/* Copyright 2001 Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2019, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file circuitlist.c * * \brief Manage global structures that list and index circuits, and * look up circuits within them. * * One of the most frequent operations in Tor occurs every time that * a relay cell arrives on a channel. When that happens, we need to * find which circuit it is associated with, based on the channel and the * circuit ID in the relay cell. * * To handle that, we maintain a global list of circuits, and a hashtable * mapping [channel,circID] pairs to circuits. Circuits are added to and * removed from this mapping using circuit_set_p_circid_chan() and * circuit_set_n_circid_chan(). To look up a circuit from this map, most * callers should use circuit_get_by_circid_channel(), though * circuit_get_by_circid_channel_even_if_marked() is appropriate under some * circumstances. * * We also need to allow for the possibility that we have blocked use of a * circuit ID (because we are waiting to send a DESTROY cell), but the * circuit is not there any more. For that case, we allow placeholder * entries in the table, using channel_mark_circid_unusable(). * * To efficiently handle a channel that has just opened, we also maintain a * list of the circuits waiting for channels, so we can attach them as * needed without iterating through the whole list of circuits, using * circuit_get_all_pending_on_channel(). * * In this module, we also handle the list of circuits that have been * marked for close elsewhere, and close them as needed. (We use this * "mark now, close later" pattern here and elsewhere to avoid * unpredictable recursion if we closed every circuit immediately upon * realizing it needed to close.) See circuit_mark_for_close() for the * mark function, and circuit_close_all_marked() for the close function. * * For hidden services, we need to be able to look up introduction point * circuits and rendezvous circuits by cookie, key, etc. These are * currently handled with linear searches in * circuit_get_ready_rend_circuit_by_rend_data(), * circuit_get_next_by_pk_and_purpose(), and with hash lookups in * circuit_get_rendezvous() and circuit_get_intro_point(). * * This module is also the entry point for our out-of-memory handler * logic, which was originally circuit-focused. **/ #define CIRCUITLIST_PRIVATE #include "lib/cc/torint.h" /* TOR_PRIuSZ */ #include "core/or/or.h" #include "core/or/channel.h" #include "core/or/channeltls.h" #include "feature/client/circpathbias.h" #include "core/or/circuitbuild.h" #include "core/or/circuitlist.h" #include "core/or/circuituse.h" #include "core/or/circuitstats.h" #include "core/mainloop/connection.h" #include "app/config/config.h" #include "core/or/connection_edge.h" #include "core/or/connection_or.h" #include "feature/control/control.h" #include "lib/crypt_ops/crypto_rand.h" #include "lib/crypt_ops/crypto_util.h" #include "lib/crypt_ops/crypto_dh.h" #include "feature/dircommon/directory.h" #include "feature/client/entrynodes.h" #include "core/mainloop/mainloop.h" #include "feature/hs/hs_circuit.h" #include "feature/hs/hs_circuitmap.h" #include "feature/hs/hs_ident.h" #include "feature/nodelist/networkstatus.h" #include "feature/nodelist/nodelist.h" #include "feature/relay/onion_queue.h" #include "core/crypto/onion_crypto.h" #include "core/crypto/onion_fast.h" #include "core/or/policies.h" #include "core/or/relay.h" #include "core/crypto/relay_crypto.h" #include "feature/rend/rendclient.h" #include "feature/rend/rendcommon.h" #include "feature/stats/predict_ports.h" #include "feature/stats/rephist.h" #include "feature/nodelist/routerlist.h" #include "feature/nodelist/routerset.h" #include "core/or/channelpadding.h" #include "lib/compress/compress.h" #include "lib/compress/compress_lzma.h" #include "lib/compress/compress_zlib.h" #include "lib/compress/compress_zstd.h" #include "lib/container/buffers.h" #include "ht.h" #include "core/or/cpath_build_state_st.h" #include "core/or/crypt_path_reference_st.h" #include "feature/dircommon/dir_connection_st.h" #include "core/or/edge_connection_st.h" #include "core/or/half_edge_st.h" #include "core/or/extend_info_st.h" #include "core/or/or_circuit_st.h" #include "core/or/origin_circuit_st.h" /********* START VARIABLES **********/ /** A global list of all circuits at this hop. */ static smartlist_t *global_circuitlist = NULL; /** A global list of all origin circuits. Every element of this is also * an element of global_circuitlist. */ static smartlist_t *global_origin_circuit_list = NULL; /** A list of all the circuits in CIRCUIT_STATE_CHAN_WAIT. */ static smartlist_t *circuits_pending_chans = NULL; /** List of all the (origin) circuits whose state is * CIRCUIT_STATE_GUARD_WAIT. */ static smartlist_t *circuits_pending_other_guards = NULL; /** A list of all the circuits that have been marked with * circuit_mark_for_close and which are waiting for circuit_about_to_free. */ static smartlist_t *circuits_pending_close = NULL; static void circuit_free_cpath_node(crypt_path_t *victim); static void cpath_ref_decref(crypt_path_reference_t *cpath_ref); static void circuit_about_to_free_atexit(circuit_t *circ); static void circuit_about_to_free(circuit_t *circ); /** * A cached value of the current state of the origin circuit list. Has the * value 1 if we saw any opened circuits recently (since the last call to * circuit_any_opened_circuits(), which gets called around once a second by * circuit_expire_building). 0 otherwise. */ static int any_opened_circs_cached_val = 0; /********* END VARIABLES ************/ or_circuit_t * TO_OR_CIRCUIT(circuit_t *x) { tor_assert(x->magic == OR_CIRCUIT_MAGIC); return DOWNCAST(or_circuit_t, x); } const or_circuit_t * CONST_TO_OR_CIRCUIT(const circuit_t *x) { tor_assert(x->magic == OR_CIRCUIT_MAGIC); return DOWNCAST(or_circuit_t, x); } origin_circuit_t * TO_ORIGIN_CIRCUIT(circuit_t *x) { tor_assert(x->magic == ORIGIN_CIRCUIT_MAGIC); return DOWNCAST(origin_circuit_t, x); } const origin_circuit_t * CONST_TO_ORIGIN_CIRCUIT(const circuit_t *x) { tor_assert(x->magic == ORIGIN_CIRCUIT_MAGIC); return DOWNCAST(origin_circuit_t, x); } /** A map from channel and circuit ID to circuit. (Lookup performance is * very important here, since we need to do it every time a cell arrives.) */ typedef struct chan_circid_circuit_map_t { HT_ENTRY(chan_circid_circuit_map_t) node; channel_t *chan; circid_t circ_id; circuit_t *circuit; /* For debugging 12184: when was this placeholder item added? */ time_t made_placeholder_at; } chan_circid_circuit_map_t; /** Helper for hash tables: compare the channel and circuit ID for a and * b, and return less than, equal to, or greater than zero appropriately. */ static inline int chan_circid_entries_eq_(chan_circid_circuit_map_t *a, chan_circid_circuit_map_t *b) { return a->chan == b->chan && a->circ_id == b->circ_id; } /** Helper: return a hash based on circuit ID and the pointer value of * chan in a. */ static inline unsigned int chan_circid_entry_hash_(chan_circid_circuit_map_t *a) { /* Try to squeze the siphash input into 8 bytes to save any extra siphash * rounds. This hash function is in the critical path. */ uintptr_t chan = (uintptr_t) (void*) a->chan; uint32_t array[2]; array[0] = a->circ_id; /* The low bits of the channel pointer are uninteresting, since the channel * is a pretty big structure. */ array[1] = (uint32_t) (chan >> 6); return (unsigned) siphash24g(array, sizeof(array)); } /** Map from [chan,circid] to circuit. */ static HT_HEAD(chan_circid_map, chan_circid_circuit_map_t) chan_circid_map = HT_INITIALIZER(); HT_PROTOTYPE(chan_circid_map, chan_circid_circuit_map_t, node, chan_circid_entry_hash_, chan_circid_entries_eq_) HT_GENERATE2(chan_circid_map, chan_circid_circuit_map_t, node, chan_circid_entry_hash_, chan_circid_entries_eq_, 0.6, tor_reallocarray_, tor_free_) /** The most recently returned entry from circuit_get_by_circid_chan; * used to improve performance when many cells arrive in a row from the * same circuit. */ static chan_circid_circuit_map_t *_last_circid_chan_ent = NULL; /** Implementation helper for circuit_set_{p,n}_circid_channel: A circuit ID * and/or channel for circ has just changed from old_chan, old_id * to chan, id. Adjust the chan,circid map as appropriate, removing * the old entry (if any) and adding a new one. */ static void circuit_set_circid_chan_helper(circuit_t *circ, int direction, circid_t id, channel_t *chan) { chan_circid_circuit_map_t search; chan_circid_circuit_map_t *found; channel_t *old_chan, **chan_ptr; circid_t old_id, *circid_ptr; int make_active, attached = 0; if (direction == CELL_DIRECTION_OUT) { chan_ptr = &circ->n_chan; circid_ptr = &circ->n_circ_id; make_active = circ->n_chan_cells.n > 0; } else { or_circuit_t *c = TO_OR_CIRCUIT(circ); chan_ptr = &c->p_chan; circid_ptr = &c->p_circ_id; make_active = c->p_chan_cells.n > 0; } old_chan = *chan_ptr; old_id = *circid_ptr; if (id == old_id && chan == old_chan) return; if (_last_circid_chan_ent && ((old_id == _last_circid_chan_ent->circ_id && old_chan == _last_circid_chan_ent->chan) || (id == _last_circid_chan_ent->circ_id && chan == _last_circid_chan_ent->chan))) { _last_circid_chan_ent = NULL; } if (old_chan) { /* * If we're changing channels or ID and had an old channel and a non * zero old ID and weren't marked for close (i.e., we should have been * attached), detach the circuit. ID changes require this because * circuitmux hashes on (channel_id, circuit_id). */ if (old_id != 0 && (old_chan != chan || old_id != id) && !