/* Copyright (c) 2001 Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2007, Roger Dingledine, Nick Mathewson. */ /* See LICENSE for licensing information */ /* $Id$ */ const char buffers_c_id[] = "$Id$"; /** * \file buffers.c * \brief Implements a generic buffer interface. Buffers are * fairly opaque string holders that can read to or flush from: * memory, file descriptors, or TLS connections. **/ #include "or.h" #define SENTINELS #undef CHECK_AFTER_RESIZE #undef PARANOIA #undef NOINLINE #ifdef SENTINELS /* If SENTINELS is defined, check for attempts to write beyond the * end/before the start of the buffer. DOCDOC macros */ #define START_MAGIC 0x70370370u #define END_MAGIC 0xA0B0C0D0u #define RAW_MEM(m) ((void*)(((char*)m)-4)) #define GUARDED_MEM(m) ((void*)(((char*)m)+4)) #define ALLOC_LEN(ln) ((ln)+8) #define SET_GUARDS(m, ln) \ do { set_uint32((m)-4,START_MAGIC); set_uint32((m)+ln,END_MAGIC); } while (0) #else #define RAW_MEM(m) (m) #define GUARDED_MEM(m) (m) #define ALLOC_LEN(ln) (ln) #define SET_GUARDS(m,ln) do {} while (0) #endif #ifdef PARANOIA #define check() do { assert_buf_ok(buf); } while (0) #else #define check() do { } while (0) #endif #ifdef NOINLINE #undef INLINE #define INLINE #endif /* DOCDOC */ #define BUFFER_MAGIC 0xB0FFF312u /** A resizeable buffer, optimized for reading and writing. */ struct buf_t { uint32_t magic; /**< Magic cookie for debugging: Must be set to * BUFFER_MAGIC */ char *mem; /**< Storage for data in the buffer */ char *cur; /**< The first byte used for storing data in the buffer. */ size_t highwater; /**< Largest observed datalen since last buf_shrink */ size_t len; /**< Maximum amount of data that mem can hold. */ size_t memsize; /**< How many bytes did we actually allocate? Can be less * than 'len' if we shortened 'len' by a few bytes to make * zlib wrap around more easily. */ size_t datalen; /**< Number of bytes currently in mem. */ }; /** How many bytes, total, are used in all buffers? */ uint64_t buf_total_used = 0; /** How many bytes, total, are allocated in all buffers? */ uint64_t buf_total_alloc = 0; /** Size, in bytes, for newly allocated buffers. Should be a power of 2. */ #define INITIAL_BUF_SIZE (4*1024) /** Size, in bytes, for minimum 'shrink' size for buffers. Buffers may start * out smaller than this, but they will never autoshrink to less * than this size. */ #define MIN_LAZY_SHRINK_SIZE (4*1024) static INLINE void peek_from_buf(char *string, size_t string_len, buf_t *buf); /** If the contents of buf wrap around the end of the allocated space, * malloc a new buf and copy the contents in starting at the * beginning. This operation is relatively expensive, so it shouldn't * be used e.g. for every single read or write. */ static void buf_normalize(buf_t *buf) { check(); if (buf->cur + buf->datalen <= buf->mem+buf->len) { return; } else { char *newmem, *oldmem; size_t sz = (buf->mem+buf->len)-buf->cur; log_warn(LD_BUG, "Unexpected non-normalized buffer."); newmem = GUARDED_MEM(tor_malloc(ALLOC_LEN(buf->memsize))); SET_GUARDS(newmem, buf->memsize); memcpy(newmem, buf->cur, sz); memcpy(newmem+sz, buf->mem, buf->datalen-sz); oldmem = RAW_MEM(buf->mem); tor_free(oldmem); /* Can't use tor_free directly. */ buf->mem = buf->cur = newmem; buf->len = buf->memsize; check(); } } /** Return the point in the buffer where the next byte will get stored. */ static INLINE char * _buf_end(buf_t *buf) { char *next = buf->cur + buf->datalen; char *end = buf->mem + buf->len; return (next < end) ? next : (next - buf->len); } /** If the pointer cp has passed beyond the end of the buffer, wrap it * around. */ static INLINE char * _wrap_ptr(buf_t *buf, char *cp) { return (cp >= buf->mem + buf->len) ? (cp - buf->len) : cp; } /** Return the offset of cp within the buffer. */ static INLINE int _buf_offset(buf_t *buf, char *cp) { if (cp >= buf->cur) return cp - buf->cur; else /* return (cp - buf->mem) + buf->mem+buf->len - buf->cur */ return cp + buf->len - buf->cur; } /** If the range of *len bytes starting at at wraps around the * end of the buffer, then set *len to the number of bytes starting * at at, and set *more_len to the number of bytes starting * at buf->mem. Otherwise, set *more_len to 0. */ static INLINE void _split_range(buf_t *buf, char *at, size_t *len, size_t *more_len) { char *eos = at + *len; check(); if (eos >= (buf->mem + buf->len)) { *more_len = eos - (buf->mem + buf->len); *len -= *more_len; } else { *more_len = 0; } } /** Change a buffer's capacity. new_capacity must be \>= * buf->datalen. */ static void buf_resize(buf_t *buf, size_t new_capacity) { off_t offset; #ifdef CHECK_AFTER_RESIZE char *tmp, *tmp2; #endif tor_assert(buf->datalen <= new_capacity); tor_assert(new_capacity); #ifdef CHECK_AFTER_RESIZE assert_buf_ok(buf); tmp = tor_malloc(buf->datalen); tmp2 = tor_malloc(buf->datalen); peek_from_buf(tmp, buf->datalen, buf); #endif if (buf->len == new_capacity) return; offset = buf->cur - buf->mem; if (offset + buf->datalen > new_capacity) { /* We need to move stuff before we shrink. */ if (offset + buf->datalen > buf->len) { /* We have: * * mem[0] ... mem[datalen-(len-offset)] (end of data) * mem[offset] ... mem[len-1] (the start of the data) * * We're shrinking the buffer by (len-new_capacity) bytes, so we need * to move the start portion back by that many bytes. */ memmove(buf->cur-(buf->len-new_capacity), buf->cur, (size_t)(buf->len-offset)); offset -= (buf->len-new_capacity); } else { /* The data doesn't wrap around, but it does extend beyond the new * buffer length: * mem[offset] ... mem[offset+datalen-1] (the data) */ memmove(buf->mem, buf->cur, buf->datalen); offset = 0; } } /* XXX Some play code to throw away old buffers sometimes rather * than constantly reallocing them; just in case this is our memory * problem. It looks for now like it isn't, so disabled. -RD */ if (0 && new_capacity == MIN_LAZY_SHRINK_SIZE && !buf->datalen && buf->len >= 1<<16) { /* don't realloc; free and malloc */ char *oldmem, *newmem = GUARDED_MEM(tor_malloc(ALLOC_LEN(new_capacity))); SET_GUARDS(newmem, new_capacity); oldmem = RAW_MEM(buf->mem); tor_free(oldmem); buf->mem = buf->cur = newmem; } else { buf->mem = GUARDED_MEM(tor_realloc(RAW_MEM(buf->mem), ALLOC_LEN(new_capacity))); SET_GUARDS(buf->mem, new_capacity); buf->cur = buf->mem+offset; } buf_total_alloc += new_capacity; buf_total_alloc -= buf->len; if (offset + buf->datalen > buf->len) { /* We need to move data now that we are done growing. The buffer * now contains: * * mem[0] ... mem[datalen-(len-offset)] (end of data) * mem[offset] ... mem[len-1] (the start of the data) * mem[len]...mem[new_capacity] (empty space) * * We're growing by (new_capacity-len) bytes, so we need to move the * end portion forward by that many bytes. */ memmove(buf->cur+(new_capacity-buf->len), buf->cur, (size_t)(buf->len-offset)); buf->cur += new_capacity-buf->len; } buf->memsize = buf->len = new_capacity; #ifdef CHECK_AFTER_RESIZE assert_buf_ok(buf); peek_from_buf(tmp2, buf->datalen, buf); if (memcmp(tmp, tmp2, buf->datalen)) { tor_assert(0); } tor_free(tmp); tor_free(tmp2); #endif } /** If the buffer is not large enough to hold capacity bytes, resize * it so that it can. (The new size will be a power of 2 times the old * size.) */ static INLINE int buf_ensure_capacity(buf_t *buf, size_t capacity) { size_t new_len, min_len; if (buf->len >= capacity) /* Don't grow if we're already big enough. */ return 0; if (capacity > MAX_BUF_SIZE) /* Don't grow past the maximum. */ return -1; /* Find the smallest new_len equal to (2**X) for some X; such that * new_len is at least capacity, and at least 2*buf->len. */ min_len = buf->len*2; new_len = 16; while (new_len < min_len) new_len *= 2; while (new_len < capacity) new_len *= 2; /* Resize the buffer. */ log_debug(LD_MM,"Growing buffer from %d to %d bytes.", (int)buf->len, (int)new_len); buf_resize(buf,new_len); return 0; } /** Resize buf so it won't hold extra memory that we haven't been * using lately (that is, since the last time we called buf_shrink). * Try to shrink the buf until it is the largest factor of two that * can contain buf->highwater, but never smaller than * MIN_LAZY_SHRINK_SIZE. */ void buf_shrink(buf_t *buf) { size_t new_len; new_len = buf->len; while (buf->highwater < (new_len>>2) && new_len > MIN_LAZY_SHRINK_SIZE*2) new_len >>= 1; buf->highwater = buf->datalen; if (new_len == buf->len) return; log_debug(LD_MM,"Shrinking buffer from %d to %d bytes.", (int)buf->len, (int)new_len); buf_resize(buf, new_len); } /** Remove the first n bytes from buf. */ static INLINE void buf_remove_from_front(buf_t *buf, size_t n) { tor_assert(buf->datalen >= n); buf->datalen -= n; buf_total_used -= n; if (buf->datalen) { buf->cur = _wrap_ptr(buf, buf->cur+n); } else { buf->cur = buf->mem; } check(); } /** Make sure that the memory in buf ends with a zero byte. */ static INLINE int buf_nul_terminate(buf_t *buf) { if (buf_ensure_capacity(buf,buf->datalen+1)<0) return -1; *_buf_end(buf) = '\0'; return 0; } /** Create and return a new buf with capacity size. */ buf_t * buf_new_with_capacity(size_t size) { buf_t *buf; buf = tor_malloc_zero(sizeof(buf_t)); buf->magic = BUFFER_MAGIC; buf->cur = buf->mem = GUARDED_MEM(tor_malloc(ALLOC_LEN(size))); SET_GUARDS(buf->mem, size); buf->len = buf->memsize = size; buf_total_alloc += size; assert_buf_ok(buf); return buf; } /** Allocate and return a new buffer with default capacity. */ buf_t * buf_new(void) { return buf_new_with_capacity(INITIAL_BUF_SIZE); } /** Remove all data from buf. */ void buf_clear(buf_t *buf) { buf_total_used -= buf->datalen; buf->datalen = 0; buf->cur = buf->mem; buf->len = buf->memsize; } /** Return the number of bytes stored in buf */ size_t buf_datalen(const buf_t *buf) { return buf->datalen; } /** Return the maximum bytes that can be stored in buf before buf * needs