/* Copyright (C) 2014 Carlos Aguilar Melchor, Joris Barrier, Marc-Olivier Killijian
* This file is part of XPIR.
*
* XPIR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* XPIR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with XPIR. If not, see .
*/
#include "PaillierAdapter.hpp"
#include
#include
namespace {
const int kMagicConstant1 = 1;
const int kMillion = 1000000;
}
/**
* Static fonction to feet approximately standards. NIST SP800-57 table 2 page 64
* Beyond 128 bits of security modules will not be used as getCryptoParams blocks when ciphertext modulus is above 10K bits.
**/
unsigned int PaillierAdapter::securityToModulus(int security_bits)
{
if(security_bits <= 40)
return 128;
if (security_bits <= 80)
return 1024;
if (security_bits <= 112)
return 2048;
if (security_bits <= 128)
return 3072;
if (security_bits <= 192)
return 7680;
// Unimplemented
//return 15360;
return 0;
}
PaillierAdapter::PaillierAdapter() :
HomomorphicCrypto("Paillier")
{
initRandomGenerator();
}
/**
* PaillierAdapter constructor
* Params:
* - int security_bits : number of security bit wanted (size of the cipher space);
* - int recLvl : number of recursion level.
**/
PaillierAdapter::PaillierAdapter(int _security_bits, int init_s ) :
HomomorphicCrypto("Paillier"),
security_bits(_security_bits),
privateParameters(),
modulusbits(securityToModulus(_security_bits)),
publicParameters()
{
initRandomGenerator();
publicParameters.setModulusbits(modulusbits);
keygen(
modulusbits,
publicParameters.getPubKey(),
privateParameters.getPrvKey(),
init_s );
}
void PaillierAdapter::initRandomGenerator()
{
mpz_t s;
mpz_init(s);
gmp_randinit_default(rand);
// Get a 1024 bit seed from /dev/urandom
getRandFromfile( 128 , &s);
gmp_randseed(rand, s);
mpz_clear(s);
}
/**
* Encrypt an unsigned int and return the encrypted bytes in char*
* Params :
* - unsigned int ui : the value to encrypt ;
* - unsigned int s : the exponent (recursion lvl).
*
* Return :
* - char* : an allocated pointer to the encrypted data.
**/
char*
PaillierAdapter::encrypt(unsigned int ui, unsigned int s)
{
unsigned int ciph_size = publicParameters.getKeyBitsize()*(s+1)/8;
char *tmp, *request = (char*) calloc((ciph_size + 1), sizeof(char));
size_t n;
mpz_t pt, ct;
mpz_init(ct);
mpz_init_set_ui( pt, ui); // convert the 0 or the 1 to an mpz_t
enc( this->publicParameters.getPubKey(), pt, s, ct );
#ifdef CRYPTO_DEBUG
gmp_printf("Created query element: %Zd with args %Zd and %d\n",ct, pt, s);
#endif
tmp = (char*)mpz_export(NULL, &n, 1, sizeof(char), 0, 0, ct);
//Padding
memcpy(request+sizeof(char)*((ciph_size) - n), tmp, n);
//Free memory
mpz_clears(ct, pt, NULL);
free(tmp);
return request;
}
// To test decryption performance
char* PaillierAdapter::encrypt_perftest()
{
return encrypt(1,1);// Decryption performance test work well with this small plaintext
}
/**
* Encrypt an char* of size dataSize and return char*
* Params :
* - char* data : data to encrypt ;
* - size_t dataSize : size of the data ;
* - unsigned exponent : the exponent (recursion lvl).
* Return :
* - char* : an allocated pointer to the encrypted data.
**/
char* PaillierAdapter::encrypt(char* data, size_t dataSize, unsigned int exponent)
{
char* request;
mpz_t ct, imported_data;
mpz_inits(ct, imported_data, NULL);
mpz_import(imported_data, dataSize, 1, sizeof(char), 0, 0, data);
enc( this->publicParameters.getPubKey(),
imported_data,
exponent,
ct );
request = (char*)mpz_export(NULL, NULL, 1, sizeof(char) , 0, 0, ct);
mpz_clears(ct, imported_data, NULL);
return request;
}
/**
* Decrypt reply sended by the server and return clear bytes in char*.
* Params :
* - char* cipheredData : encrypted data ;
* - unsigned int exp_fac : the exponent (recursion lvl) ;
* - size_t ciph_size : size of encrypted data ;
* - size_t clear_size : size of decrypted data to return.
* Return :
* - char* : an allocated pointer to the decrypted data.