(circ->marked_for_close)) { tor_assert(old_chan->cmux); circuitmux_detach_circuit(old_chan->cmux, circ); } /* we may need to remove it from the conn-circid map */ search.circ_id = old_id; search.chan = old_chan; found = HT_REMOVE(chan_circid_map, &chan_circid_map, &search); if (found) { tor_free(found); if (direction == CELL_DIRECTION_OUT) { /* One fewer circuits use old_chan as n_chan */ --(old_chan->num_n_circuits); } else { /* One fewer circuits use old_chan as p_chan */ --(old_chan->num_p_circuits); } } } /* Change the values only after we have possibly made the circuit inactive * on the previous chan. */ *chan_ptr = chan; *circid_ptr = id; if (chan == NULL) return; /* now add the new one to the conn-circid map */ search.circ_id = id; search.chan = chan; found = HT_FIND(chan_circid_map, &chan_circid_map, &search); if (found) { found->circuit = circ; found->made_placeholder_at = 0; } else { found = tor_malloc_zero(sizeof(chan_circid_circuit_map_t)); found->circ_id = id; found->chan = chan; found->circuit = circ; HT_INSERT(chan_circid_map, &chan_circid_map, found); } /* * Attach to the circuitmux if we're changing channels or IDs and * have a new channel and ID to use and the circuit is not marked for * close. */ if (chan && id != 0 && (old_chan != chan || old_id != id) && !(circ->marked_for_close)) { tor_assert(chan->cmux); circuitmux_attach_circuit(chan->cmux, circ, direction); attached = 1; } /* * This is a no-op if we have no cells, but if we do it marks us active to * the circuitmux */ if (make_active && attached) update_circuit_on_cmux(circ, direction); /* Adjust circuit counts on new channel */ if (direction == CELL_DIRECTION_OUT) { ++chan->num_n_circuits; } else { ++chan->num_p_circuits; } } /** Mark that circuit id id shouldn't be used on channel chan, * even if there is no circuit on the channel. We use this to keep the * circuit id from getting re-used while we have queued but not yet sent * a destroy cell. */ void channel_mark_circid_unusable(channel_t *chan, circid_t id) { chan_circid_circuit_map_t search; chan_circid_circuit_map_t *ent; /* See if there's an entry there. That wouldn't be good. */ memset(&search, 0, sizeof(search)); search.chan = chan; search.circ_id = id; ent = HT_FIND(chan_circid_map, &chan_circid_map, &search); if (ent && ent->circuit) { /* we have a problem. */ log_warn(LD_BUG, "Tried to mark %u unusable on %p, but there was already " "a circuit there.", (unsigned)id, chan); } else if (ent) { /* It's already marked. */ if (!ent->made_placeholder_at) ent->made_placeholder_at = approx_time(); } else { ent = tor_malloc_zero(sizeof(chan_circid_circuit_map_t)); ent->chan = chan; ent->circ_id = id; /* leave circuit at NULL. */ ent->made_placeholder_at = approx_time(); HT_INSERT(chan_circid_map, &chan_circid_map, ent); } } /** Mark that a circuit id id can be used again on chan. * We use this to re-enable the circuit ID after we've sent a destroy cell. */ void channel_mark_circid_usable(channel_t *chan, circid_t id) { chan_circid_circuit_map_t search; chan_circid_circuit_map_t *ent; /* See if there's an entry there. That wouldn't be good. */ memset(&search, 0, sizeof(search)); search.chan = chan; search.circ_id = id; ent = HT_REMOVE(chan_circid_map, &chan_circid_map, &search); if (ent && ent->circuit) { log_warn(LD_BUG, "Tried to mark %u usable on %p, but there was already " "a circuit there.", (unsigned)id, chan); return; } if (_last_circid_chan_ent == ent) _last_circid_chan_ent = NULL; tor_free(ent); } /** Called to indicate that a DESTROY is pending on chan with * circuit ID id, but hasn't been sent yet. */ void channel_note_destroy_pending(channel_t *chan, circid_t id) { circuit_t *circ = circuit_get_by_circid_channel_even_if_marked(id,chan); if (circ) { if (circ->n_chan == chan && circ->n_circ_id == id) { circ->n_delete_pending = 1; } else { or_circuit_t *orcirc = TO_OR_CIRCUIT(circ); if (orcirc->p_chan == chan && orcirc->p_circ_id == id) { circ->p_delete_pending = 1; } } return; } channel_mark_circid_unusable(chan, id); } /** Called to indicate that a DESTROY is no longer pending on chan with * circuit ID id -- typically, because it has been sent. */ MOCK_IMPL(void, channel_note_destroy_not_pending,(channel_t *chan, circid_t id)) { circuit_t *circ = circuit_get_by_circid_channel_even_if_marked(id,chan); if (circ) { if (circ->n_chan == chan && circ->n_circ_id == id) { circ->n_delete_pending = 0; } else { or_circuit_t *orcirc = TO_OR_CIRCUIT(circ); if (orcirc->p_chan == chan && orcirc->p_circ_id == id) { circ->p_delete_pending = 0; } } /* XXXX this shouldn't happen; log a bug here. */ return; } channel_mark_circid_usable(chan, id); } /** Set the p_conn field of a circuit circ, along * with the corresponding circuit ID, and add the circuit as appropriate * to the (chan,id)-\>circuit map. */ void circuit_set_p_circid_chan(or_circuit_t *or_circ, circid_t id, channel_t *chan) { circuit_t *circ = TO_CIRCUIT(or_circ); channel_t *old_chan = or_circ->p_chan; circid_t old_id = or_circ->p_circ_id; circuit_set_circid_chan_helper(circ, CELL_DIRECTION_IN, id, chan); if (chan) { chan->timestamp_last_had_circuits = approx_time(); } if (circ->p_delete_pending && old_chan) { channel_mark_circid_unusable(old_chan, old_id); circ->p_delete_pending = 0; } } /** Set the n_conn field of a circuit circ, along * with the corresponding circuit ID, and add the circuit as appropriate * to the (chan,id)-\>circuit map. */ void circuit_set_n_circid_chan(circuit_t *circ, circid_t id, channel_t *chan) { channel_t *old_chan = circ->n_chan; circid_t old_id = circ->n_circ_id; circuit_set_circid_chan_helper(circ, CELL_DIRECTION_OUT, id, chan); if (chan) { chan->timestamp_last_had_circuits = approx_time(); } if (circ->n_delete_pending && old_chan) { channel_mark_circid_unusable(old_chan, old_id); circ->n_delete_pending = 0; } } /** Change the state of circ to state, adding it to or removing * it from lists as appropriate. */ void circuit_set_state(circuit_t *circ, uint8_t state) { tor_assert(circ); if (state == circ->state) return; if (PREDICT_UNLIKELY(!circuits_pending_chans)) circuits_pending_chans = smartlist_new(); if (PREDICT_UNLIKELY(!circuits_pending_other_guards)) circuits_pending_other_guards = smartlist_new(); if (circ->state == CIRCUIT_STATE_CHAN_WAIT) { /* remove from waiting-circuit list. */ smartlist_remove(circuits_pending_chans, circ); } if (state == CIRCUIT_STATE_CHAN_WAIT) { /* add to waiting-circuit list. */ smartlist_add(circuits_pending_chans, circ); } if (circ->state == CIRCUIT_STATE_GUARD_WAIT) { smartlist_remove(circuits_pending_other_guards, circ); } if (state == CIRCUIT_STATE_GUARD_WAIT) { smartlist_add(circuits_pending_other_guards, circ); } if (state == CIRCUIT_STATE_GUARD_WAIT || state == CIRCUIT_STATE_OPEN) tor_assert(!circ->n_chan_create_cell); circ->state = state; } /** Append to out all circuits in state CHAN_WAIT waiting for * the given connection. */ void circuit_get_all_pending_on_channel(smartlist_t *out, channel_t *chan) { tor_assert(out); tor_assert(chan); if (!circuits_pending_chans) return; SMARTLIST_FOREACH_BEGIN(circuits_pending_chans, circuit_t *, circ) { if (circ->marked_for_close) continue; if (!circ->n_hop) continue; tor_assert(circ->state == CIRCUIT_STATE_CHAN_WAIT); if (tor_digest_is_zero(circ->n_hop->identity_digest)) { /* Look at addr/port. This is an unkeyed connection. */ if (!channel_matches_extend_info(chan, circ->n_hop)) continue; } else { /* We expected a key. See if it's the right one. */ if (tor_memneq(chan->identity_digest, circ->n_hop->identity_digest, DIGEST_LEN)) continue; } smartlist_add(out, circ); } SMARTLIST_FOREACH_END(circ); } /** Return the number of circuits in state CHAN_WAIT, waiting for the given * channel. */ int circuit_count_pending_on_channel(channel_t *chan) { int cnt; smartlist_t *sl = smartlist_new(); tor_assert(chan); circuit_get_all_pending_on_channel(sl, chan); cnt = smartlist_len(sl); smartlist_free(sl); log_debug(LD_CIRC,"or_conn to %s, %d pending circs", channel_get_canonical_remote_descr(chan), cnt); return cnt; } /** Remove origin_circ from the global list of origin circuits. * Called when we are freeing a circuit. */ static void circuit_remove_from_origin_circuit_list(origin_circuit_t *origin_circ) { int origin_idx = origin_circ->global_origin_circuit_list_idx; if (origin_idx < 0) return; origin_circuit_t *c2; tor_assert(origin_idx <= smartlist_len(global_origin_circuit_list)); c2 = smartlist_get(global_origin_circuit_list, origin_idx); tor_assert(origin_circ == c2); smartlist_del(global_origin_circuit_list, origin_idx); if (origin_idx < smartlist_len(global_origin_circuit_list)) { origin_circuit_t *replacement = smartlist_get(global_origin_circuit_list, origin_idx); replacement->global_origin_circuit_list_idx = origin_idx; } origin_circ->global_origin_circuit_list_idx = -1; } /** Add origin_circ to the global