to resize. */ size_t buf_capacity(const buf_t *buf) { return buf->len; } /** For testing only: Return a pointer to the raw memory stored in * buf. */ const char * _buf_peek_raw_buffer(const buf_t *buf) { return buf->cur; } /** Release storage held by buf. */ void buf_free(buf_t *buf) { char *oldmem; assert_buf_ok(buf); buf->magic = 0xDEADBEEF; oldmem = RAW_MEM(buf->mem); tor_free(oldmem); buf_total_alloc -= buf->len; buf_total_used -= buf->datalen; tor_free(buf); } /** Helper for read_to_buf(): read no more than at_most bytes from * socket s into buffer buf, starting at the position pos. (Does not * check for overflow.) Set *reached_eof to true on EOF. Return * number of bytes read on success, 0 if the read would block, -1 on * failure. */ static INLINE int read_to_buf_impl(int s, size_t at_most, buf_t *buf, char *pos, int *reached_eof) { int read_result; // log_fn(LOG_DEBUG,"reading at most %d bytes.",at_most); read_result = tor_socket_recv(s, pos, at_most, 0); if (read_result < 0) { int e = tor_socket_errno(s); if (!ERRNO_IS_EAGAIN(e)) { /* it's a real error */ #ifdef MS_WINDOWS if (e == WSAENOBUFS) log_warn(LD_NET,"recv() failed: WSAENOBUFS. Not enough ram?"); #endif return -1; } return 0; /* would block. */ } else if (read_result == 0) { log_debug(LD_NET,"Encountered eof"); *reached_eof = 1; return 0; } else { /* we read some bytes */ buf->datalen += read_result; buf_total_used += read_result; if (buf->datalen > buf->highwater) buf->highwater = buf->datalen; log_debug(LD_NET,"Read %d bytes. %d on inbuf.",read_result, (int)buf->datalen); return read_result; } } /** Read from socket s, writing onto end of buf. Read at most * at_most bytes, resizing the buffer as necessary. If recv() * returns 0, set *reached_eof to 1 and return 0. Return -1 on error; * else return the number of bytes read. Return 0 if recv() would * block. */ int read_to_buf(int s, size_t at_most, buf_t *buf, int *reached_eof) { int r; char *next; size_t at_start; /* assert_buf_ok(buf); */ tor_assert(reached_eof); tor_assert(s>=0); if (buf_ensure_capacity(buf,buf->datalen+at_most)) return -1; if (at_most + buf->datalen > buf->len) at_most = buf->len - buf->datalen; /* take the min of the two */ if (at_most == 0) return 0; /* we shouldn't read anything */ next = _buf_end(buf); _split_range(buf, next, &at_most, &at_start); r = read_to_buf_impl(s, at_most, buf, next, reached_eof); check(); if (r < 0 || (size_t)r < at_most) { return r; /* Either error, eof, block, or no more to read. */ } if (at_start) { int r2; tor_assert(_buf_end(buf) == buf->mem); r2 = read_to_buf_impl(s, at_start, buf, buf->mem, reached_eof); check(); if (r2 < 0) { return r2; } else { r += r2; } } return r; } /** Helper for read_to_buf_tls(): read no more than at_most * bytes from the TLS connection tls into buffer buf, * starting at the position next. (Does not check for overflow.) * Return number of bytes read on success, 0 if the read would block, * -1 on failure. */ static INLINE int read_to_buf_tls_impl(tor_tls_t *tls, size_t at_most, buf_t *buf, char *next) { int r; log_debug(LD_NET,"before: %d on buf, %d pending, at_most %d.", (int)buf_datalen(buf), (int)tor_tls_get_pending_bytes(tls), (int)at_most); r = tor_tls_read(tls, next, at_most); if (r<0) return r; buf->datalen += r; buf_total_used += r; if (buf->datalen > buf->highwater) buf->highwater = buf->datalen; log_debug(LD_NET,"Read %d bytes. %d on inbuf; %d pending",r, (int)buf->datalen,(int)tor_tls_get_pending_bytes(tls)); return r; } /** As read_to_buf, but reads from a TLS connection. * * Using TLS on OR connections complicates matters in two ways. * * First, a TLS stream has its own read buffer independent of the * connection's read buffer. (TLS needs to read an entire frame from * the network before it can decrypt any data. Thus, trying to read 1 * byte from TLS can require that several KB be read from the network * and decrypted. The extra data is stored in TLS's decrypt buffer.) * Because the data hasn't been read by Tor (it's still inside the TLS), * this means that sometimes a connection "has stuff to read" even when * poll() didn't return POLLIN. The tor_tls_get_pending_bytes function is * used in connection.c to detect TLS objects with non-empty internal * buffers and read from them again. * * Second, the TLS stream's events do not correspond directly to network * events: sometimes, before a TLS stream can read, the network must be * ready to write -- or vice versa. */ int read_to_buf_tls(tor_tls_t *tls, size_t at_most, buf_t *buf) { int r; char *next; size_t at_start; tor_assert(tls); assert_buf_ok(buf); log_debug(LD_NET,"start: %d on buf, %d pending, at_most %d.", (int)buf_datalen(buf), (int)tor_tls_get_pending_bytes(tls), (int)at_most); if (buf_ensure_capacity(buf, at_most+buf->datalen)) return TOR_TLS_ERROR_MISC; if (at_most + buf->datalen > buf->len) at_most = buf->len - buf->datalen; if (at_most == 0) return 