/* Copyright (c) 2008-2017, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** \file memarea.c * \brief Implementation for memarea_t, an allocator for allocating lots of * small objects that will be freed all at once. */ #include "orconfig.h" #include #include "memarea.h" #include "util.h" #include "compat.h" #include "torlog.h" #include "container.h" #ifndef DISABLE_MEMORY_SENTINELS /** If true, we try to detect any attempts to write beyond the length of a * memarea. */ #define USE_SENTINELS /** All returned pointers should be aligned to the nearest multiple of this * value. */ #define MEMAREA_ALIGN SIZEOF_VOID_P /** A value which, when masked out of a pointer, produces a maximally aligned * pointer. */ #if MEMAREA_ALIGN == 4 #define MEMAREA_ALIGN_MASK ((uintptr_t)3) #elif MEMAREA_ALIGN == 8 #define MEMAREA_ALIGN_MASK ((uintptr_t)7) #else #error "void* is neither 4 nor 8 bytes long. I don't know how to align stuff." #endif #if defined(__GNUC__) && defined(FLEXIBLE_ARRAY_MEMBER) #define USE_ALIGNED_ATTRIBUTE /** Name for the 'memory' member of a memory chunk. */ #define U_MEM mem #else #define U_MEM u.mem #endif #ifdef USE_SENTINELS /** Magic value that we stick at the end of a memarea so we can make sure * there are no run-off-the-end bugs. */ #define SENTINEL_VAL 0x90806622u /** How many bytes per area do we devote to the sentinel? */ #define SENTINEL_LEN sizeof(uint32_t) /** Given a mem_area_chunk_t with SENTINEL_LEN extra bytes allocated at the * end, set those bytes. */ #define SET_SENTINEL(chunk) \ STMT_BEGIN \ set_uint32( &(chunk)->U_MEM[chunk->mem_size], SENTINEL_VAL ); \ STMT_END /** Assert that the sentinel on a memarea is set correctly. */ #define CHECK_SENTINEL(chunk) \ STMT_BEGIN \ uint32_t sent_val = get_uint32(&(chunk)->U_MEM[chunk->mem_size]); \ tor_assert(sent_val == SENTINEL_VAL); \ STMT_END #else #define SENTINEL_LEN 0 #define SET_SENTINEL(chunk) STMT_NIL #define CHECK_SENTINEL(chunk) STMT_NIL #endif /** Increment ptr until it is aligned to MEMAREA_ALIGN. */ static inline void * realign_pointer(void *ptr) { uintptr_t x = (uintptr_t)ptr; x = (x+MEMAREA_ALIGN_MASK) & ~MEMAREA_ALIGN_MASK; /* Reinstate this if bug 930 ever reappears tor_assert(((void*)x) >= ptr); */ return (void*)x; } /** Implements part of a memarea. New memory is carved off from chunk->mem in * increasing order until a request is too big, at which point a new chunk is * allocated. */ typedef struct memarea_chunk_t { /** Next chunk in this area. Only kept around so we can free it. */ struct memarea_chunk_t *next_chunk; size_t mem_size; /**< How much RAM is available in mem, total? */ char *next_mem; /**< Next position in mem to allocate data at. If it's * equal to mem+mem_size, this chunk is full. */ #ifdef USE_ALIGNED_ATTRIBUTE /** Actual content of the memory chunk. */ char mem[FLEXIBLE_ARRAY_MEMBER] __attribute__((aligned(MEMAREA_ALIGN))); #else union { char mem[1]; /**< Memory space in this chunk. */ void *void_for_alignment_; /**< Dummy; used to make sure mem is aligned. */ } u; /**< Union used to enforce alignment when we don't have support for * doing it right. */ #endif } memarea_chunk_t; /** How many bytes are needed for overhead before we get to the memory part * of a chunk? */ #define CHUNK_HEADER_SIZE STRUCT_OFFSET(memarea_chunk_t, U_MEM) /** What's the smallest that we'll allocate a chunk? */ #define CHUNK_SIZE 4096 /** A memarea_t is