list of origin circuits. Called * when creating the circuit. */ static void circuit_add_to_origin_circuit_list(origin_circuit_t *origin_circ) { tor_assert(origin_circ->global_origin_circuit_list_idx == -1); smartlist_t *lst = circuit_get_global_origin_circuit_list(); smartlist_add(lst, origin_circ); origin_circ->global_origin_circuit_list_idx = smartlist_len(lst) - 1; } /** Detach from the global circuit list, and deallocate, all * circuits that have been marked for close. */ void circuit_close_all_marked(void) { if (circuits_pending_close == NULL) return; smartlist_t *lst = circuit_get_global_list(); SMARTLIST_FOREACH_BEGIN(circuits_pending_close, circuit_t *, circ) { tor_assert(circ->marked_for_close); /* Remove it from the circuit list. */ int idx = circ->global_circuitlist_idx; smartlist_del(lst, idx); if (idx < smartlist_len(lst)) { circuit_t *replacement = smartlist_get(lst, idx); replacement->global_circuitlist_idx = idx; } circ->global_circuitlist_idx = -1; /* Remove it from the origin circuit list, if appropriate. */ if (CIRCUIT_IS_ORIGIN(circ)) { circuit_remove_from_origin_circuit_list(TO_ORIGIN_CIRCUIT(circ)); } circuit_about_to_free(circ); circuit_free(circ); } SMARTLIST_FOREACH_END(circ); smartlist_clear(circuits_pending_close); } /** Return a pointer to the global list of circuits. */ MOCK_IMPL(smartlist_t *, circuit_get_global_list,(void)) { if (NULL == global_circuitlist) global_circuitlist = smartlist_new(); return global_circuitlist; } /** Return a pointer to the global list of origin circuits. */ smartlist_t * circuit_get_global_origin_circuit_list(void) { if (NULL == global_origin_circuit_list) global_origin_circuit_list = smartlist_new(); return global_origin_circuit_list; } /** * Return true if we have any opened general-purpose 3 hop * origin circuits. * * The result from this function is cached for use by * circuit_any_opened_circuits_cached(). */ int circuit_any_opened_circuits(void) { SMARTLIST_FOREACH_BEGIN(circuit_get_global_origin_circuit_list(), const origin_circuit_t *, next_circ) { if (!TO_CIRCUIT(next_circ)->marked_for_close && next_circ->has_opened && TO_CIRCUIT(next_circ)->state == CIRCUIT_STATE_OPEN && TO_CIRCUIT(next_circ)->purpose != CIRCUIT_PURPOSE_C_MEASURE_TIMEOUT && next_circ->build_state && next_circ->build_state->desired_path_len == DEFAULT_ROUTE_LEN) { circuit_cache_opened_circuit_state(1); return 1; } } SMARTLIST_FOREACH_END(next_circ); circuit_cache_opened_circuit_state(0); return 0; } /** * Cache the "any circuits opened" state, as specified in param * circuits_are_opened. This is a helper function to update * the circuit opened status whenever we happen to look at the * circuit list. */ void circuit_cache_opened_circuit_state(int circuits_are_opened) { any_opened_circs_cached_val = circuits_are_opened; } /** * Return true if there were any opened circuits since the last call to * circuit_any_opened_circuits(), or since circuit_expire_building() last * ran (it runs roughly once per second). */ int circuit_any_opened_circuits_cached(void) { return any_opened_circs_cached_val; } /** Function to make circ-\>state human-readable */ const char * circuit_state_to_string(int state) { static char buf[64]; switch (state) { case CIRCUIT_STATE_BUILDING: return "doing handshakes"; case CIRCUIT_STATE_ONIONSKIN_PENDING: return "processing the onion"; case CIRCUIT_STATE_CHAN_WAIT: return "connecting to server"; case CIRCUIT_STATE_GUARD_WAIT: return "waiting to see how other " "guards perform"; case CIRCUIT_STATE_OPEN: return "open"; default: log_warn(LD_BUG, "Unknown circuit state %d", state); tor_snprintf(buf, sizeof(buf), "unknown state [%d]", state); return buf; } } /** Map a circuit purpose to a string suitable to be displayed to a * controller. */ const char * circuit_purpose_to_controller_string(uint8_t purpose) { static char buf[32]; switch (purpose) { case CIRCUIT_PURPOSE_OR: case CIRCUIT_PURPOSE_INTRO_POINT: case CIRCUIT_PURPOSE_REND_POINT_WAITING: case CIRCUIT_PURPOSE_REND_ESTABLISHED: return "SERVER"; /* A controller should never see these, actually. */ case CIRCUIT_PURPOSE_C_GENERAL: return "GENERAL"; case CIRCUIT_PURPOSE_C_HSDIR_GET: return "HS_CLIENT_HSDIR"; case CIRCUIT_PURPOSE_C_INTRODUCING: case CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT: case CIRCUIT_PURPOSE_C_INTRODUCE_ACKED: return "HS_CLIENT_INTRO"; case CIRCUIT_PURPOSE_C_ESTABLISH_REND: case CIRCUIT_PURPOSE_C_REND_READY: case CIRCUIT_PURPOSE_C_REND_READY_INTRO_ACKED: case CIRCUIT_PURPOSE_C_REND_JOINED: return "HS_CLIENT_REND"; case CIRCUIT_PURPOSE_S_HSDIR_POST: return "HS_SERVICE_HSDIR"; case CIRCUIT_PURPOSE_S_ESTABLISH_INTRO: case CIRCUIT_PURPOSE_S_INTRO: return "HS_SERVICE_INTRO"; case CIRCUIT_PURPOSE_S_CONNECT_REND: case CIRCUIT_PURPOSE_S_REND_JOINED: return "HS_SERVICE_REND"; case CIRCUIT_PURPOSE_TESTING: return "TESTING"; case CIRCUIT_PURPOSE_C_MEASURE_TIMEOUT: return "MEASURE_TIMEOUT"; case CIRCUIT_PURPOSE_CONTROLLER: return "CONTROLLER"; case CIRCUIT_PURPOSE_PATH_BIAS_TESTING: return "PATH_BIAS_TESTING"; case CIRCUIT_PURPOSE_HS_VANGUARDS: return "HS_VANGUARDS"; default: tor_snprintf(buf, sizeof(buf), "UNKNOWN_%d", (int)purpose); return buf; } } /** Return a string specifying the state of the hidden-service circuit * purpose purpose, or NULL if purpose is not a * hidden-service-related circuit purpose. */ const char * circuit_purpose_to_controller_hs_state_string(uint8_t purpose) { switch (purpose) { default: log_fn(LOG_WARN, LD_BUG, "Unrecognized circuit purpose: %d", (int)purpose); tor_fragile_assert(); /* fall through */ case CIRCUIT_PURPOSE_OR: case CIRCUIT_PURPOSE_C_GENERAL: case CIRCUIT_PURPOSE_C_MEASURE_TIMEOUT: case CIRCUIT_PURPOSE_TESTING: case CIRCUIT_PURPOSE_CONTROLLER: case CIRCUIT_PURPOSE_PATH_BIAS_TESTING: case CIRCUIT_PURPOSE_HS_VANGUARDS: return NULL; case CIRCUIT_PURPOSE_INTRO_POINT: return "OR_HSSI_ESTABLISHED"; case CIRCUIT_PURPOSE_REND_POINT_WAITING: return "OR_HSCR_ESTABLISHED"; case CIRCUIT_PURPOSE_REND_ESTABLISHED: return "OR_HS_R_JOINED"; case CIRCUIT_PURPOSE_C_HSDIR_GET: case CIRCUIT_PURPOSE_C_INTRODUCING: return "HSCI_CONNECTING"; case CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT: return "HSCI_INTRO_SENT"; case CIRCUIT_PURPOSE_C_INTRODUCE_ACKED: return "HSCI_DONE"; case CIRCUIT_PURPOSE_C_ESTABLISH_REND: return "HSCR_CONNECTING"; case CIRCUIT_PURPOSE_C_REND_READY: return "HSCR_ESTABLISHED_IDLE"; case CIRCUIT_PURPOSE_C_REND_READY_INTRO_ACKED: return "HSCR_ESTABLISHED_WAITING"; case CIRCUIT_PURPOSE_C_REND_JOINED: return "HSCR_JOINED"; case CIRCUIT_PURPOSE_S_HSDIR_POST: case CIRCUIT_PURPOSE_S_ESTABLISH_INTRO: return "HSSI_CONNECTING"; case CIRCUIT_PURPOSE_S_INTRO: return "HSSI_ESTABLISHED"; case CIRCUIT_PURPOSE_S_CONNECT_REND: return "HSSR_CONNECTING"; case CIRCUIT_PURPOSE_S_REND_JOINED: return "HSSR_JOINED"; } } /** Return a human-readable string for the circuit purpose purpose. */ const char * circuit_purpose_to_string(uint8_t purpose) { static char buf[32]; switch (purpose) { case CIRCUIT_PURPOSE_OR: return "Circuit at relay"; case CIRCUIT_PURPOSE_INTRO_POINT: return "Acting as intro point"; case CIRCUIT_PURPOSE_REND_POINT_WAITING: return "Acting as rendezvous (pending)"; case CIRCUIT_PURPOSE_REND_ESTABLISHED: return "Acting as rendezvous (established)"; case CIRCUIT_PURPOSE_C_GENERAL: return "General-purpose client"; case CIRCUIT_PURPOSE_C_INTRODUCING: return "Hidden service client: Connecting to intro point"; case CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT: return "Hidden service client: Waiting for ack from intro point"; case CIRCUIT_PURPOSE_C_INTRODUCE_ACKED: return "Hidden service client: Received ack from intro point"; case CIRCUIT_PURPOSE_C_ESTABLISH_REND: return "Hidden service client: Establishing rendezvous point"; case CIRCUIT_PURPOSE_C_REND_READY: return "Hidden service client: Pending rendezvous point"; case CIRCUIT_PURPOSE_C_REND_READY_INTRO_ACKED: return "Hidden service client: Pending rendezvous point (ack received)"; case CIRCUIT_PURPOSE_C_REND_JOINED: return "Hidden service client: Active rendezvous point"; case CIRCUIT_PURPOSE_C_HSDIR_GET: return "Hidden service client: Fetching HS descriptor"; case CIRCUIT_PURPOSE_C_MEASURE_TIMEOUT: return "Measuring circuit timeout"; case CIRCUIT_PURPOSE_S_ESTABLISH_INTRO: return "Hidden service: Establishing introduction point"; case CIRCUIT_PURPOSE_S_INTRO: return "Hidden service: Introduction point"; case CIRCUIT_PURPOSE_S_CONNECT_REND: return "Hidden service: Connecting to rendezvous point"; case CIRCUIT_PURPOSE_S_REND_JOINED: return "Hidden service: Active rendezvous point"; case CIRCUIT_PURPOSE_S_HSDIR_POST: return "Hidden service: Uploading HS descriptor"; case CIRCUIT_PURPOSE_TESTING: return "Testing circuit"; case CIRCUIT_PURPOSE_CONTROLLER: return "Circuit made by controller"; case CIRCUIT_PURPOSE_PATH_BIAS_TESTING: return "Path-bias testing circuit"; case CIRCUIT_PURPOSE_HS_VANGUARDS: return "Hidden service: Pre-built vanguard circuit"; default: tor_snprintf(buf, sizeof(buf), "UNKNOWN_%d", (int)purpose); return buf; } } /** Pick a reasonable package_window to start out for our circuits. * Originally this was hard-coded at 1000, but now the consensus votes * on the answer. See proposal 168. */ int32_t