0; next = _buf_end(buf); _split_range(buf, next, &at_most, &at_start); r = read_to_buf_tls_impl(tls, at_most, buf, next); check(); if (r < 0 || (size_t)r < at_most) return r; /* Either error, eof, block, or no more to read. */ if (at_start) { int r2; tor_assert(_buf_end(buf) == buf->mem); r2 = read_to_buf_tls_impl(tls, at_start, buf, buf->mem); check(); if (r2 < 0) return r2; else r += r2; } return r; } /** Helper for flush_buf(): try to write sz bytes from buffer * buf onto socket s. On success, deduct the bytes written * from *buf_flushlen. * Return the number of bytes written on success, -1 on failure. */ static INLINE int flush_buf_impl(int s, buf_t *buf, size_t sz, size_t *buf_flushlen) { int write_result; write_result = tor_socket_send(s, buf->cur, sz, 0); if (write_result < 0) { int e = tor_socket_errno(s); if (!ERRNO_IS_EAGAIN(e)) { /* it's a real error */ #ifdef MS_WINDOWS if (e == WSAENOBUFS) log_warn(LD_NET,"write() failed: WSAENOBUFS. Not enough ram?"); #endif return -1; } log_debug(LD_NET,"write() would block, returning."); return 0; } else { *buf_flushlen -= write_result; buf_remove_from_front(buf, write_result); return write_result; } } /** Write data from buf to the socket s. Write at most * sz bytes, decrement *buf_flushlen by * the number of bytes actually written, and remove the written bytes * from the buffer. Return the number of bytes written on success, * -1 on failure. Return 0 if write() would block. */ int flush_buf(int s, buf_t *buf, size_t sz, size_t *buf_flushlen) { int r; size_t flushed = 0; size_t flushlen0, flushlen1; /* assert_buf_ok(buf); */ tor_assert(buf_flushlen); tor_assert(s>=0); tor_assert(*buf_flushlen <= buf->datalen); tor_assert(sz <= *buf_flushlen); if (sz == 0) /* nothing to flush */ return 0; flushlen0 = sz; _split_range(buf, buf->cur, &flushlen0, &flushlen1); r = flush_buf_impl(s, buf, flushlen0, buf_flushlen); check(); log_debug(LD_NET,"%d: flushed %d bytes, %d ready to flush, %d remain.", s,r,(int)*buf_flushlen,(int)buf->datalen); if (r < 0 || (size_t)r < flushlen0) return r; /* Error, or can't flush any more now. */ flushed = r; if (flushlen1) { tor_assert(buf->cur == buf->mem); r = flush_buf_impl(s, buf, flushlen1, buf_flushlen); check(); log_debug(LD_NET,"%d: flushed %d bytes, %d ready to flush, %d remain.", s,r,(int)*buf_flushlen,(int)buf->datalen); if (r<0) return r; flushed += r; } return flushed; } /** Helper for flush_buf_tls(): try to write sz bytes (or more if * required by a previous write) from buffer buf onto TLS object * tls. On success, deduct the bytes written from * *buf_flushlen. Return the number of bytes written on success, -1 on * failure. */ static INLINE int flush_buf_tls_impl(tor_tls_t *tls, buf_t *buf, size_t sz, size_t *buf_flushlen) { int r; size_t forced; forced = tor_tls_get_forced_write_size(tls); if (forced > sz) sz = forced; r = tor_tls_write(tls, buf->cur, sz); if (r < 0) { return r; } *buf_flushlen -= r; buf_remove_from_front(buf, r); log_debug(LD_NET,"flushed %d bytes, %d ready to flush, %d remain.", r,(int)*buf_flushlen,(int)buf->datalen); return r; } /** As flush_buf(), but writes data to a TLS connection. */ int flush_buf_tls(tor_tls_t *tls, buf_t *buf, size_t sz, size_t *buf_flushlen) { int r; size_t flushed=0; size_t flushlen0, flushlen1; /* assert_buf_ok(buf); */ tor_assert(tls); tor_assert(buf_flushlen); tor_assert(*buf_flushlen <= buf->datalen); tor_assert(sz <= *buf_flushlen); /* we want to let tls write even if flushlen is zero, because it might * have a partial record pending */ check_no_tls_errors(); flushlen0 = sz; _split_range(buf, buf->cur, &flushlen0, &flushlen1); if (flushlen1) { size_t forced = tor_tls_get_forced_write_size(tls); tor_assert(forced <= flushlen0); } r = flush_buf_tls_impl(tls, buf, flushlen0, buf_flushlen); check(); if (r < 0 || (size_t)r < flushlen0) return r; /* Error, or can't flush any more now. */ flushed = r; if (flushlen1) { tor_assert(buf->cur == buf->mem); r = flush_buf_tls_impl(tls, buf, flushlen1, buf_flushlen); check(); if (r<0) return r; flushed += r; } return flushed; } /** Append string_len bytes from string to the end of * buf. * * Return the new length of the buffer on success, -1 on failure. */ int write_to_buf(const char *string, size_t string_len, buf_t *buf) { char *next; size_t len2; /* append string to buf (growing as needed, return -1 if "too big") * return total number of bytes on the buf */ tor_assert(string); /* assert_buf_ok(buf); */ if (buf_ensure_capacity(buf, buf->datalen+string_len)) { log_warn(LD_MM, "buflen too small, can't hold %d bytes.", (int)(buf->datalen+string_len)); return -1; } next = _buf_end(buf); _split_range(buf, next, &string_len, &len2); memcpy(next, string, string_len); buf->datalen += string_len; buf_total_used += string_len; if (len2) { tor_assert(_buf_end(buf) == buf->mem); memcpy(buf->mem, string+string_len, len2); buf->datalen += len2; buf_total_used += len2; } if (buf->datalen > buf->highwater) buf->highwater = buf->datalen; log_debug(LD_NET,"added %d bytes to buf (now %d total).", (int)string_len, (int)buf->datalen); check(); return buf->datalen; } /** Helper: copy the first string_len bytes from buf * onto string. */ static INLINE void peek_from_buf(char *string, size_t string_len, buf_t *buf) { size_t len2; /* There must be string_len bytes in buf; write them onto string, * then memmove buf back (that is, remove them from buf). * * Return the number of bytes still on the buffer. */ tor_assert(string); /* make sure we don't ask for too much */ tor_assert(string_len <= buf->datalen); /* assert_buf_ok(buf); */ _split_range(buf, buf->cur, &string_len, &len2); memcpy(string, buf->cur, string_len); if (len2) { memcpy(string+string_len,buf->mem,len2); } } /** Remove string_len bytes from the front of buf, and store * them into string. Return the new buffer size. string_len * must be \<= the number of bytes on the buffer. */ int fetch_from_buf(char *string, size_t string_len, buf_t *buf) { /* There must be string_len bytes in buf; write them onto string, * then memmove buf back (that is, remove them from buf). * * Return the number of bytes still on the buffer. */ check(); peek_from_buf(string, string_len, buf); buf_remove_from_front(buf, string_len); check(); return buf->datalen; } /** There is a (possibly incomplete) http statement on buf, of the * form "\%s\\r\\n\\r\\n\%s", headers, body. (body may contain nuls.) * If a) the headers include a Content-Length field and all bytes in * the body are present, or b) there's no Content-Length field and * all headers are present, then: * * - strdup headers into *headers_out, and nul-terminate it. * - memdup body into *body_out, and nul-terminate it. * - Then remove them from buf, and return 1. * * - If headers or body is NULL, discard that part of the buf. * - If a headers or body doesn't fit in the arg, return -1. * (We ensure that the headers or body don't exceed max len, * _even if_ we're planning to discard them.) * - If force_complete is true, then succeed even if not all of the * content has arrived. * * Else, change nothing and return 0. */ int fetch_from_buf_http(buf_t *buf, char **headers_out, size_t max_headerlen, char **body_out, size_t *body_used, size_t max_bodylen, int force_complete) { char *headers, *body, *p; size_t headerlen, bodylen, contentlen; /* assert_buf_ok(buf); */ buf_normalize(buf); if (buf_nul_terminate(buf)<0) { log_warn(LD_BUG,"Couldn't nul-terminate buffer"); return -1; } headers = buf->cur; body = strstr(headers,"\r\n\r\n"); if (!body) { log_debug(LD_HTTP,"headers not all here yet."); return 0; } body += 4; /* Skip the the CRLFCRLF */ headerlen = body-headers; /* includes the CRLFCRLF */ bodylen = buf->datalen - headerlen; log_debug(LD_HTTP,"headerlen %d, bodylen %d.", (int)headerlen, (int)bodylen); if (max_headerlen <= headerlen) { log_warn(LD_HTTP,"headerlen %d larger than %d. Failing.", (int)headerlen, (int)max_headerlen-1); return -1; } if (max_bodylen <= bodylen) { log_warn(LD_HTTP,"bodylen %d larger than %d. Failing.", (int)bodylen, (int)max_bodylen-1); return -1; } #define CONTENT_LENGTH "\r\nContent-Length: " p = strstr(headers, CONTENT_LENGTH); if (p) { int i; i = atoi(p+strlen(CONTENT_LENGTH)); if (i < 0) { log_warn(LD_PROTOCOL, "Content-Length is less than zero; it looks like " "someone is trying to crash us."); return -1; } contentlen = i; /* if content-length is malformed, then our body length is 0. fine. */ log_debug(LD_HTTP,"Got a contentlen of %d.",(int)contentlen); if (bodylen < contentlen) { if (!force_complete) { log_debug(LD_HTTP,"body not all here yet."); return 0; /* not all there yet */ } } if (bodylen > contentlen) { bodylen = contentlen; log_debug(LD_HTTP,"bodylen reduced to %d.",(int)bodylen); } } /* all happy. copy into the appropriate places, and return 1 */ if (headers_out) { *headers_out = tor_malloc(headerlen+1); memcpy(*headers_out,buf->cur,headerlen); (*headers_out)[headerlen] = 0; /* nul terminate it */ } if (body_out) { tor_assert(body_used); *body_used = bodylen; *body_out = tor_malloc(bodylen+1); memcpy(*body_out,buf->cur+headerlen,bodylen); (*body_out)[bodylen] = 0; /* nul terminate it */ } buf_remove_from_front(buf, headerlen+bodylen); return 1; } /** There is a (possibly incomplete) socks handshake on buf, of one * of the forms * - socks4: "socksheader username\\0" * - socks4a: "socksheader username\\0 destaddr\\0" * - socks5 phase one: "version #methods methods" * - socks5 phase two: "version command 0 addresstype..." * If it's a complete and valid handshake, and destaddr fits in * MAX_SOCKS_ADDR_LEN bytes, then pull the handshake off the buf, * assign to req, and return 1. * * If it's invalid or too big, return -1. * * Else it's not all there yet, leave buf alone and return 0. * * If you want to specify the socks reply, write it into req->reply * and