an allocation region for a set of small memory requests * that will all be freed at once. */ struct memarea_t { memarea_chunk_t *first; /**< Top of the chunk stack: never NULL. */ }; /** Helper: allocate a new memarea chunk of around chunk_size bytes. */ static memarea_chunk_t * alloc_chunk(size_t sz) { tor_assert(sz < SIZE_T_CEILING); size_t chunk_size = sz < CHUNK_SIZE ? CHUNK_SIZE : sz; memarea_chunk_t *res; chunk_size += SENTINEL_LEN; res = tor_malloc(chunk_size); res->next_chunk = NULL; res->mem_size = chunk_size - CHUNK_HEADER_SIZE - SENTINEL_LEN; res->next_mem = res->U_MEM; tor_assert(res->next_mem+res->mem_size+SENTINEL_LEN == ((char*)res)+chunk_size); tor_assert(realign_pointer(res->next_mem) == res->next_mem); SET_SENTINEL(res); return res; } /** Release chunk from a memarea. */ static void memarea_chunk_free_unchecked(memarea_chunk_t *chunk) { CHECK_SENTINEL(chunk); tor_free(chunk); } /** Allocate and return new memarea. */ memarea_t * memarea_new(void) { memarea_t *head = tor_malloc(sizeof(memarea_t)); head->first = alloc_chunk(CHUNK_SIZE); return head; } /** Free area, invalidating all pointers returned from memarea_alloc() * and friends for this area */ void memarea_drop_all(memarea_t *area) { memarea_chunk_t *chunk, *next; for (chunk = area->first; chunk; chunk = next) { next = chunk->next_chunk; memarea_chunk_free_unchecked(chunk); } area->first = NULL; /*fail fast on */ tor_free(area); } /** Forget about having allocated anything in area, and free some of * the backing storage associated with it, as appropriate. Invalidates all * pointers returned from memarea_alloc() for this area. */ void memarea_clear(memarea_t *area) { memarea_chunk_t *chunk, *next; if (area->first->next_chunk) { for (chunk = area->first->next_chunk; chunk; chunk = next) { next = chunk->next_chunk; memarea_chunk_free_unchecked(chunk); } area->first->next_chunk = NULL; } area->first->next_mem = area->first->U_MEM; } /** Return true iff p is in a range that has been returned by an * allocation from area. */ int memarea_owns_ptr(const memarea_t *area, const void *p) { memarea_chunk_t *chunk; const char *ptr = p; for (chunk = area->first; chunk; chunk = chunk->next_chunk) { if (ptr >= chunk->U_MEM && ptr < chunk->next_mem) return 1; } return 0; } /** Return a pointer to a chunk of memory in area of at least sz * bytes. sz should be significantly smaller than the area's chunk * size, though we can deal if it isn't. */ void * memarea_alloc(memarea_t *area, size_t sz) { memarea_chunk_t *chunk = area->first; char *result; tor_assert(chunk); CHECK_SENTINEL(chunk); tor_assert(sz < SIZE_T_CEILING); if (sz == 0) sz = 1; tor_assert(chunk->next_mem <= chunk->U_MEM + chunk->mem_size); const size_t space_remaining = (chunk->U_MEM + chunk->mem_size) - chunk->next_mem; if (sz > space_remaining) { if (sz+CHUNK_HEADER_SIZE >= CHUNK_SIZE) { /* This allocation is too big. Stick it in a special chunk, and put * that chunk second in the list. */ memarea_chunk_t *new_chunk = alloc_chunk(sz+CHUNK_HEADER_SIZE); new_chunk->next_chunk = chunk->next_chunk; chunk->next_chunk = new_chunk; chunk = new_chunk; } else { memarea_chunk_t *new_chunk = alloc_chunk(CHUNK_SIZE); new_chunk->next_chunk = chunk; area->first = chunk = new_chunk; } tor_assert(chunk->mem_size >= sz); } result = chunk->next_mem; chunk->next_mem = chunk->next_mem + sz; /* Reinstate these if bug 930 ever comes back