circuit_initial_package_window(void) { int32_t num = networkstatus_get_param(NULL, "circwindow", CIRCWINDOW_START, CIRCWINDOW_START_MIN, CIRCWINDOW_START_MAX); /* If the consensus tells us a negative number, we'd assert. */ if (num < 0) num = CIRCWINDOW_START; return num; } /** Initialize the common elements in a circuit_t, and add it to the global * list. */ static void init_circuit_base(circuit_t *circ) { tor_gettimeofday(&circ->timestamp_created); // Gets reset when we send CREATE_FAST. // circuit_expire_building() expects these to be equal // until the orconn is built. circ->timestamp_began = circ->timestamp_created; circ->package_window = circuit_initial_package_window(); circ->deliver_window = CIRCWINDOW_START; cell_queue_init(&circ->n_chan_cells); smartlist_add(circuit_get_global_list(), circ); circ->global_circuitlist_idx = smartlist_len(circuit_get_global_list()) - 1; } /** If we haven't yet decided on a good timeout value for circuit * building, we close idle circuits aggressively so we can get more * data points. These are the default, min, and max consensus values */ #define DFLT_IDLE_TIMEOUT_WHILE_LEARNING (3*60) #define MIN_IDLE_TIMEOUT_WHILE_LEARNING (10) #define MAX_IDLE_TIMEOUT_WHILE_LEARNING (1000*60) /** Allocate space for a new circuit, initializing with p_circ_id * and p_conn. Add it to the global circuit list. */ origin_circuit_t * origin_circuit_new(void) { origin_circuit_t *circ; /* never zero, since a global ID of 0 is treated specially by the * controller */ static uint32_t n_circuits_allocated = 1; circ = tor_malloc_zero(sizeof(origin_circuit_t)); circ->base_.magic = ORIGIN_CIRCUIT_MAGIC; circ->next_stream_id = crypto_rand_int(1<<16); circ->global_identifier = n_circuits_allocated++; circ->remaining_relay_early_cells = MAX_RELAY_EARLY_CELLS_PER_CIRCUIT; circ->remaining_relay_early_cells -= crypto_rand_int(2); init_circuit_base(TO_CIRCUIT(circ)); /* Add to origin-list. */ circ->global_origin_circuit_list_idx = -1; circuit_add_to_origin_circuit_list(circ); circuit_build_times_update_last_circ(get_circuit_build_times_mutable()); if (! circuit_build_times_disabled(get_options()) && circuit_build_times_needs_circuits(get_circuit_build_times())) { /* Circuits should be shorter lived if we need more of them * for learning a good build timeout */ circ->circuit_idle_timeout = networkstatus_get_param(NULL, "cbtlearntimeout", DFLT_IDLE_TIMEOUT_WHILE_LEARNING, MIN_IDLE_TIMEOUT_WHILE_LEARNING, MAX_IDLE_TIMEOUT_WHILE_LEARNING); } else { // This should always be larger than the current port prediction time // remaining, or else we'll end up with the case where a circuit times out // and another one is built, effectively doubling the timeout window. // // We also randomize it by up to 5% more (ie 5% of 0 to 3600 seconds, // depending on how much circuit prediction time is remaining) so that // we don't close a bunch of unused circuits all at the same time. int prediction_time_remaining = predicted_ports_prediction_time_remaining(time(NULL)); circ->circuit_idle_timeout = prediction_time_remaining+1+ crypto_rand_int(1+prediction_time_remaining/20); if (circ->circuit_idle_timeout <= 0) { log_warn(LD_BUG, "Circuit chose a negative idle timeout of %d based on " "%d seconds of predictive building remaining.", circ->circuit_idle_timeout, prediction_time_remaining); circ->circuit_idle_timeout = networkstatus_get_param(NULL, "cbtlearntimeout", DFLT_IDLE_TIMEOUT_WHILE_LEARNING, MIN_IDLE_TIMEOUT_WHILE_LEARNING, MAX_IDLE_TIMEOUT_WHILE_LEARNING); } log_info(LD_CIRC, "Circuit %"PRIu32" chose an idle timeout of %d based on " "%d seconds of predictive building remaining.", (circ->global_identifier), circ->circuit_idle_timeout, prediction_time_remaining); } return circ; } /** Allocate a new or_circuit_t, connected to p_chan as * p_circ_id. If p_chan is NULL, the circuit is unattached. */ or_circuit_t * or_circuit_new(circid_t p_circ_id, channel_t *p_chan) { /* CircIDs */ or_circuit_t *circ; circ = tor_malloc_zero(sizeof(or_circuit_t)); circ->base_.magic = OR_CIRCUIT_MAGIC; if (p_chan) circuit_set_p_circid_chan(circ, p_circ_id, p_chan); circ->remaining_relay_early_cells = MAX_RELAY_EARLY_CELLS_PER_CIRCUIT; cell_queue_init(&circ->p_chan_cells); init_circuit_base(TO_CIRCUIT(circ)); return circ; } /** Free all storage held in circ->testing_cell_stats */ void circuit_clear_testing_cell_stats(circuit_t *circ) { if (!circ || !circ->testing_cell_stats) return; SMARTLIST_FOREACH(circ->testing_cell_stats, testing_cell_stats_entry_t *, ent, tor_free(ent)); smartlist_free(circ->testing_cell_stats); circ->testing_cell_stats = NULL; } /** Deallocate space associated with circ. */ STATIC void circuit_free_(circuit_t *circ) { circid_t n_circ_id = 0; void *mem; size_t memlen; int should_free = 1; if (!circ) return; /* We keep a copy of this so we can log its value before it gets unset. */ n_circ_id = circ->n_circ_id; circuit_clear_testing_cell_stats(circ); /* Cleanup circuit from anything HS v3 related. We also do this when the * circuit is closed. This is to avoid any code path that free registered * circuits without closing them before. This needs to be done before the * hs identifier is freed. */ hs_circ_cleanup(circ); if (CIRCUIT_IS_ORIGIN(circ)) { origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ); mem = ocirc; memlen = sizeof(origin_circuit_t); tor_assert(circ->magic == ORIGIN_CIRCUIT_MAGIC); circuit_remove_from_origin_circuit_list(ocirc); if (ocirc->half_streams) { SMARTLIST_FOREACH_BEGIN(ocirc->half_streams, half_edge_t *, half_conn) { half_edge_free(half_conn); } SMARTLIST_FOREACH_END(half_conn); smartlist_free(ocirc->half_streams); } if (ocirc->build_state) { extend_info_free(ocirc->build_state->chosen_exit); circuit_free_cpath_node(ocirc->build_state->pending_final_cpath); cpath_ref_decref(ocirc->build_state->service_pending_final_cpath_ref); } tor_free(ocirc->build_state); /* Cancel before freeing, if we haven't already succeeded or failed. */ if (ocirc->guard_state) { entry_guard_cancel(ô->guard_state); } circuit_guard_state_free(ocirc->guard_state); circuit_clear_cpath(ocirc); crypto_pk_free(ocirc->intro_key); rend_data_free(ocirc->rend_data); /* Finally, free the identifier of the circuit and nullify it so multiple * cleanup will work. */ hs_ident_circuit_free(ocirc->hs_ident); ocirc->hs_ident = NULL; tor_free(ocirc->dest_address); if (ocirc->socks_username) { memwipe(ocirc->socks_username, 0x12, ocirc->socks_username_len); tor_free(ocirc->socks_username); } if (ocirc->socks_password) { memwipe(ocirc->socks_password, 0x06, ocirc->socks_password_len); tor_free(ocirc->socks_password); } addr_policy_list_free(ocirc->prepend_policy); } else { or_circuit_t *ocirc = TO_OR_CIRCUIT(circ); /* Remember cell statistics for this circuit before deallocating. */ if (get_options()->CellStatistics) rep_hist_buffer_stats_add_circ(circ, time(NULL)); mem = ocirc; memlen = sizeof(or_circuit_t); tor_assert(circ->magic == OR_CIRCUIT_MAGIC); should_free = (ocirc->workqueue_entry == NULL); relay_crypto_clear(ô->crypto); if (ocirc->rend_splice) { or_circuit_t *other = ocirc->rend_splice; tor_assert(other->base_.magic == OR_CIRCUIT_MAGIC); other->rend_splice = NULL; } /* remove from map. */ circuit_set_p_circid_chan(ocirc, 0, NULL); /* Clear cell queue _after_ removing it from the map. Otherwise our * "active" checks will be violated. */ cell_queue_clear(ô->p_chan_cells); } extend_info_free(circ->n_hop); tor_free(circ->n_chan_create_cell); if (circ->global_circuitlist_idx != -1) { int idx = circ->global_circuitlist_idx; circuit_t *c2 = smartlist_get(global_circuitlist, idx); tor_assert(c2 == circ); smartlist_del(global_circuitlist, idx); if (idx < smartlist_len(global_circuitlist)) { c2 = smartlist_get(global_circuitlist, idx); c2->global_circuitlist_idx = idx; } } /* Remove from map. */ circuit_set_n_circid_chan(circ, 0, NULL); /* Clear cell queue _after_ removing it from the map. Otherwise our * "active" checks will be violated. */ cell_queue_clear(&circ->n_chan_cells); log_info(LD_CIRC, "Circuit %u (id: %" PRIu32 ") has been freed.", n_circ_id, CIRCUIT_IS_ORIGIN(circ) ? TO_ORIGIN_CIRCUIT(circ)->global_identifier : 0); if (should_free) { memwipe(mem, 0xAA, memlen); /* poison memory */ tor_free(mem); } else { /* If we made it here, this is an or_circuit_t that still has a pending * cpuworker request which we weren't able to cancel. Instead, set up * the magic value so that when the reply comes back, we'll know to discard * the reply and free this structure. */ memwipe(mem, 0xAA, memlen); circ->magic = DEAD_CIRCUIT_MAGIC; } } /** Deallocate the linked list circ->cpath, and remove the cpath from * circ. */ void circuit_clear_cpath(origin_circuit_t *circ) { crypt_path_t *victim, *head, *cpath; head = cpath = circ->cpath; if (!cpath) return; /* it's a circular list, so we have to notice when we've * gone through it once. */ while (cpath->next && cpath->next != head) { victim = cpath; cpath = victim->next; circuit_free_cpath_node(victim); } circuit_free_cpath_node(cpath); circ->cpath = NULL; } /** Release all storage held by circuits. */ void circuit_free_all(void) { smartlist_t *lst = circuit_get_global_list(); SMARTLIST_FOREACH_BEGIN(lst, circuit_t *, tmp) { if (! CIRCUIT_IS_ORIGIN(tmp)) { or_circuit_t *or_circ = TO_OR_CIRCUIT(tmp); while (or_circ->resolving_streams) { edge_connection_t *next_conn; next_conn = or_circ->resolving_streams->next_stream; connection_free_(TO_CONN(or_circ->resolving_streams)); or_circ->resolving_streams = next_conn; } } tmp->global_circuitlist_idx = -1; circuit_about_to_free_atexit(tmp); circuit_free(tmp); SMARTLIST_DEL_CURRENT(lst, tmp); } SMARTLIST_FOREACH_END(tmp); smartlist_free(lst); global_circuitlist = NULL; smartlist_free(global_origin_circuit_list); global_origin_circuit_list = NULL; smartlist_free(circuits_pending_chans); circuits_pending_chans = NULL; smartlist_free(circuits_pending_close); circuits_pending_close = NULL; smartlist_free(circuits_pending_other_guards); circuits_pending_other_guards = NULL; { chan_circid_circuit_map_t **elt, **next, *c; for (elt = HT_START(chan_circid_map, &chan_circid_map); elt; elt = next) { c = *elt; next = HT_NEXT_RMV(chan_circid_map, &chan_circid_map, elt); tor_assert(c->circuit == NULL); tor_free(c); } } HT_CLEAR(chan_circid_map, &chan_circid_map); } /** Deallocate space associated with the cpath node victim. */ static void circuit_free_cpath_node(crypt_path_t *victim) { if (!victim) return; relay_crypto_clear(&victim->crypto); onion_handshake_state_release(&victim->handshake_state); crypto_dh_free(victim->rend_dh_handshake_state); extend_info_free(victim->extend_info); memwipe(victim, 0xBB, sizeof(crypt_path_t)); /* poison memory */ tor_free(victim); } /** Release a crypt_path_reference_t*, which may be NULL. */ static void cpath_ref_decref(crypt_path_reference_t *cpath_ref) { if (cpath_ref != NULL) { if (--(cpath_ref->refcount) == 0) { circuit_free_cpath_node(cpath_ref->cpath); tor_free(cpath_ref); } } } /** A helper function for circuit_dump_by_conn() below. Log a bunch * of information about circuit circ. */ static void circuit_dump_conn_details(int severity, circuit_t *circ, int conn_array_index, const char *type, circid_t this_circid, circid_t other_circid) { tor_log(severity, LD_CIRC, "Conn %d has %s circuit: circID %u " "(other side %u), state %d (%s), born %ld:", conn_array_index, type, (unsigned)this_circid, (unsigned)other_circid, circ->state, circuit_state_to_string(circ->state), (long)circ->timestamp_began.tv_sec); if (CIRCUIT_IS_ORIGIN(circ)) { /* circ starts at this node */ circuit_log_path(severity, LD_CIRC, TO_ORIGIN_CIRCUIT(circ)); } } /** Log, at severity severity, information about each circuit * that is connected to conn. */ void circuit_dump_by_conn(connection_t *conn, int severity) { edge_connection_t *tmpconn; SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) { circid_t n_circ_id = circ->n_circ_id, p_circ_id = 0; if (circ->marked_for_close) { continue; } if (!CIRCUIT_IS_ORIGIN(circ)) { p_circ_id = TO_OR_CIRCUIT(circ)->p_circ_id; } if (CIRCUIT_IS_ORIGIN(circ)) { for (tmpconn=TO_ORIGIN_CIRCUIT(circ)->p_streams; tmpconn; tmpconn=tmpconn->next_stream) { if (TO_CONN(tmpconn) == conn) { circuit_dump_conn_details(severity, circ, conn->conn_array_index, "App-ward", p_circ_id, n_circ_id); } } } if (! CIRCUIT_IS_ORIGIN(circ)) { for (tmpconn=TO_OR_CIRCUIT(circ)->n_streams; tmpconn; tmpconn=tmpconn->next_stream) { if (TO_CONN(tmpconn) == conn) { circuit_dump_conn_details(severity, circ, conn->conn_array_index, "Exit-ward", n_circ_id, p_circ_id); } } } } SMARTLIST_FOREACH_END(circ); } /** Return the circuit whose global ID is id, or NULL if no * such circuit exists. */ origin_circuit_t * circuit_get_by_global_id(uint32_t id) { SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) { if (CIRCUIT_IS_ORIGIN(circ) && TO_ORIGIN_CIRCUIT(circ)->global_identifier == id) { if (circ->marked_for_close) return NULL; else return TO_ORIGIN_CIRCUIT(circ); } } SMARTLIST_FOREACH_END(circ); return NULL; } /** Return a circ such that: * - circ-\>n_circ_id or circ-\>p_circ_id is equal to circ_id, and * - circ is attached to chan, either as p_chan or n_chan. * Return NULL if no such circuit exists. * * If found_entry_out is provided, set it to true if we have a * placeholder entry for circid/chan, and leave it unset otherwise. */ static inline circuit_t * circuit_get_by_circid_channel_impl(circid_t circ_id, channel_t *chan, int *found_entry_out) { chan_circid_circuit_map_t search; chan_circid_circuit_map_t *found; if (_last_circid_chan_ent && circ_id == _last_circid_chan_ent->circ_id && chan == _last_circid_chan_ent->chan) { found = _last_circid_chan_ent; } else { search.circ_id = circ_id; search.chan = chan; found = HT_FIND(chan_circid_map, &chan_circid_map, &search); _last_circid_chan_ent = found; } if (found && found->circuit) { log_debug(LD_CIRC, "circuit_get_by_circid_channel_impl() returning circuit %p for" " circ_id %u, channel ID %"PRIu64 " (%p)", found->circuit, (unsigned)circ_id, (chan->global_identifier), chan); if (found_entry_out) *found_entry_out = 1; return found->circuit; } log_debug(LD_CIRC, "circuit_get_by_circid_channel_impl() found %s for" " circ_id %u, channel ID %"PRIu64 " (%p)", found ? "placeholder" : "nothing", (unsigned)circ_id, (chan->global_identifier), chan); if (found_entry_out) *found_entry_out = found ? 1 : 0; return NULL; /* The rest of this checks for bugs. Disabled by default. */ /* We comment it out because coverity complains otherwise. { circuit_t *circ; TOR_LIST_FOREACH(circ, &global_circuitlist, head) { if (! CIRCUIT_IS_ORIGIN(circ)) { or_circuit_t *or_circ = TO_OR_CIRCUIT(circ); if (or_circ->p_chan == chan && or_circ->p_circ_id == circ_id) { log_warn(LD_BUG, "circuit matches p_chan, but not in hash table (Bug!)"); return circ; } } if (circ->n_chan == chan && circ->n_circ_id == circ_id) { log_warn(LD_BUG, "circuit matches n_chan, but not in hash table (Bug!)"); return circ; } } return NULL; } */ } /** Return a circ such that: * - circ-\>n_circ_id or circ-\>p_circ_id is equal to circ_id, and * - circ is attached to chan, either as p_chan or n_chan. * - circ is not marked for close. * Return NULL if no such circuit exists. */ circuit_t * circuit_get_by_circid_channel(circid_t circ_id, channel_t *chan) { circuit_t *circ = circuit_get_by_circid_channel_impl(circ_id, chan, NULL); if (!circ || circ->marked_for_close) return NULL; else return circ; } /** Return a circ such that: * - circ-\>n_circ_id or circ-\>p_circ_id is equal to circ_id, and * - circ is attached to chan, either as p_chan or n_chan. * Return NULL if no such circuit exists. */ circuit_t * circuit_get_by_circid_channel_even_if_marked(circid_t circ_id, channel_t *chan) { return circuit_get_by_circid_channel_impl(circ_id, chan, NULL); } /** Return true iff the circuit ID circ_id is currently used by a * circuit, marked or not, on chan, or if the circ ID is reserved until * a queued destroy cell can be sent. * * (Return 1 if the circuit is present, marked or not; Return 2 * if the circuit ID is pending a destroy.) **/ int circuit_id_in_use_on_channel(circid_t circ_id, channel_t *chan) { int found = 0; if (circuit_get_by_circid_channel_impl(circ_id, chan, &found) != NULL) return 1; if (found) return 2; return 0; } /** Helper for debugging 12184. Returns the time since which 'circ_id' has * been marked unusable on 'chan'. */ time_t circuit_id_when_marked_unusable_on_channel(circid_t circ_id, channel_t *chan) { chan_circid_circuit_map_t search; chan_circid_circuit_map_t *found; memset(&search, 0, sizeof(search)); search.circ_id = circ_id; search.chan = chan; found = HT_FIND(chan_circid_map, &chan_circid_map, &search); if (! found || found->circuit) return 0; return found->made_placeholder_at; } /** Return the circuit that a given edge connection is using. */ circuit_t * circuit_get_by_edge_conn(edge_connection_t *conn) { circuit_t *circ; circ = conn->on_circuit; tor_assert(!circ || (CIRCUIT_IS_ORIGIN(circ) ? circ->magic == ORIGIN_CIRCUIT_MAGIC : circ->magic == OR_CIRCUIT_MAGIC)); return circ; } /** For each circuit that has chan as n_chan or p_chan, unlink the * circuit from the chan,circid map, and mark it for close if it hasn't * been marked already. */ void circuit_unlink_all_from_channel(channel_t *chan, int reason) { smartlist_t *detached = smartlist_new(); /* #define DEBUG_CIRCUIT_UNLINK_ALL */ channel_unlink_all_circuits(chan, detached); #ifdef DEBUG_CIRCUIT_UNLINK_ALL { smartlist_t *detached_2 = smartlist_new(); int mismatch = 0, badlen = 0; SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) { if (circ->n_chan == chan || (!CIRCUIT_IS_ORIGIN(circ) && TO_OR_CIRCUIT(circ)->p_chan == chan)) { smartlist_add(detached_2, circ); } } SMARTLIST_FOREACH_END(circ); if (smartlist_len(detached) != smartlist_len(detached_2)) { log_warn(LD_BUG, "List of detached circuits had the wrong length! " "(got %d, should have gotten %d)", (int)smartlist_len(detached), (int)smartlist_len(detached_2)); badlen = 1; } smartlist_sort_pointers(detached); smartlist_sort_pointers(detached_2); SMARTLIST_FOREACH(detached, circuit_t *, c, if (c != smartlist_get(detached_2, c_sl_idx)) mismatch = 1; ); if (mismatch) log_warn(LD_BUG, "Mismatch in list of detached circuits."); if (badlen || mismatch) { smartlist_free(detached); detached = detached_2; } else { log_notice(LD_CIRC, "List of %d circuits was as expected.", (int)smartlist_len(detached)); smartlist_free(detached_2); } } #endif /* defined(DEBUG_CIRCUIT_UNLINK_ALL) */ SMARTLIST_FOREACH_BEGIN(detached, circuit_t *, circ) { int mark = 0; if (circ->n_chan == chan) { circuit_set_n_circid_chan(circ, 0, NULL); mark = 1; /* If we didn't request this closure, pass the remote * bit to mark_for_close. */ if (chan->reason_for_closing != CHANNEL_CLOSE_REQUESTED) reason |= END_CIRC_REASON_FLAG_REMOTE; } if (! CIRCUIT_IS_ORIGIN(circ)) { or_circuit_t *or_circ = TO_OR_CIRCUIT(circ); if (or_circ->p_chan == chan) { circuit_set_p_circid_chan(or_circ, 0, NULL); mark = 1; } } if (!mark) { log_warn(LD_BUG, "Circuit on detached list which I had no reason " "to mark"); continue; } if (!circ->marked_for_close) circuit_mark_for_close(circ, reason); } SMARTLIST_FOREACH_END(circ); smartlist_free(detached); } /** Return a circ such that * - circ-\>rend_data-\>onion_address is equal to * rend_data-\>onion_address, * - circ-\>rend_data-\>rend_cookie is equal to * rend_data-\>rend_cookie, and * - circ-\>purpose is equal to CIRCUIT_PURPOSE_C_REND_READY. * * Return NULL if no such circuit exists. */ origin_circuit_t * circuit_get_ready_rend_circ_by_rend_data(const rend_data_t *rend_data) { SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) { if (!circ->marked_for_close && circ->purpose == CIRCUIT_PURPOSE_C_REND_READY) { origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ); if (ocirc->rend_data == NULL) { continue; } if (!rend_cmp_service_ids(rend_data_get_address(rend_data), rend_data_get_address(ocirc->rend_data)) && tor_memeq(ocirc->rend_data->rend_cookie, rend_data->rend_cookie, REND_COOKIE_LEN)) return ocirc; } } SMARTLIST_FOREACH_END(circ); return NULL; } /** Return the first introduction circuit originating from the global circuit * list after start or at the start of the list if start is * NULL. Return NULL if no circuit is found. * * If want_client_circ is true, then we are looking for client-side * introduction circuits: A client introduction point circuit has a purpose of * either CIRCUIT_PURPOSE_C_INTRODUCING, CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT * or CIRCUIT_PURPOSE_C_INTRODUCE_ACKED. This does not return a circuit marked * for close, but it returns circuits regardless of their circuit state. * * If want_client_circ is false, then we are looking for service-side * introduction circuits: A service introduction point circuit has a purpose of * either CIRCUIT_PURPOSE_S_ESTABLISH_INTRO or CIRCUIT_PURPOSE_S_INTRO. This * does not return circuits marked for close, or in any state other than open. */ origin_circuit_t * circuit_get_next_intro_circ(const origin_circuit_t *start, bool want_client_circ) { int idx = 0; smartlist_t *lst = circuit_get_global_list(); if (start) { idx = TO_CIRCUIT(start)->global_circuitlist_idx + 1; } for ( ; idx < smartlist_len(lst); ++idx) { circuit_t *circ = smartlist_get(lst, idx); /* Ignore a marked for close circuit or if the state is not open. */ if (circ->marked_for_close) { continue; } /* Depending on whether we are looking for client or service circs, skip * circuits with other purposes. */ if (want_client_circ) { if (circ->purpose != CIRCUIT_PURPOSE_C_INTRODUCING && circ->purpose != CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT && circ->purpose != CIRCUIT_PURPOSE_C_INTRODUCE_ACKED) { continue; } } else { /* we are looking for service-side circs */ if (circ->state != CIRCUIT_STATE_OPEN) { continue; } if (circ->purpose != CIRCUIT_PURPOSE_S_ESTABLISH_INTRO && circ->purpose != CIRCUIT_PURPOSE_S_INTRO) { continue; } } /* The purposes we are looking for are only for origin circuits so the * following is valid. */ return TO_ORIGIN_CIRCUIT(circ); } /* Not found. */ return NULL; } /** Return the first service rendezvous circuit originating from the global * circuit list after start or at the start of the list if start * is NULL. Return NULL if no circuit is found. * * A service rendezvous point circuit has a purpose of either * CIRCUIT_PURPOSE_S_CONNECT_REND or CIRCUIT_PURPOSE_S_REND_JOINED. This does * not return a circuit marked for close and its state must be open. */ origin_circuit_t * circuit_get_next_service_rp_circ(origin_circuit_t *start) { int idx = 0; smartlist_t *lst = circuit_get_global_list(); if (start) { idx = TO_CIRCUIT(start)->global_circuitlist_idx + 1; } for ( ; idx < smartlist_len(lst); ++idx) { circuit_t *circ = smartlist_get(lst, idx); /* Ignore a marked for close circuit or purpose not matching a service * intro point or if the state is not open. */ if (circ->marked_for_close || circ->state != CIRCUIT_STATE_OPEN || (circ->purpose != CIRCUIT_PURPOSE_S_CONNECT_REND && circ->purpose != CIRCUIT_PURPOSE_S_REND_JOINED)) { continue; } /* The purposes we are looking for are only for origin circuits so the * following is valid. */ return TO_ORIGIN_CIRCUIT(circ); } /* Not found. */ return NULL; } /** Return the first circuit originating here in global_circuitlist after * start whose purpose is purpose, and where digest (if * set) matches the private key digest of the rend data associated with the * circuit. Return NULL if no circuit is found. If start is NULL, * begin at the start of the list. */ origin_circuit_t * circuit_get_next_by_pk_and_purpose(origin_circuit_t *start, const uint8_t *digest, uint8_t purpose) { int idx; smartlist_t *lst = circuit_get_global_list(); tor_assert(CIRCUIT_PURPOSE_IS_ORIGIN(purpose)); if (start == NULL) idx = 0; else idx = TO_CIRCUIT(start)->global_circuitlist_idx + 1; for ( ; idx < smartlist_len(lst); ++idx) { circuit_t *circ = smartlist_get(lst, idx); origin_circuit_t *ocirc; if (circ->marked_for_close) continue; if (circ->purpose != purpose) continue; /* At this point we should be able to get a valid origin circuit because * the origin purpose we are looking for matches this circuit. */ if (BUG(!CIRCUIT_PURPOSE_IS_ORIGIN(circ->purpose))) { break; } ocirc = TO_ORIGIN_CIRCUIT(circ); if (!digest) return ocirc; if (rend_circuit_pk_digest_eq(ocirc, digest)) { return ocirc; } } return NULL; } /** We might cannibalize this circuit: Return true if its last hop can be used * as a v3 rendezvous point. */ static int circuit_can_be_cannibalized_for_v3_rp(const origin_circuit_t *circ) { if (!circ->build_state) { return 0; } extend_info_t *chosen_exit = circ->build_state->chosen_exit; if (BUG(!chosen_exit)) { return 0; } const node_t *rp_node = node_get_by_id(chosen_exit->identity_digest); if (rp_node) { if (node_supports_v3_rendezvous_point(rp_node)) { return 1; } } return 0; } /** We are trying to create a circuit of purpose purpose and we are * looking for cannibalizable circuits. Return the circuit purpose we would be * willing to cannibalize. */ static uint8_t get_circuit_purpose_needed_to_cannibalize(uint8_t purpose) { if (circuit_should_use_vanguards(purpose)) { /* If we are using vanguards, then we should only cannibalize vanguard * circuits so that we get the same path construction logic. */ return CIRCUIT_PURPOSE_HS_VANGUARDS; } else { /* If no vanguards are used just get a general circuit! */ return CIRCUIT_PURPOSE_C_GENERAL; } } /** Return a circuit that is open, is CIRCUIT_PURPOSE_C_GENERAL, * has a timestamp_dirty value of 0, has flags matching the CIRCLAUNCH_* * flags in flags, and if info is defined, does not already use info * as any of its hops; or NULL if no circuit fits this description. * * The purpose argument refers to the purpose of the circuit we want to * create, not the purpose of the circuit we want to cannibalize. * * If !CIRCLAUNCH_NEED_UPTIME, prefer returning non-uptime circuits. * * To "cannibalize" a circuit means to extend it an extra hop, and use it * for some other purpose than we had originally intended. We do this when * we want to perform some low-bandwidth task at a specific relay, and we * would like the circuit to complete as soon as possible. (If we were going * to use a lot of bandwidth, we wouldn't want a circuit with an extra hop. * If we didn't care about circuit completion latency, we would just build * a new circuit.) */ origin_circuit_t * circuit_find_to_cannibalize(uint8_t purpose_to_produce, extend_info_t *info, int flags) { origin_circuit_t *best=NULL; int need_uptime = (flags & CIRCLAUNCH_NEED_UPTIME) != 0; int need_capacity = (flags & CIRCLAUNCH_NEED_CAPACITY) != 0; int internal = (flags & CIRCLAUNCH_IS_INTERNAL) != 0; const or_options_t *options = get_options(); /* We want the circuit we are trying to cannibalize to have this purpose */ int purpose_to_search_for; /* Make sure we're not trying to create a onehop circ by * cannibalization. */ tor_assert(!