set req->replylen, else leave req->replylen alone. * * If log_sockstype is non-zero, then do a notice-level log of whether * the connection is possibly leaking DNS requests locally or not. * * If safe_socks is true, then reject unsafe socks protocols. * * If returning 0 or -1, req->address and req->port are * undefined. */ int fetch_from_buf_socks(buf_t *buf, socks_request_t *req, int log_sockstype, int safe_socks) { unsigned char len; char tmpbuf[INET_NTOA_BUF_LEN]; uint32_t destip; enum {socks4, socks4a} socks4_prot = socks4a; char *next, *startaddr; struct in_addr in; /* If the user connects with socks4 or the wrong variant of socks5, * then log a warning to let him know that it might be unwise. */ static int have_warned_about_unsafe_socks = 0; if (buf->datalen < 2) /* version and another byte */ return 0; buf_normalize(buf); switch (*(buf->cur)) { /* which version of socks? */ case 5: /* socks5 */ if (req->socks_version != 5) { /* we need to negotiate a method */ unsigned char nummethods = (unsigned char)*(buf->cur+1); tor_assert(!req->socks_version); if (buf->datalen < 2u+nummethods) return 0; if (!nummethods || !memchr(buf->cur+2, 0, nummethods)) { log_warn(LD_APP, "socks5: offered methods don't include 'no auth'. " "Rejecting."); req->replylen = 2; /* 2 bytes of response */ req->reply[0] = 5; req->reply[1] = '\xFF'; /* reject all methods */ return -1; } /* remove packet from buf. also remove any other extraneous * bytes, to support broken socks clients. */ buf_clear(buf); req->replylen = 2; /* 2 bytes of response */ req->reply[0] = 5; /* socks5 reply */ req->reply[1] = SOCKS5_SUCCEEDED; req->socks_version = 5; /* remember we've already negotiated auth */ log_debug(LD_APP,"socks5: accepted method 0"); return 0; } /* we know the method; read in the request */ log_debug(LD_APP,"socks5: checking request"); if (buf->datalen < 8) /* basic info plus >=2 for addr plus 2 for port */ return 0; /* not yet */ req->command = (unsigned char) *(buf->cur+1); if (req->command != SOCKS_COMMAND_CONNECT && req->command != SOCKS_COMMAND_CONNECT_DIR && req->command != SOCKS_COMMAND_RESOLVE && req->command != SOCKS_COMMAND_RESOLVE_PTR) { /* not a connect or resolve or a resolve_ptr? we don't support it. */ log_warn(LD_APP,"socks5: command %d not recognized. Rejecting.", req->command); return -1; } switch (*(buf->cur+3)) { /* address type */ case 1: /* IPv4 address */ log_debug(LD_APP,"socks5: ipv4 address type"); if (buf->datalen < 10) /* ip/port there? */ return 0; /* not yet */ destip = ntohl(*(uint32_t*)(buf->cur+4)); in.s_addr = htonl(destip); tor_inet_ntoa(&in,tmpbuf,sizeof(tmpbuf)); if (strlen(tmpbuf)+1 > MAX_SOCKS_ADDR_LEN) { log_warn(LD_APP, "socks5 IP takes %d bytes, which doesn't fit in %d. " "Rejecting.", (int)strlen(tmpbuf)+1,(int)MAX_SOCKS_ADDR_LEN); return -1; } strlcpy(req->address,tmpbuf,sizeof(req->address)); req->port = ntohs(*(uint16_t*)(buf->cur+8)); buf_remove_from_front(buf, 10); if (req->command != SOCKS_COMMAND_RESOLVE_PTR && !addressmap_have_mapping(req->address) && !have_warned_about_unsafe_socks) { log_warn(LD_APP, "Your application (using socks5 on port %d) is giving " "Tor only an IP address. Applications that do DNS resolves " "themselves may leak information. Consider using Socks4A " "(e.g. via privoxy or socat) instead. For more information, " "please see http://wiki.noreply.org/noreply/TheOnionRouter/" "TorFAQ#SOCKSAndDNS.%s", req->port, safe_socks ? " Rejecting." : ""); // have_warned_about_unsafe_socks = 1; // (for now, warn every time) control_event_client_status(LOG_WARN, "DANGEROUS_SOCKS PROTOCOL=SOCKS5 ADDRESS=%s:%d", req->address, req->port); if (safe_socks) return -1; } return 1; case 3: /* fqdn */ log_debug(LD_APP,"socks5: fqdn address type"); len = (unsigned char)*(buf->cur+4); if (buf->datalen < 7u+len) /* addr/port there? */ return 0; /* not yet */ if (len+1 > MAX_SOCKS_ADDR_LEN) { log_warn(LD_APP, "socks5 hostname is %d bytes, which doesn't fit in " "%d. Rejecting.", len+1,MAX_SOCKS_ADDR_LEN); return -1; } if (req->command == SOCKS_COMMAND_RESOLVE_PTR) { log_warn(LD_APP, "socks5 received RESOLVE_PTR command with " "hostname type. Rejecting."); return -1; } memcpy(req->address,buf->cur+5,len); req->address[len] = 0; req->port = ntohs(get_uint16(buf->cur+5+len)); buf_remove_from_front(buf, 5+len+2); if (!tor_strisprint(req->address) || strchr(req->address,'\"')) { log_warn(LD_PROTOCOL, "Your application (using socks5 on port %d) gave Tor " "a malformed hostname: %s. Rejecting the connection.", req->port, escaped(req->address)); return -1; } if (log_sockstype) log_notice(LD_APP, "Your application (using socks5 on port %d) gave " "Tor a hostname, which means Tor will do the DNS resolve " "for you. This is good.", req->port); return 1; default: /* unsupported */ log_warn(LD_APP,"socks5: unsupported address type %d. Rejecting.", *(buf->cur+3)); return -1; } tor_assert(0); case 4: /* socks4 */ /* http://archive.socks.permeo.com/protocol/socks4.protocol */ /* http://archive.socks.permeo.com/protocol/socks4a.protocol */ req->socks_version = 4; if (buf->datalen < SOCKS4_NETWORK_LEN) /* basic info available? */ return 0; /* not yet */ req->command = (unsigned char) *(buf->cur+1); if (req->command != SOCKS_COMMAND_CONNECT && req->command != SOCKS_COMMAND_CONNECT_DIR && req->command != SOCKS_COMMAND_RESOLVE) { /* not a connect or resolve? we don't support it. (No resolve_ptr with * socks4.) */ log_warn(LD_APP,"socks4: command %d not recognized. Rejecting.", req->command); return -1; } req->port = ntohs(*(uint16_t*)(buf->cur+2)); destip = ntohl(*(uint32_t*)(buf->mem+4)); if ((!req->port && req->command!