**/
char* PaillierAdapter::decrypt( char* cipheredData,
unsigned int exp_fac,
size_t ciph_size ,
size_t clear_size)
{
size_t n = 0;
mpz_t ct, res;
char* tmp;
mpz_inits(ct, res, NULL);
mpz_import(ct, ciph_size, 1, sizeof(char), 0, 0, cipheredData);
dec(publicParameters.getPubKey(),
privateParameters.getPrvKey(),
ct,
exp_fac,
res );
#ifdef DEBUG_ENCRYPT
gmp_printf("PaillierAdapter : Decrypting %Zd into %Zd\n\n", ct, res);
#endif
tmp = (char*) mpz_export(NULL, &n, 1, sizeof(char) , 0, 0, res);
mpz_clears(res, ct, NULL); //clear content of mpz_t, t
if( n < clear_size)
{
char *pt = (char*)calloc(clear_size+1, sizeof(char));
memcpy(pt+sizeof(char)*((clear_size) - n), tmp, n);
free(tmp); // malloc'd
return pt;
}
else
{
return tmp;
}
}
PaillierAdapter::~PaillierAdapter()
{
gmp_randclear(rand);
}
AbstractPublicParameters& PaillierAdapter::getPublicParameters()
{
return publicParameters;
}
/**
* Private encrypt methode.
* Params :
* - paillier_pubkey* pub : Paillier public key pointer ;
* - mpz_t m : data to encrypt ;
* - unsigned int s : recursion level ;
* - mpz_t c : result operande .
**/
void
PaillierAdapter::enc( paillier_pubkey* pub,
mpz_t m,
unsigned int s,
mpz_t c )
{
mpz_t gm, rns, r;
mpz_inits( gm, rns, r, NULL);
unsigned int modulusbits = publicParameters.getKeyBitsize();
do
{
mpz_urandomb(r, rand, (s+1)*modulusbits);
} while( mpz_cmp(r, *pub->getnj(s+1)) >= 0 );
mpz_powm(gm, *pub->getg(), m, *pub->getnj(s+1));
mpz_powm(rns, r, *pub->getnj(s), *pub->getnj(s+1));
mpz_mul(c, gm, rns);
mpz_mod(c,c, *pub->getnj(s+1));
#ifdef DEBUG_ENCRYPT
mpz_t test;
mpz_init(test);
dec(pub, privateParameters.getPrvKey(), c, s, test);
gmp_printf("Decrypting %Zd into %Zd\n\n", c, test);
#endif
mpz_clears(gm, rns, r, NULL);
}
/**
* Reimplemented version of decrypt to not use paillier structures.
* Params:
* - paillier_prvkey* prv : Paillier private key pointer ;
* - mpz_t c : encrypted data ;
* - unsigned int s : recursion level ;
* - mpz_t i : result operande .
* This function is an exact copy of the one in libdj
**/
/*
libdj - A library implementing the Damgård-Jurik cryptosystem.
Copyright 2012 Fred Douglas (fed2@illinois.edu)
This library is an extension/modification of libpaillier.
libpaillier is copyright 2006 SRI International (written by John Bethencourt).
This file is part of libdj.
libdj is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
libdj is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with libdj. If not, see .
*/
void
PaillierAdapter::dec( paillier_pubkey* pub,
paillier_prvkey* prv,
mpz_t c,
unsigned int s,
mpz_t res)
{
int i,j,k;
mpz_t cprime, temp, tempDivisor, i_jCur, i_jPrev;
mpz_init(cprime);
//cprime = c^key mod n^{s+1}
mpz_powm(cprime,c,prv->d,*pub->getnj(s+1));
//the algorithm from extracting i from (1+n)^i described in the paper.
//the algorithm iteratively extracts i mod n, i mod n^2, etc. i mod n starts us off, and is just input - 1 / n.
mpz_init(temp);
mpz_init(tempDivisor);
mpz_init(i_jCur);
mpz_init_set(i_jPrev,cprime);
mpz_sub_ui(i_jPrev,i_jPrev,1);
mpz_divexact(i_jPrev,i_jPrev,*pub->getnj(1));
mpz_mod(i_jPrev,i_jPrev,*pub->getnj(2));
//just in case s=1; in that case we need this line to actually set i_jcur
if(s==1)
mpz_set(i_jCur,i_jPrev);
//extract i_j = i mod n^j given i_{j-1}. this is done by taking (input - 1 mod n^{j+1}) / n , and subtracting
//from that: (( (i_{j-1} choose 2)*n + (i_{j-1} choose 3)*n^2 + ... + (i_{j-1} choose j)*n^{j-1} )) mod n^j
for(j=2;j<=s;j++)
{
//L((1+n)^i) as they call it
mpz_mod(i_jCur,cprime,*pub->getnj(j+1));
mpz_sub_ui(i_jCur,i_jCur,1);
mpz_divexact(i_jCur,i_jCur,*pub->getnj(1));
mpz_mod(i_jCur,i_jCur,*pub->getnj(j));
//subtract each of the binomial things
for(k=2;k<=j;k++)
{
mpz_bin_ui(temp,i_jPrev,k);
mpz_mul(temp,temp,*pub->getnj(k-1));
mpz_mod(temp,temp,*pub->getnj(j));
mpz_sub(i_jCur,i_jCur,temp);
mpz_mod(i_jCur,i_jCur,*pub->getnj(j));
}
mpz_set(i_jPrev,i_jCur);
}
//i_jCur is currently the message times the private key.