(flags & CIRCLAUNCH_ONEHOP_TUNNEL)); purpose_to_search_for = get_circuit_purpose_needed_to_cannibalize( purpose_to_produce); tor_assert_nonfatal(purpose_to_search_for == CIRCUIT_PURPOSE_C_GENERAL || purpose_to_search_for == CIRCUIT_PURPOSE_HS_VANGUARDS); log_debug(LD_CIRC, "Hunting for a circ to cannibalize: purpose %d, uptime %d, " "capacity %d, internal %d", purpose_to_produce, need_uptime, need_capacity, internal); SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ_) { if (CIRCUIT_IS_ORIGIN(circ_) && circ_->state == CIRCUIT_STATE_OPEN && !circ_->marked_for_close && circ_->purpose == purpose_to_search_for && !circ_->timestamp_dirty) { origin_circuit_t *circ = TO_ORIGIN_CIRCUIT(circ_); /* Only cannibalize from reasonable length circuits. If we * want C_GENERAL, then only choose 3 hop circs. If we want * HS_VANGUARDS, only choose 4 hop circs. */ if (circ->build_state->desired_path_len != route_len_for_purpose(purpose_to_search_for, NULL)) { goto next; } /* Ignore any circuits for which we can't use the Guard. It is possible * that the Guard was removed from the samepled set after the circuit * was created so avoid using it. */ if (!entry_guard_could_succeed(circ->guard_state)) { goto next; } if ((!need_uptime || circ->build_state->need_uptime) && (!need_capacity || circ->build_state->need_capacity) && (internal == circ->build_state->is_internal) && !circ->unusable_for_new_conns && circ->remaining_relay_early_cells && !circ->build_state->onehop_tunnel && !circ->isolation_values_set) { if (info) { /* need to make sure we don't duplicate hops */ crypt_path_t *hop = circ->cpath; const node_t *ri1 = node_get_by_id(info->identity_digest); do { const node_t *ri2; if (tor_memeq(hop->extend_info->identity_digest, info->identity_digest, DIGEST_LEN)) goto next; if (ri1 && (ri2 = node_get_by_id(hop->extend_info->identity_digest)) && nodes_in_same_family(ri1, ri2)) goto next; hop=hop->next; } while (hop!=circ->cpath); } if (options->ExcludeNodes) { /* Make sure no existing nodes in the circuit are excluded for * general use. (This may be possible if StrictNodes is 0, and we * thought we needed to use an otherwise excluded node for, say, a * directory operation.) */ crypt_path_t *hop = circ->cpath; do { if (routerset_contains_extendinfo(options->ExcludeNodes, hop->extend_info)) goto next; hop = hop->next; } while (hop != circ->cpath); } if ((flags & CIRCLAUNCH_IS_V3_RP) && !circuit_can_be_cannibalized_for_v3_rp(circ)) { log_debug(LD_GENERAL, "Skipping uncannibalizable circuit for v3 " "rendezvous point."); goto next; } if (!best || (best->build_state->need_uptime && !need_uptime)) best = circ; next: ; } } } SMARTLIST_FOREACH_END(circ_); return best; } /** * Check whether any of the origin circuits that are waiting to see if * their guard is good enough to use can be upgraded to "ready". If so, * return a new smartlist containing them. Otherwise return NULL. */ smartlist_t * circuit_find_circuits_to_upgrade_from_guard_wait(void) { /* Only if some circuit is actually waiting on an upgrade should we * run the algorithm. */ if (! circuits_pending_other_guards || smartlist_len(circuits_pending_other_guards)==0) return NULL; /* Only if we have some origin circuits should we run the algorithm. */ if (!global_origin_circuit_list) return NULL; /* Okay; we can pass our circuit list to entrynodes.c.*/ smartlist_t *result = smartlist_new(); int circuits_upgraded = entry_guards_upgrade_waiting_circuits( get_guard_selection_info(), global_origin_circuit_list, result); if (circuits_upgraded && smartlist_len(result)) { return result; } else { smartlist_free(result); return NULL; } } /** Return the number of hops in circuit's path. If circ has no entries, * or is NULL, returns 0. */ int circuit_get_cpath_len(origin_circuit_t *circ) { int n = 0; if (circ && circ->cpath) { crypt_path_t *cpath, *cpath_next = NULL; for (cpath = circ->cpath; cpath_next != circ->cpath; cpath = cpath_next) { cpath_next = cpath->next; ++n; } } return n; } /** Return the number of opened hops in circuit's path. * If circ has no entries, or is NULL, returns 0. */ int circuit_get_cpath_opened_len(const origin_circuit_t *circ) { int n = 0; if (circ && circ->cpath) { crypt_path_t *cpath, *cpath_next = NULL; for (cpath = circ->cpath; cpath->state == CPATH_STATE_OPEN && cpath_next != circ->cpath; cpath = cpath_next) { cpath_next = cpath->next; ++n; } } return n; } /** Return the hopnumth hop in circ->cpath, or NULL if there * aren't that many hops in the list. hopnum starts at 1. * Returns NULL if hopnum is 0 or negative. */ crypt_path_t * circuit_get_cpath_hop(origin_circuit_t *circ, int hopnum) { if (circ && circ->cpath && hopnum > 0) { crypt_path_t *cpath, *cpath_next = NULL; for (cpath = circ->cpath; cpath_next != circ->cpath; cpath = cpath_next) { cpath_next = cpath->next; if (--hopnum <= 0) return cpath; } } return NULL; } /** Go through the circuitlist; mark-for-close each circuit that starts * at us but has not yet been used. */ void circuit_mark_all_unused_circs(void) { SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) { if (CIRCUIT_IS_ORIGIN(circ) && !circ->marked_for_close && !circ->timestamp_dirty) circuit_mark_for_close(circ, END_CIRC_REASON_FINISHED); } SMARTLIST_FOREACH_END(circ); } /** Go through the circuitlist; for each circuit that starts at us * and is dirty, frob its timestamp_dirty so we won't use it for any * new streams. * * This is useful for letting the user change pseudonyms, so new * streams will not be linkable to old streams. */ void circuit_mark_all_dirty_circs_as_unusable(void) { SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) { if (CIRCUIT_IS_ORIGIN(circ) && !circ->marked_for_close && circ->timestamp_dirty) { mark_circuit_unusable_for_new_conns(TO_ORIGIN_CIRCUIT(circ)); } } SMARTLIST_FOREACH_END(circ); } /** * Report any queued cells on or_circuits as written in our bandwidth * totals, for the specified channel direction. * * When we close a circuit or clear its cell queues, we've read * data and recorded those bytes in our read statistics, but we're * not going to write it. This discrepancy can be used by an adversary * to infer information from our public relay statistics and perform * attacks such as guard discovery. * * This function is in the critical path of circuit_mark_for_close(). * It must be (and is) O(1)! * * See https://trac.torproject.org/projects/tor/ticket/23512. */ void circuit_synchronize_written_or_bandwidth(const circuit_t *c, circuit_channel_direction_t dir) { uint64_t cells; uint64_t cell_size; uint64_t written_sync; const channel_t *chan = NULL; const or_circuit_t *or_circ; if (!CIRCUIT_IS_ORCIRC(c)) return; or_circ = CONST_TO_OR_CIRCUIT(c); if (dir == CIRCUIT_N_CHAN) { chan = c->n_chan; cells = c->n_chan_cells.n; } else { chan = or_circ->p_chan; cells = or_circ->p_chan_cells.n; } /* If we still know the chan, determine real cell size. Otherwise, * assume it's a wide circid channel */ if (chan) cell_size = get_cell_network_size(chan->wide_circ_ids); else cell_size = CELL_MAX_NETWORK_SIZE; /* The missing written bytes are the cell counts times their cell * size plus TLS per cell overhead */ written_sync = cells*(cell_size+TLS_PER_CELL_OVERHEAD); /* Report the missing bytes as written, to avoid asymmetry. * We must use time() for consistency with rephist, even though on * some very old rare platforms, approx_time() may be faster. */ rep_hist_note_bytes_written(written_sync, time(NULL)); } /** Mark circ to be closed next time we call * circuit_close_all_marked(). Do any cleanup needed: * - If state is onionskin_pending, remove circ from the onion_pending * list. * - If circ isn't open yet: call circuit_build_failed() if we're * the origin. * - If purpose is C_INTRODUCE_ACK_WAIT, report the intro point * failure we just had to the hidden service client module. * - If purpose is C_INTRODUCING and reason isn't TIMEOUT, * report to the hidden service client module that the intro point * we just tried may be unreachable. * - Send appropriate destroys and edge_destroys for conns and * streams attached to circ. * - If circ->rend_splice is set (we are the midpoint of a joined * rendezvous stream), then mark the other circuit to close as well. */ MOCK_IMPL(void, circuit_mark_for_close_, (circuit_t *circ, int reason, int line, const char *file)) { int orig_reason = reason; /* Passed to the controller */ assert_circuit_ok(circ); tor_assert(line); tor_assert(file); if (circ->marked_for_close) { log_warn(LD_BUG, "Duplicate call to circuit_mark_for_close at %s:%d" " (first at %s:%d)", file, line, circ->marked_for_close_file, circ->marked_for_close); return; } if (reason == END_CIRC_AT_ORIGIN) { if (!CIRCUIT_IS_ORIGIN(circ)) { log_warn(LD_BUG, "Specified 'at-origin' non-reason for ending circuit, " "but circuit was not at origin. (called %s:%d, purpose=%d)", file, line, circ->purpose); } reason = END_CIRC_REASON_NONE; } if (CIRCUIT_IS_ORIGIN(circ)) { if (pathbias_check_close(TO_ORIGIN_CIRCUIT(circ), reason) == -1) { /* Don't close it yet, we need to test it first */ return; } /* We don't send reasons when closing circuits at the origin. */ reason = END_CIRC_REASON_NONE; } circuit_synchronize_written_or_bandwidth(circ, CIRCUIT_N_CHAN); circuit_synchronize_written_or_bandwidth(circ, CIRCUIT_P_CHAN); if (reason & END_CIRC_REASON_FLAG_REMOTE) reason &= ~END_CIRC_REASON_FLAG_REMOTE; if (reason < END_CIRC_REASON_MIN_ || reason > END_CIRC_REASON_MAX_) { if (!