=SOCKS_COMMAND_RESOLVE) || !destip) { log_warn(LD_APP,"socks4: Port or DestIP is zero. Rejecting."); return -1; } if (destip >> 8) { log_debug(LD_APP,"socks4: destip not in form 0.0.0.x."); in.s_addr = htonl(destip); tor_inet_ntoa(&in,tmpbuf,sizeof(tmpbuf)); if (strlen(tmpbuf)+1 > MAX_SOCKS_ADDR_LEN) { log_debug(LD_APP,"socks4 addr (%d bytes) too long. Rejecting.", (int)strlen(tmpbuf)); return -1; } log_debug(LD_APP, "socks4: successfully read destip (%s)", safe_str(tmpbuf)); socks4_prot = socks4; } next = memchr(buf->cur+SOCKS4_NETWORK_LEN, 0, buf->datalen-SOCKS4_NETWORK_LEN); if (!next) { log_debug(LD_APP,"socks4: Username not here yet."); return 0; } tor_assert(next < buf->cur+buf->datalen); startaddr = NULL; if (socks4_prot != socks4a && !addressmap_have_mapping(tmpbuf) && !have_warned_about_unsafe_socks) { log_warn(LD_APP, "Your application (using socks4 on port %d) is giving Tor " "only an IP address. Applications that do DNS resolves " "themselves may leak information. Consider using Socks4A " "(e.g. via privoxy or socat) instead. For more information, " "please see http://wiki.noreply.org/noreply/TheOnionRouter/" "TorFAQ#SOCKSAndDNS.%s", req->port, safe_socks ? " Rejecting." : ""); // have_warned_about_unsafe_socks = 1; // (for now, warn every time) control_event_client_status(LOG_WARN, "DANGEROUS_SOCKS PROTOCOL=SOCKS4 ADDRESS=%s:%d", tmpbuf, req->port); if (safe_socks) return -1; } if (socks4_prot == socks4a) { if (next+1 == buf->cur+buf->datalen) { log_debug(LD_APP,"socks4: No part of destaddr here yet."); return 0; } startaddr = next+1; next = memchr(startaddr, 0, buf->cur+buf->datalen-startaddr); if (!next) { log_debug(LD_APP,"socks4: Destaddr not all here yet."); return 0; } if (MAX_SOCKS_ADDR_LEN <= next-startaddr) { log_warn(LD_APP,"socks4: Destaddr too long. Rejecting."); return -1; } tor_assert(next < buf->cur+buf->datalen); if (log_sockstype) log_notice(LD_APP, "Your application (using socks4a on port %d) gave " "Tor a hostname, which means Tor will do the DNS resolve " "for you. This is good.", req->port); } log_debug(LD_APP,"socks4: Everything is here. Success."); strlcpy(req->address, startaddr ? startaddr : tmpbuf, sizeof(req->address)); if (!tor_strisprint(req->address) || strchr(req->address,'\"')) { log_warn(LD_PROTOCOL, "Your application (using socks4 on port %d) gave Tor " "a malformed hostname: %s. Rejecting the connection.", req->port, escaped(req->address)); return -1; } /* next points to the final \0 on inbuf */ buf_remove_from_front(buf, next-buf->cur+1); return 1; case 'G': /* get */ case 'H': /* head */ case 'P': /* put/post */ case 'C': /* connect */ strlcpy(req->reply, "HTTP/1.0 501 Tor is not an HTTP Proxy\r\n" "Content-Type: text/html; charset=iso-8859-1\r\n\r\n" "\n" "\n" "Tor is not an HTTP Proxy\n" "\n" "\n" "

Tor is not an HTTP Proxy

\n" "

\n" "It appears you have configured your web browser to use Tor as an HTTP proxy." "\n" "This is not correct: Tor is a SOCKS proxy, not an HTTP proxy.\n" "Please configure your client accordingly.\n" "

\n" "

\n" "See " "http://tor.eff.org/documentation.html for more information.\n" "\n" "

\n" "\n" "\n" , MAX_SOCKS_REPLY_LEN); req->replylen = strlen(req->reply)+1; /* fall through */ default: /* version is not socks4 or socks5 */ log_warn(LD_APP, "Socks version %d not recognized. (Tor is not an http proxy.)", *(buf->cur)); { char *tmp = tor_strndup(buf->cur, 8); control_event_client_status(LOG_WARN, "SOCKS_UNKNOWN_PROTOCOL DATA=\"%s\"", escaped(tmp)); tor_free(tmp); } return -1; } } /** If there is a complete version 0 control message waiting on buf, then store * its contents into *type_out, store its body's length into * *len_out, allocate and store a string for its body into * *body_out, and return 1. (body_out will always be NUL-terminated, * even if the control message body doesn't end with NUL.) * * If there is not a complete control message waiting, return 0. * * Return -1 on error; return -2 on "seems to be control protocol v1." */ int fetch_from_buf_control0(buf_t *buf, uint32_t *len_out, uint16_t *type_out, char **body_out, int check_for_v1) { uint32_t msglen; uint16_t type; char