/* Copyright (c) 2001, Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2017, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file crypto_rsa.c * \brief Block of functions related with RSA utilities and operations. **/ #include "crypto_rsa.h" #include "crypto.h" #include "compat_openssl.h" #include "crypto_curve25519.h" #include "crypto_ed25519.h" #include "crypto_format.h" DISABLE_GCC_WARNING(redundant-decls) #include #include #include #include #include #include #include #include #include #include ENABLE_GCC_WARNING(redundant-decls) #include "torlog.h" #include "util.h" #include "util_format.h" /** Declaration for crypto_pk_t structure. */ struct crypto_pk_t { int refs; /**< reference count, so we don't have to copy keys */ RSA *key; /**< The key itself */ }; /** Log all pending crypto errors at level severity. Use * doing to describe our current activities. */ static void crypto_log_errors(int severity, const char *doing) { unsigned long err; const char *msg, *lib, *func; while ((err = ERR_get_error()) != 0) { msg = (const char*)ERR_reason_error_string(err); lib = (const char*)ERR_lib_error_string(err); func = (const char*)ERR_func_error_string(err); if (!msg) msg = "(null)"; if (!lib) lib = "(null)"; if (!func) func = "(null)"; if (BUG(!doing)) doing = "(null)"; tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)", doing, msg, lib, func); } } /** Return the number of bytes added by padding method padding. */ int crypto_get_rsa_padding_overhead(int padding) { switch (padding) { case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD; default: tor_assert(0); return -1; // LCOV_EXCL_LINE } } /** Given a padding method padding, return the correct OpenSSL constant. */ int crypto_get_rsa_padding(int padding) { switch (padding) { case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING; default: tor_assert(0); return -1; // LCOV_EXCL_LINE } } /** used internally: quicly validate a crypto_pk_t object as a private key. * Return 1 iff the public key is valid, 0 if obviously invalid. */ static int crypto_pk_private_ok(const crypto_pk_t *k) { #ifdef OPENSSL_1_1_API if (!k || !k->key) return 0; const BIGNUM *p, *q; RSA_get0_factors(k->key, &p, &q); return p != NULL; /* XXX/yawning: Should we check q? */ #else /* !(defined(OPENSSL_1_1_API)) */ return k && k->key && k->key->p; #endif /* defined(OPENSSL_1_1_API) */ } /** used by tortls.c: wrap an RSA* in a crypto_pk_t. */ crypto_pk_t * crypto_new_pk_from_rsa_(RSA *rsa) { crypto_pk_t *env; tor_assert(rsa); env = tor_malloc(sizeof(crypto_pk_t)); env->refs = 1; env->key = rsa; return env; } /** Helper, used by tor-gencert.c. Return the RSA from a * crypto_pk_t. */ RSA * crypto_pk_get_rsa_(crypto_pk_t *env) { return env->key; } /** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff * private is set, include the private-key portion of the key. Return a valid * pointer on success, and NULL on failure. */ MOCK_IMPL(EVP_PKEY *, crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private)) { RSA *key = NULL; EVP_PKEY *pkey = NULL; tor_assert(env->key); if (private) { if (!(key = RSAPrivateKey_dup(env->key))) goto error; } else { if (!(key = RSAPublicKey_dup(env->key))) goto error; } if (!(pkey = EVP_PKEY_new())) goto error; if (!(EVP_PKEY_assign_RSA(pkey, key))) goto error; return pkey; error: if (pkey) EVP_PKEY_free(pkey); if (key) RSA_free(key); return NULL; } /** Allocate and return storage for a public key. The key itself will not yet * be set. */ MOCK_IMPL(crypto_pk_t *, crypto_pk_new,(void)) { RSA *rsa; rsa = RSA_new(); tor_assert(rsa); return crypto_new_pk_from_rsa_(rsa); } /** Release a reference to an asymmetric key; when all the references * are released, free the key. */ void crypto_pk_free_(crypto_pk_t *env) { if (!env) return; if (--env->refs > 0) return; tor_assert(env->refs == 0); if (env->key) RSA_free(env->key); tor_free(env); } /** Generate a bits-bit new public/private keypair in env. * Return 0 on success, -1 on failure. */ MOCK_IMPL(int, crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits)) { tor_assert(env); if (env->key) { RSA_free(env->key); env->key = NULL; } { BIGNUM *e = BN_new(); RSA *r = NULL; if (!e) goto done; if (! BN_set_word(e, 65537)) goto done; r = RSA_new(); if (!r) goto done; if (RSA_generate_key_ex(r, bits, e, NULL) == -1) goto done; env->key = r; r = NULL; done: if (e) BN_clear_free(e); if (r) RSA_free(r); } if (!env->key) { crypto_log_errors(LOG_WARN, "generating RSA key"); return -1; } return 0; } /** A PEM callback that always reports a failure to get a password */ static int pem_no_password_cb(char *buf, int size, int rwflag, void *u) { (void)buf; (void)size; (void)rwflag; (void)u; return 0; } /** Read a PEM-encoded private key from the len-byte string s * into env. Return 0 on success, -1 on failure. If len is -1, * the string is nul-terminated. */ int crypto_pk_read_private_key_from_string(crypto_pk_t *env, const char *s, ssize_t len) { BIO *b; tor_assert(env); tor_assert(s); tor_assert(len < INT_MAX && len < SSIZE_T_CEILING); /* Create a read-only memory BIO, backed by the string 's' */ b = BIO_new_mem_buf((char*)s, (int)len); if (!b) return -1; if (env->key) RSA_free(env->key); env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL); BIO_free(b); if (!env->key) { crypto_log_errors(LOG_WARN, "Error parsing private key"); return -1; } return 0; } /** Read a PEM-encoded private key from the file named by * keyfile into env. Return 0 on success, -1 on failure. */ int crypto_pk_read_private_key_from_filename(crypto_pk_t *env, const char *keyfile) { char *contents; int r; /* Read the file into a string. */ contents = read_file_to_str(keyfile, 0, NULL); if (!contents) { log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile); return -1; } /* Try to parse it. */ r = crypto_pk_read_private_key_from_string(env, contents, -1); memwipe(contents, 0, strlen(contents)); tor_free(contents); if (r) return -1; /* read_private_key_from_string already warned, so we don't.*/ /* Make sure it's valid. */ if (crypto_pk_check_key(env) <= 0) return -1; return 0; } /** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on * success, -1 on failure. */ static int crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest, size_t *len, int is_public) { BUF_MEM *buf; BIO *b; int r; tor_assert(env); tor_assert(env->key); tor_assert(dest); b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ if (!b) return -1; /* Now you can treat b as if it were a file. Just use the * PEM_*_bio_* functions instead of the non-bio variants. */ if (is_public) r = PEM_write_bio_RSAPublicKey(b, env->key); else r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL); if (!r) { crypto_log_errors(LOG_WARN, "writing RSA key to string"); BIO_free(b); return -1; } BIO_get_mem_ptr(b, &buf); *dest = tor_malloc(buf->length+1); memcpy(*dest, buf->data, buf->length); (*dest)[buf->length] = 0; /* nul terminate it */ *len = buf->length; BIO_free(b); return 0; } /** PEM-encode the public key portion of env and write it to a * newly allocated string. On success, set *dest to the new * string, *len to the string's length, and return 0. On * failure, return -1. */ int crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest, size_t *len) { return crypto_pk_write_key_to_string_impl(env, dest, len, 1); } /** PEM-encode the private key portion of env and write it to a * newly allocated string. On success, set *dest to the new * string, *len to the string's length, and return 0. On * failure, return -1. */ int crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest, size_t *len) { return crypto_pk_write_key_to_string_impl(env, dest, len, 0); } /** Read a PEM-encoded public key from the first len characters of * src, and store the result in env. Return 0 on success, -1 on * failure. */ int crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src, size_t len) { BIO *b; tor_assert(env); tor_assert(src); tor_assert(lenkey) RSA_free(env->key); env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL); BIO_free(b); if (!env->key) { crypto_log_errors(LOG_WARN, "reading public key from string"); return -1; } return 0; } /** Write the private key from env into the file named by fname, * PEM-encoded. Return 0 on success, -1 on failure. */ int crypto_pk_write_private_key_to_filename(crypto_pk_t *env, const char *fname) { BIO *bio; char *cp; long len; char *s; int r; tor_assert(crypto_pk_private_ok(env)); if (!(bio = BIO_new(BIO_s_mem()))) return -1; if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL) == 0) { crypto_log_errors(LOG_WARN, "writing private key"); BIO_free(bio); return -1; } len = BIO_get_mem_data(bio, &cp); tor_assert(len >= 0); s = tor_malloc(len+1); memcpy(s, cp, len); s[len]='\0'; r = write_str_to_file(fname, s, 0); BIO_free(bio); memwipe(s, 0, strlen(s)); tor_free(s); return r; } /** Return true iff env has a valid key. */ int crypto_pk_check_key(crypto_pk_t *env) { int r; tor_assert(env); r = RSA_check_key(env->key); if (r <= 0) crypto_log_errors(LOG_WARN,"checking RSA key"); return r; } /** Return true iff key contains the private-key portion of the RSA * key. */ int crypto_pk_key_is_private(const crypto_pk_t *key) { tor_assert(key); return crypto_pk_private_ok(key); } /** Return true iff env contains a public key whose public exponent * equals 65537. */ int crypto_pk_public_exponent_ok(crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); const BIGNUM *e; #ifdef OPENSSL_1_1_API const BIGNUM *n, *d; RSA_get0_key(env->key, &n, &e, &d); #else e = env->key->e; #endif /* defined(OPENSSL_1_1_API) */ return BN_is_word(e, 65537); } /** Compare the public-key components of a and b. Return less than 0 * if a\b. A NULL key is * considered to be less than all non-NULL keys, and equal to itself. * * Note that this may leak information about the keys through timing. */ int crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b) { int result; char a_is_non_null = (a != NULL) && (a->key != NULL); char b_is_non_null = (b != NULL) && (b->key != NULL); char an_argument_is_null = !a_is_non_null | !b_is_non_null; result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null)); if (an_argument_is_null) return result; const BIGNUM *a_n, *a_e; const BIGNUM *b_n, *b_e; #ifdef OPENSSL_1_1_API const BIGNUM *a_d, *b_d; RSA_get0_key(a->key, &a_n, &a_e, &a_d); RSA_get0_key(b->key, &b_n, &b_e, &b_d); #else a_n = a->key->n; a_e = a->key->e; b_n = b->key->n; b_e = b->key->e; #endif /* defined(OPENSSL_1_1_API) */ tor_assert(a_n != NULL && a_e != NULL); tor_assert(b_n != NULL && b_e != NULL); result = BN_cmp(a_n, b_n); if (result) return result; return BN_cmp(a_e, b_e); } /** Compare the public-key components of a and b. Return non-zero iff * a==b. A NULL key is considered to be distinct from all non-NULL * keys, and equal to itself. * * Note that this may leak information about the keys through timing. */ int crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b) { return (crypto_pk_cmp_keys(a, b) == 0); } /** Return the size of the public key modulus in env, in bytes. */ size_t crypto_pk_keysize(const crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); return (size_t) RSA_size((RSA*)env->key); } /** Return the size of the public key modulus of env, in bits. */ int crypto_pk_num_bits(crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); #ifdef OPENSSL_1_1_API /* It's so stupid that there's no other way to check that n is valid * before calling RSA_bits(). */ const BIGNUM *n, *e, *d; RSA_get0_key(env->key, &n, &e, &d); tor_assert(n != NULL); return RSA_bits(env->key); #else /* !(defined(OPENSSL_1_1_API)) */ tor_assert(env->key->n); return BN_num_bits(env->key->n); #endif /* defined(OPENSSL_1_1_API) */ } /** Increase the reference count of env, and return it. */ crypto_pk_t * crypto_pk_dup_key(crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); env->refs++; return env; } #ifdef TOR_UNIT_TESTS /** For testing: replace dest with src. (Dest must have a refcount * of 1) */ void crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src) { tor_assert(dest); tor_assert(dest->refs == 1); tor_assert(src); RSA_free(dest->key); dest->key = RSAPrivateKey_dup(src->key); } #endif /* defined(TOR_UNIT_TESTS) */ /** Make a real honest-to-goodness copy of env, and return it. * Returns NULL on failure. */ crypto_pk_t * crypto_pk_copy_full(crypto_pk_t *env) { RSA *new_key; int privatekey = 0; tor_assert(env); tor_assert(env->key); if (crypto_pk_private_ok(env)) { new_key = RSAPrivateKey_dup(env->key); privatekey = 1; } else { new_key = RSAPublicKey_dup(env->key); } if (!new_key) { /* LCOV_EXCL_START * * We can't cause RSA*Key_dup() to fail, so we can't really test this. */ log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.", privatekey?"private":"public"); crypto_log_errors(LOG_ERR, privatekey ? "Duplicating a private key" : "Duplicating a public key"); tor_fragile_assert(); return NULL; /* LCOV_EXCL_STOP */ } return crypto_new_pk_from_rsa_(new_key); } /** Encrypt fromlen bytes from from with the public key * in env, using the padding method padding. On success, * write the result to to, and return the number of bytes * written. On failure, return -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen, int padding) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen= crypto_pk_keysize(env)); r = RSA_public_encrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, env->key, crypto_get_rsa_padding(padding)); if (r<0) { crypto_log_errors(LOG_WARN, "performing RSA encryption"); return -1; } return r; } /** Decrypt fromlen bytes from from with the private key * in env, using the padding method padding. On success, * write the result to to, and return the number of bytes * written. On failure, return -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_private_decrypt(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen, int padding, int warnOnFailure) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(env->key); tor_assert(fromlen= crypto_pk_keysize(env)); if (!crypto_pk_key_is_private(env)) /* Not a private key */ return -1; r = RSA_private_decrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, env->key, crypto_get_rsa_padding(padding)); if (r<0) { crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG, "performing RSA decryption"); return -1; } return r; } /** Check the signature in from (fromlen bytes long) with the * public key in env, using PKCS1 padding. On success, write the * signed data to to, and return the number of bytes written. * On failure, return -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ MOCK_IMPL(int, crypto_pk_public_checksig,(const crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen)) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen < INT_MAX); tor_assert(tolen >= crypto_pk_keysize(env)); r = RSA_public_decrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, env->key, RSA_PKCS1_PADDING); if (r<0) { crypto_log_errors(LOG_INFO, "checking RSA signature"); return -1; } return r; } /** Sign fromlen bytes of data from from with the private key in * env, using PKCS1 padding. On success, write the signature to * to, and return the number of bytes written. On failure, return * -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen < INT_MAX); tor_assert(tolen >= crypto_pk_keysize(env)); if (!crypto_pk_key_is_private(env)) /* Not a private key */ return -1; r = RSA_private_encrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, (RSA*)env->key, RSA_PKCS1_PADDING); if (r<0) { crypto_log_errors(LOG_WARN, "generating RSA signature"); return -1; } return r; } /** ASN.1-encode the public portion of pk into dest. * Return -1 on error, or the number of characters used on success. */ int crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len) { int len; unsigned char *buf = NULL; len = i2d_RSAPublicKey(pk->key, &buf); if (len < 0 || buf == NULL) return -1; if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) { OPENSSL_free(buf); return -1; } /* We don't encode directly into 'dest', because that would be illegal * type-punning. (C99 is smarter than me, C99 is smarter than me...) */ memcpy(dest,buf,len); OPENSSL_free(buf); return len; } /** Decode an ASN.1-encoded public key from str; return the result on * success and NULL on failure. */ crypto_pk_t * crypto_pk_asn1_decode(const char *str, size_t len) { RSA *rsa; unsigned char *buf; const unsigned char *cp; cp = buf = tor_malloc(len); memcpy(buf,str,len); rsa = d2i_RSAPublicKey(NULL, &cp, len); tor_free(buf); if (!rsa) { crypto_log_errors(LOG_WARN,"decoding public key"); return NULL; } return crypto_new_pk_from_rsa_(rsa); } /** Given a private or public key pk, put a fingerprint of the * public key into fp_out (must have at least FINGERPRINT_LEN+1 bytes of * space). Return 0 on success, -1 on failure. * * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding * of the public key, converted to hexadecimal, in upper case, with a * space after every four digits. * * If add_space is false, omit the spaces. */ int crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space) { char digest[DIGEST_LEN]; char hexdigest[HEX_DIGEST_LEN+1]; if (crypto_pk_get_digest(pk, digest)) { return -1; } base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN); if (add_space) { crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest); } else { strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1); } return 0; } /** Given a private or public key pk, put a hashed fingerprint of * the public key into fp_out (must have at least FINGERPRINT_LEN+1 * bytes of space). Return 0 on success, -1 on failure. * * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest * of the ASN.1 encoding of the public key, converted to hexadecimal, in * upper case. */ int crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out) { char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN]; if (crypto_pk_get_digest(pk, digest)) { return -1; } if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) { return -1; } base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN); return 0; } /** Given a crypto_pk_t pk, allocate a new buffer containing the * Base64 encoding of the DER representation of the private key as a NUL * terminated string, and return it via priv_out. Return 0 on * success, -1 on failure. * * It is the caller's responsibility to sanitize and free the resulting buffer. */ int crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out) { unsigned char *der = NULL; int der_len; int ret = -1; *priv_out = NULL; der_len = i2d_RSAPrivateKey(pk->key, &der); if (der_len < 0 || der == NULL) return ret; size_t priv_len = base64_encode_size(der_len, 0) + 1; char *priv = tor_malloc_zero(priv_len); if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) { *priv_out = priv; ret = 0; } else { tor_free(priv); } memwipe(der, 0, der_len); OPENSSL_free(der); return ret; } /** Given a string containing the Base64 encoded DER representation of the * private key str, decode and return the result on success, or NULL * on failure. */ crypto_pk_t * crypto_pk_base64_decode(const char *str, size_t len) { crypto_pk_t *pk = NULL; char *der = tor_malloc_zero(len + 1); int der_len = base64_decode(der, len, str, len); if (der_len <= 0) { log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64)."); goto out; } const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */ RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len); if (!rsa) { crypto_log_errors(LOG_WARN, "decoding private key"); goto out; } pk = crypto_new_pk_from_rsa_(rsa); /* Make sure it's valid. */ if (crypto_pk_check_key(pk) <= 0) { crypto_pk_free(pk); pk = NULL; goto out; } out: memwipe(der, 0, len + 1); tor_free(der); return pk; }