pir_params_.d; vector temp = reply; uint64_t t = params_.plain_modulus().value(); for (uint32_t i = 0; i < recursion_level; i++) { vector newtemp; vector tempplain; for (uint32_t j = 0; j < temp.size(); j++) { Plaintext ptxt; decryptor_->decrypt(temp[j], ptxt); cout << " reply noise budget = " << decryptor_->invariant_noise_budget(temp[j]) << endl; // multiply by inverse_scale for every coefficient of ptxt for(int h = 0; h < ptxt.coeff_count(); h++){ ptxt[h] *= inverse_scales_[i]; ptxt[h] %= t; } cout << "decoded (and scaled) plaintext = " << ptxt.to_string() << endl; tempplain.push_back(ptxt); #ifdef DEBUG cout << "recursion level : " << i << " noise budget : "; cout << decryptor_->invariant_noise_budget(temp[j]) << endl; #endif if ((j + 1) % exp_ratio == 0 && j > 0) { // Combine into one ciphertext. Ciphertext combined = compose_to_ciphertext(tempplain); newtemp.push_back(combined); } } if (i == recursion_level - 1) { assert(temp.size() == 1); return tempplain[0]; } else { tempplain.clear(); temp = newtemp; } } // This should never be called assert(0); Plaintext fail; return fail; } GaloisKeys PIRClient::generate_galois_keys() { // Generate the Galois keys needed for coeff_select. vector<uint64_t> galois_elts; int N = params_.poly_modulus_degree(); int logN = get_power_of_two(N); cout << "printing galois elements..."; for (int i = 0; i < logN; i++) { galois_elts.push_back((N + exponentiate_uint64(2, i)) / exponentiate_uint64(2, i)); //#ifdef DEBUG cout << galois_elts.back() << ", "; //#endif } return keygen_->galois_keys(pir_params_.dbc, galois_elts); } Ciphertext PIRClient::compose_to_ciphertext(vector<Plaintext> plains) { size_t encrypted_count = 2; auto coeff_count = params_.poly_modulus_degree(); auto coeff_mod_count = params_.coeff_modulus().size(); uint64_t plainMod = params_.plain_modulus().value(); Ciphertext result(newcontext_); result.resize(encrypted_count); // A triple for loop. Going over polys, moduli, and decomposed index. for (int i = 0; i < encrypted_count; i++) { uint64_t *encrypted_pointer = result.data(i); for (int j = 0; j < coeff_mod_count; j++) { // populate one poly at a time. // create a polynomial to store the current decomposition value // which will be copied into the array to populate it at the current // index. double logqj = log2(params_.coeff_modulus()[j].value()); int expansion_ratio = ceil(logqj / log2(plainMod)); // cout << "expansion ratio = " << expansion_ratio << endl; uint64_t cur = 1; for (int k = 0; k < expansion_ratio; k++) { // Compose here const uint64_t *plain_coeff = plains[k + j * (expansion_ratio) + i * (coeff_mod_count * expansion_ratio)] .data(); for (int m = 0; m < coeff_count - 1; m++) { if (k == 0) { *(encrypted_pointer + m + j * coeff_count) = *(plain_coeff + m) * cur; } else { *(encrypted_pointer + m + j * coeff_count) += *(plain_coeff + m) * cur; } } *(encrypted_pointer + coeff_count - 1 + j * coeff_count) = 0; cur *= plainMod; } // XXX: Reduction modulo qj. This is needed? /* for (int m = 0; m < coeff_count; m++) { *(encrypted_pointer + m + j * coeff_count) %= params_.coeff_modulus()[j].value(); } */ } } result.parms_id() = params_.parms_id(); return result; }