tmp[4]; tor_assert(buf); tor_assert(len_out); tor_assert(type_out); tor_assert(body_out); *len_out = 0; *body_out = NULL; if (buf->datalen < 4) return 0; peek_from_buf(tmp, 4, buf); msglen = ntohs(get_uint16(tmp)); type = ntohs(get_uint16(tmp+2)); if (type > 255 && check_for_v1) return -2; if (buf->datalen < 4 + (unsigned)msglen) return 0; *len_out = msglen; *type_out = type; buf_remove_from_front(buf, 4); if (msglen) { *body_out = tor_malloc(msglen+1); fetch_from_buf(*body_out, msglen, buf); (*body_out)[msglen] = '\0'; } return 1; } /** Helper: return a pointer to the first instance of c in the * lencharacters after start on buf. Return NULL if the * character isn't found. */ static char * find_char_on_buf(buf_t *buf, char *start, size_t len, char c) { size_t len_rest; char *cp; _split_range(buf, start, &len, &len_rest); cp = memchr(start, c, len); if (cp || !len_rest) return cp; return memchr(buf->mem, c, len_rest); } /** Helper: return a pointer to the first CRLF after cp on buf. Return * NULL if no CRLF is found. */ static char * find_crlf_on_buf(buf_t *buf, char *cp) { char *next; while (1) { size_t remaining = buf->datalen - _buf_offset(buf,cp); cp = find_char_on_buf(buf, cp, remaining, '\r'); if (!cp) return NULL; next = _wrap_ptr(buf, cp+1); if (next == _buf_end(buf)) return NULL; if (*next == '\n') return cp; cp = next; } } /** Try to read a single CRLF-terminated line from buf, and write it, * NUL-terminated, into the *data_len byte buffer at data_out. * Set *data_len to the number of bytes in the line, not counting the * terminating NUL. Return 1 if we read a whole line, return 0 if we don't * have a whole line yet, and return -1 if we we need to grow the buffer. */ int fetch_from_buf_line(buf_t *buf, char *data_out, size_t *data_len) { char *eol; size_t sz; /* Look for a CRLF. */ if (!(eol = find_crlf_on_buf(buf, buf->cur))) { return 0; } sz = _buf_offset(buf, eol); if (sz+3 > *data_len) { *data_len = sz+3; return -1; } fetch_from_buf(data_out, sz+2, buf); data_out[sz+2] = '\0'; *data_len = sz+2; return 1; } /** Try to read a single LF-terminated line from buf, and write it, * NUL-terminated, into the *data_len byte buffer at data_out. * Set *data_len to the number of bytes in the line, not counting the * terminating NUL. Return 1 if we read a whole line, return 0 if we don't * have a whole line yet, and return -1 if the line length exceeds *data_len. */ int fetch_from_buf_line_lf(buf_t *buf, char *data_out, size_t *data_len) { char *cp; size_t sz; size_t remaining = buf->datalen - _buf_offset(buf,buf->cur); cp = find_char_on_buf(buf, buf->cur, remaining, '\n'); if (!cp) return 0; sz = _buf_offset(buf, cp); if (sz+2 > *data_len) { *data_len = sz+2; return -1; } fetch_from_buf(data_out, sz+1, buf); data_out[sz+1] = '\0'; *data_len = sz+1; return 1; } /** Compress on uncompress the data_len bytes in data using the * zlib state state, appending the result to buf. If * done is true, flush the data in the state and finish the * compression/uncompression. Return -1 on failure, 0 on success. */ int write_to_buf_zlib(buf_t *buf, tor_zlib_state_t *state, const char *data, size_t data_len, int done) { char *next; size_t old_avail, avail; int over = 0; do { buf_ensure_capacity(buf, buf->datalen + 1024); next = _buf_end(buf); if (next < buf->cur) old_avail = avail = buf->cur - next; else old_avail = avail = (buf->mem + buf->len) - next; switch (tor_zlib_process(state, &next, &avail, &data, &data_len, done)) { case TOR_ZLIB_DONE: over = 1; break; case TOR_ZLIB_ERR: return -1; case TOR_ZLIB_OK: if (data_len == 0) over = 1; break; case TOR_ZLIB_BUF_FULL: if (avail && buf->len >= 1024 + buf->datalen) { /* Zlib says we need more room (ZLIB_BUF_FULL), and we're not about * to wrap around (avail != 0), and resizing won't actually make us * un-full: we're at the end of the buffer, and zlib refuses to * append more here, but there's a pile of free space at the start * of the buffer (about 1K). So chop a few characters off the * end of the buffer. This feels silly; anybody got a better hack? * * (We don't just want to expand the buffer nevertheless. Consider a * 1/3 full buffer with a single byte free at the end. zlib will * often refuse to append to that, and so we want to use the * beginning, not double the buffer to be just 1/6 full.) */ tor_assert(next >= buf->cur); buf->len -= avail; } break; } buf->datalen += old_avail - avail; if (buf->datalen > buf->highwater) buf->highwater = buf->datalen; buf_total_used += old_avail - avail; } while (!over); return 0; } /** Log an error and exit if buf is corrupted. */ void assert_buf_ok(buf_t *buf) { tor_assert(buf); tor_assert(buf->magic == BUFFER_MAGIC); tor_assert(buf->mem); tor_assert(buf->highwater <= buf->len); tor_assert(buf->datalen <= buf->highwater); #ifdef SENTINELS { uint32_t u32 = get_uint32(buf->mem - 4); tor_assert(u32 == START_MAGIC); u32 = get_uint32(buf->mem + buf->memsize); tor_assert(u32 == END_MAGIC); } #endif }