tor_assert(chunk->next_mem >= chunk->U_MEM); tor_assert(chunk->next_mem <= chunk->U_MEM+chunk->mem_size); */ chunk->next_mem = realign_pointer(chunk->next_mem); return result; } /** As memarea_alloc(), but clears the memory it returns. */ void * memarea_alloc_zero(memarea_t *area, size_t sz) { void *result = memarea_alloc(area, sz); memset(result, 0, sz); return result; } /** As memdup, but returns the memory from area. */ void * memarea_memdup(memarea_t *area, const void *s, size_t n) { char *result = memarea_alloc(area, n); memcpy(result, s, n); return result; } /** As strdup, but returns the memory from area. */ char * memarea_strdup(memarea_t *area, const char *s) { return memarea_memdup(area, s, strlen(s)+1); } /** As strndup, but returns the memory from area. */ char * memarea_strndup(memarea_t *area, const char *s, size_t n) { size_t ln = 0; char *result; tor_assert(n < SIZE_T_CEILING); for (ln = 0; ln < n && s[ln]; ++ln) ; result = memarea_alloc(area, ln+1); memcpy(result, s, ln); result[ln]='\0'; return result; } /** Set allocated_out to the number of bytes allocated in area, * and used_out to the number of bytes currently used. */ void memarea_get_stats(memarea_t *area, size_t *allocated_out, size_t *used_out) { size_t a = 0, u = 0; memarea_chunk_t *chunk; for (chunk = area->first; chunk; chunk = chunk->next_chunk) { CHECK_SENTINEL(chunk); a += CHUNK_HEADER_SIZE + chunk->mem_size; tor_assert(chunk->next_mem >= chunk->U_MEM); u += CHUNK_HEADER_SIZE + (chunk->next_mem - chunk->U_MEM); } *allocated_out = a; *used_out = u; } /** Assert that area is okay. */ void memarea_assert_ok(memarea_t *area) { memarea_chunk_t *chunk; tor_assert(area->first); for (chunk = area->first; chunk; chunk = chunk->next_chunk) { CHECK_SENTINEL(chunk); tor_assert(chunk->next_mem >= chunk->U_MEM); tor_assert(chunk->next_mem <= (char*) realign_pointer(chunk->U_MEM+chunk->mem_size)); } } #else struct memarea_t { smartlist_t *pieces; }; memarea_t * memarea_new(void) { memarea_t *ma = tor_malloc_zero(sizeof(memarea_t)); ma->pieces = smartlist_new(); return ma; } void memarea_drop_all(memarea_t *area) { memarea_clear(area); smartlist_free(area->pieces); tor_free(area); } void memarea_clear(memarea_t *area) { SMARTLIST_FOREACH(area->pieces, void *, p, tor_free_(p)); smartlist_clear(area->pieces); } int memarea_owns_ptr(const memarea_t *area, const void *ptr) { SMARTLIST_FOREACH(area->pieces, const void *, p, if (ptr == p) return 1;); return 0; } void * memarea_alloc(memarea_t *area, size_t sz) { void *result = tor_malloc(sz); smartlist_add(area->pieces, result); return result; } void * memarea_alloc_zero(memarea_t *area, size_t sz) { void *result = tor_malloc_zero(sz); smartlist_add(area->pieces, result); return result; } void * memarea_memdup(memarea_t *area, const void *s, size_t n) { void *r = memarea_alloc(area, n); memcpy(r, s, n); return r; } char * memarea_strdup(memarea_t *area, const char *s) { size_t n = strlen(s); char *r = memarea_alloc(area, n+1); memcpy(r, s, n); r[n] = 0; return r; } char * memarea_strndup(memarea_t *area, const char *s, size_t n) { size_t ln = strnlen(s, n); char *r = memarea_alloc(area, ln+1); memcpy(r, s, ln); r[ln] = 0; return r; } void memarea_get_stats(memarea_t *area, size_t *allocated_out, size_t *used_out) { (void)area; *allocated_out = *used_out = 128; } void memarea_assert_ok(memarea_t *area) { (void)area; } #endif