mpz_invert(temp, prv->d, *pub->getnj(s));
mpz_mul(res, i_jCur, temp);
mpz_mod(res, res, *pub->getnj(s));
//cleanup and return
mpz_clear(cprime);
mpz_clear(i_jPrev);
mpz_clear(i_jCur);
mpz_clear(temp);
mpz_clear(tempDivisor);
// unsigned int kfac, k;
// mpz_t t1, t2, t3, a, id ;
// std::cout << "dec called with s="<d, *pub->getnj(s+1));
//
// for(unsigned int j = 1 ; j <= s; j++)
// {
// mpz_set(t1, a);
// mpz_mod(t1, t1, *pub->getnj(j+1));
// mpz_sub_ui(t1, t1, 1);
// mpz_div(t1, t1, *pub->getnj(1));
// mpz_set(t2, id);
// kfac = 1;
//
// for (k = 2; k <= j; k++)
// {
// kfac *= k;
// mpz_sub_ui(id, id, 1);
// mpz_mul(t2, t2, id);
// mpz_mod(t2, t2, *pub->getnj(j));
// mpz_set_ui(t3, kfac);
//
// mpz_invert(t3, t3, *pub->getnj(j));
//
// mpz_mul(t3, t3, t2);
// mpz_mod(t3, t3, *pub->getnj(j));
// mpz_mul(t3, t3, *pub->getnj(k-1));
// mpz_mod(t3, t3, *pub->getnj(j));
// mpz_sub(t1, t1, t3);
// mpz_mod(t1, t1, *pub->getnj(j));
// }
// mpz_set(id, t1);
// }
//
// mpz_mul(rop, id, prv->inv_d);
//
// mpz_mod(rop, rop, *pub->getnj(s));
//
// mpz_clears(t1, t2, t3, a, id, NULL);
}
void
PaillierAdapter::keygen( unsigned int modulusbits,
paillier_pubkey* pub,
paillier_prvkey* prv,
unsigned int init_s)
{
mpz_t p, q;
mpz_inits(p, q, NULL);
/* pick random (modulusbits/2)-bit primes p and q */
do
{
get_prime_of_size(p, modulusbits / 2);
get_prime_of_size(q, modulusbits / 2);
mpz_mul(*pub->getnj(1), p, q);
}while(mpz_sizeinbase(*pub->getnj(1), 2) != modulusbits);
pub->setbits(modulusbits);
pub->setinit_s(init_s);
pub->complete_key(init_s+1); /*we don't know if it will be used beyond one level*/
/* compute the private key lambda = lcm(p-1,q-1) */
mpz_sub_ui(p, p, 1);
mpz_sub_ui(q, q, 1);
mpz_lcm(prv->d, p, q);
mpz_invert(prv->inv_d, prv->d ,*pub->getnj(init_s));
/* clear temporary integers */
mpz_clears(p, q, NULL);
}
/**
* Get prime number of given size.
* Parms :
* - mpz_t rop : result operand ;
* - unsigned int length : length in bit.
**/
void
PaillierAdapter::get_prime_of_size(mpz_t rop, unsigned int length)
{
mpz_t z_p, z_min;
mpz_init(z_p);
mpz_init_set_ui(z_min, 1);
mpz_mul_2exp(z_min, z_min, length - 1);
do
{
mpz_urandomb(z_p, rand, length);
mpz_add(z_p, z_min, z_p);
mpz_nextprime(z_p, z_p);
}
while(mpz_sizeinbase(z_p, 2) != length);
mpz_set(rop, z_p);
mpz_clears(z_p, z_min, NULL);
}
void
PaillierAdapter::getRandFromfile(int len, mpz_t* val )
{
char* p = new char[len + 1]();
std::ifstream f("/dev/urandom", ios::in | ios::binary);
for(int i = 0; i < len; i++)
{
f.read(p+i, 1);
}
mpz_import(*val, len, 1, sizeof(char), 0, 0, p);
f.close();
delete[] p;
}
void
PaillierAdapter::setNewParameters(const std::string& crypto_params)
{
std::vector fields;
boost::algorithm::split(fields, crypto_params, boost::algorithm::is_any_of(":"));
unsigned int keySize = (unsigned)atoi(fields[2].c_str());
security_bits = atoi(fields[1].c_str());
publicParameters.setModulusbits(keySize);
publicParameters.setSecurityBits(security_bits);
// TODO(performance) : Takes too much time when generating the encrypt and decrypt caches
// An option should be included so that it is a fixed key from a file when called to build caches
keygen(
keySize,
publicParameters.getPubKey(),
privateParameters.getPrvKey(),
kMagicConstant1);
}
double
PaillierAdapter::getDecCost(unsigned int length, unsigned int s)
{
double start, result;
unsigned int cores = omp_get_num_procs();
unsigned int rounds = 2000/pow((length*(s+1)/2048), 3);//Amount of rounds for a one second test on the poor devlopper's computer.
mpz_t z_r, z_a[cores];
mpz_init(z_r);
#pragma omp parallel for
for (unsigned int i = 0 ; i < cores ; i++)
mpz_init(z_a[i]);
gmp_randstate_t prng;
gmp_randinit_default(prng);
gmp_randseed_ui(prng, time(NULL));
getRandInteger(z_r, length, prng);
start = omp_get_wtime();
for(unsigned int round = 0 ; round < rounds ; round++)
{
#pragma omp parallel for
for (unsigned int i = 0 ; i < cores ; i++)
{
dec(publicParameters.getPubKey(),
privateParameters.getPrvKey(),
z_r,
s ,
z_a[i] );
usleep(5);
}
}
mpz_clear(z_r);
#pragma omp parallel for
for (unsigned int i = 0 ; i < cores ; i++)
mpz_clear(z_a[i]);
result = omp_get_wtime() - start;
return result /(cores)/rounds ;
}
void
PaillierAdapter::getRandInteger(mpz_t rop, unsigned int length, gmp_randstate_t prng)
{
do {
mpz_urandomb(rop, prng, length);
}while(mpz_sizeinbase(rop, 2) != length);
}
unsigned int PaillierAdapter::getAllCryptoParams(std::set& crypto_params)
{
unsigned int params_nbr = 0;
unsigned int k_array_size = 4;
// k=256 gives a 15K bit plaintext modulus and a 30K bit ciphertext modulus
// as this is huge we turn off this proposal by default
unsigned int k[4] = {80, 100, 128, 192};
for (unsigned int i = 0 ; i < k_array_size ; i++)
{
params_nbr += getCryptoParams(k[i], crypto_params);
}
return params_nbr;
}
unsigned int PaillierAdapter::getCryptoParams(unsigned int k, std::set& crypto_params)
{
unsigned int params_nbr = 0;
string k_str = std::to_string(k);
unsigned int modulus_size = securityToModulus(k);
if (modulus_size == 0) return 0;
// We'll increase params_nbr when the client handles better s
for (unsigned int s = 1 ; params_nbr < 1 ; s++)
{
string param = cryptoName + ":" + k_str + ":" + to_string(modulus_size*s) + ":" + to_string(modulus_size*(s+1));
if(crypto_params.insert(param).second) params_nbr++;
param = "";
}
return params_nbr;
}
long PaillierAdapter::setandgetAbsBitPerCiphertext(unsigned int elt_nbr)
{
return publicParameters.getAbsorptionBitsize();
}
std::string PaillierAdapter::getSerializedCryptoParams(bool shortversion)
{
return publicParameters.getSerializedParams(shortversion);
}
double PaillierAdapter::estimateAbsTime(std::string crypto_param)
{
vector fields;
boost::algorithm::split(fields, crypto_param, boost::algorithm::is_any_of(":"));
const double mod_size_s = static_cast(atoi(fields[3].c_str()));
return 1.0 / (kMillion/(3.0*1016) * pow(2048 / mod_size_s, 3));
}
/**
* Compute a modular exponentiation in crypted space who is a operation in clear space.
* Params :
* - mpz_t res : operation result;
* - mpz_t a : first operand, crypted data ;
* - mpz_t b : second operans, crypted data;
* - int s : modulus index .
**/
void PaillierAdapter::e_add(mpz_t res, mpz_t a, mpz_t b, int s)
{
mpz_mul(res, a, b);
mpz_mod(res, res, *publicParameters.getPubKey()->getnj(s));
}
/**
* Compute modular multiplication in crypted space who is a multiplicaton in clear space.
* Params :
* - mpz_t res : operation result;
* - mpz_t a : first operand, crypted data ;
* - mpz_t n : second operand, a constant ;
* - int s : modulus index .
**/
void PaillierAdapter::e_mul_const(mpz_t res, mpz_t a, mpz_t n, int s)
{
mpz_powm(res, a, n , *publicParameters.getPubKey()->getnj(s));
}