(orig_reason & END_CIRC_REASON_FLAG_REMOTE)) log_warn(LD_BUG, "Reason %d out of range at %s:%d", reason, file, line); reason = END_CIRC_REASON_NONE; } circ->marked_for_close = line; circ->marked_for_close_file = file; circ->marked_for_close_reason = reason; circ->marked_for_close_orig_reason = orig_reason; if (!CIRCUIT_IS_ORIGIN(circ)) { or_circuit_t *or_circ = TO_OR_CIRCUIT(circ); if (or_circ->rend_splice) { if (!or_circ->rend_splice->base_.marked_for_close) { /* do this after marking this circuit, to avoid infinite recursion. */ circuit_mark_for_close(TO_CIRCUIT(or_circ->rend_splice), reason); } or_circ->rend_splice = NULL; } } /* Notify the HS subsystem that this circuit is closing. */ hs_circ_cleanup(circ); if (circuits_pending_close == NULL) circuits_pending_close = smartlist_new(); smartlist_add(circuits_pending_close, circ); mainloop_schedule_postloop_cleanup(); log_info(LD_GENERAL, "Circuit %u (id: %" PRIu32 ") marked for close at " "%s:%d (orig reason: %d, new reason: %d)", circ->n_circ_id, CIRCUIT_IS_ORIGIN(circ) ? TO_ORIGIN_CIRCUIT(circ)->global_identifier : 0, file, line, orig_reason, reason); } /** Called immediately before freeing a marked circuit circ from * circuit_free_all() while shutting down Tor; this is a safe-at-shutdown * version of circuit_about_to_free(). It's important that it at least * do circuitmux_detach_circuit() when appropriate. */ static void circuit_about_to_free_atexit(circuit_t *circ) { if (circ->n_chan) { circuit_clear_cell_queue(circ, circ->n_chan); circuitmux_detach_circuit(circ->n_chan->cmux, circ); circuit_set_n_circid_chan(circ, 0, NULL); } if (! CIRCUIT_IS_ORIGIN(circ)) { or_circuit_t *or_circ = TO_OR_CIRCUIT(circ); if (or_circ->p_chan) { circuit_clear_cell_queue(circ, or_circ->p_chan); circuitmux_detach_circuit(or_circ->p_chan->cmux, circ); circuit_set_p_circid_chan(or_circ, 0, NULL); } } } /** Called immediately before freeing a marked circuit circ. * Disconnects the circuit from other data structures, launches events * as appropriate, and performs other housekeeping. */ static void circuit_about_to_free(circuit_t *circ) { int reason = circ->marked_for_close_reason; int orig_reason = circ->marked_for_close_orig_reason; if (circ->state == CIRCUIT_STATE_ONIONSKIN_PENDING) { onion_pending_remove(TO_OR_CIRCUIT(circ)); } /* If the circuit ever became OPEN, we sent it to the reputation history * module then. If it isn't OPEN, we send it there now to remember which * links worked and which didn't. */ if (circ->state != CIRCUIT_STATE_OPEN && circ->state != CIRCUIT_STATE_GUARD_WAIT) { if (CIRCUIT_IS_ORIGIN(circ)) { origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ); circuit_build_failed(ocirc); /* take actions if necessary */ } } if (circ->state == CIRCUIT_STATE_CHAN_WAIT) { if (circuits_pending_chans) smartlist_remove(circuits_pending_chans, circ); } if (circuits_pending_other_guards) { smartlist_remove(circuits_pending_other_guards, circ); } if (CIRCUIT_IS_ORIGIN(circ)) { control_event_circuit_status(TO_ORIGIN_CIRCUIT(circ), (circ->state == CIRCUIT_STATE_OPEN || circ->state == CIRCUIT_STATE_GUARD_WAIT) ? CIRC_EVENT_CLOSED:CIRC_EVENT_FAILED, orig_reason); } if (circ->purpose == CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT) { origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ); int timed_out = (reason == END_CIRC_REASON_TIMEOUT); tor_assert(circ->state == CIRCUIT_STATE_OPEN); tor_assert(ocirc->build_state->chosen_exit); if (orig_reason != END_CIRC_REASON_IP_NOW_REDUNDANT && ocirc->rend_data) { /* treat this like getting a nack from it */ log_info(LD_REND, "Failed intro circ %s to %s (awaiting ack). %s", safe_str_client(rend_data_get_address(ocirc->rend_data)), safe_str_client(build_state_get_exit_nickname(ocirc->build_state)), timed_out ? "Recording timeout." : "Removing from descriptor."); rend_client_report_intro_point_failure(ocirc->build_state->chosen_exit, ocirc->rend_data, timed_out ? INTRO_POINT_FAILURE_TIMEOUT : INTRO_POINT_FAILURE_GENERIC); } } else if (circ->purpose == CIRCUIT_PURPOSE_C_INTRODUCING && reason != END_CIRC_REASON_TIMEOUT) { origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ); if (ocirc->build_state->chosen_exit && ocirc->rend_data) { if (orig_reason != END_CIRC_REASON_IP_NOW_REDUNDANT && ocirc->rend_data) { log_info(LD_REND, "Failed intro circ %s to %s " "(building circuit to intro point). " "Marking intro point as possibly unreachable.", safe_str_client(rend_data_get_address(ocirc->rend_data)), safe_str_client(build_state_get_exit_nickname( ocirc->build_state))); rend_client_report_intro_point_failure(ocirc->build_state->chosen_exit, ocirc->rend_data, INTRO_POINT_FAILURE_UNREACHABLE); } } } if (circ->n_chan) { circuit_clear_cell_queue(circ, circ->n_chan); /* Only send destroy if the channel isn't closing anyway */ if (!CHANNEL_CONDEMNED(circ->n_chan)) { channel_send_destroy(circ->n_circ_id, circ->n_chan, reason); } circuitmux_detach_circuit(circ->n_chan->cmux, circ); circuit_set_n_circid_chan(circ, 0, NULL); } if (! CIRCUIT_IS_ORIGIN(circ)) { or_circuit_t *or_circ = TO_OR_CIRCUIT(circ); edge_connection_t *conn; for (conn=or_circ->n_streams; conn; conn=conn->next_stream) connection_edge_destroy(or_circ->p_circ_id, conn); or_circ->n_streams = NULL; while (or_circ->resolving_streams) { conn = or_circ->resolving_streams; or_circ->resolving_streams = conn->next_stream; if (!conn->base_.marked_for_close) { /* The client will see a DESTROY, and infer that the connections * are closing because the circuit is getting torn down. No need * to send an end cell. */ conn->edge_has_sent_end = 1; conn->end_reason = END_STREAM_REASON_DESTROY; conn->end_reason |= END_STREAM_REASON_FLAG_ALREADY_SENT_CLOSED; connection_mark_for_close(TO_CONN(conn)); } conn->on_circuit = NULL; } if (or_circ->p_chan) { circuit_clear_cell_queue(circ, or_circ->p_chan); /* Only send destroy if the channel isn't closing anyway */ if (!CHANNEL_CONDEMNED(or_circ->p_chan)) { channel_send_destroy(or_circ->p_circ_id, or_circ->p_chan, reason); } circuitmux_detach_circuit(or_circ->p_chan->cmux, circ); circuit_set_p_circid_chan(or_circ, 0, NULL); } } else { origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ); edge_connection_t *conn; for (conn=ocirc->p_streams; conn; conn=conn->next_stream) connection_edge_destroy(circ->n_circ_id, conn); ocirc->p_streams = NULL; } } /** Given a marked circuit circ, aggressively free its cell queues to * recover memory. */ static void marked_circuit_free_cells(circuit_t *circ) { if (!circ->marked_for_close) { log_warn(LD_BUG, "Called on non-marked circuit"); return; } cell_queue_clear(&circ->n_chan_cells); if (circ->n_mux) circuitmux_clear_num_cells(circ->n_mux, circ); if (! CIRCUIT_IS_ORIGIN(circ)) { or_circuit_t *orcirc = TO_OR_CIRCUIT(circ); cell_queue_clear(&orcirc->p_chan_cells); if (orcirc->p_mux) circuitmux_clear_num_cells(orcirc->p_mux, circ); } } static size_t single_conn_free_bytes(connection_t *conn) { size_t result = 0; if (conn->inbuf) { result += buf_allocation(conn->inbuf); buf_clear(conn->inbuf); } if (conn->outbuf) { result += buf_allocation(conn->outbuf); buf_clear(conn->outbuf); conn->outbuf_flushlen = 0; } if (conn->type == CONN_TYPE_DIR) { dir_connection_t *dir_conn = TO_DIR_CONN(conn); if (dir_conn->compress_state) { result += tor_compress_state_size(dir_conn->compress_state); tor_compress_free(dir_conn->compress_state); dir_conn->compress_state = NULL; } } return result; } /** Aggressively free buffer contents on all the buffers of all streams in the * list starting at stream. Return the number of bytes recovered. */ static size_t marked_circuit_streams_free_bytes(edge_connection_t *stream) { size_t result = 0; for ( ; stream; stream = stream->next_stream) { connection_t *conn = TO_CONN(stream); result += single_conn_free_bytes(conn); if (conn->linked_conn) { result += single_conn_free_bytes(conn->linked_conn); } } return result; } /** Aggressively free buffer contents on all the buffers of all streams on * circuit c. Return the number of bytes recovered. */ static size_t marked_circuit_free_stream_bytes(circuit_t *c) { if (CIRCUIT_IS_ORIGIN(c)) { return marked_circuit_streams_free_bytes(TO_ORIGIN_CIRCUIT(c)->p_streams); } else { return marked_circuit_streams_free_bytes(TO_OR_CIRCUIT(c)->n_streams); } } /** Return the number of cells used by the circuit c's cell queues. */ STATIC size_t n_cells_in_circ_queues(const circuit_t *c) { size_t n = c->n_chan_cells.n; if (! CIRCUIT_IS_ORIGIN(c)) { circuit_t *cc = (circuit_t *) c; n += TO_OR_CIRCUIT(cc)->p_chan_cells.n; } return n; } /** Return the number of bytes allocated for c's half-open streams. */ static size_t circuit_alloc_in_half_streams(const circuit_t *c) { if (! CIRCUIT_IS_ORIGIN(c)) { return 0; } const origin_circuit_t *ocirc = CONST_TO_ORIGIN_CIRCUIT(c); if (ocirc->half_streams) return smartlist_len(ocirc->half_streams) * sizeof(half_edge_t); else return 0; } /** * Return the age of the oldest cell queued on c, in timestamp units. * Return 0 if there are no cells queued on c. Requires that now be * the current coarse timestamp. * * This function will return incorrect results if the oldest cell queued on * the circuit is older than about 2**32 msec (about 49 days) old. */ STATIC uint32_t circuit_max_queued_cell_age(const circuit_t *c, uint32_t now) { uint32_t age = 0; packed_cell_t *cell; if (NULL != (cell = TOR_SIMPLEQ_FIRST(&c->n_chan_cells.head))) age = now - cell->inserted_timestamp; if (! CIRCUIT_IS_ORIGIN(c)) { const or_circuit_t *orcirc = CONST_TO_OR_CIRCUIT(c); if (NULL != (cell = TOR_SIMPLEQ_FIRST(&orcirc->p_chan_cells.head))) { uint32_t age2 = now - cell->inserted_timestamp; if (age2 > age) return age2; } } return age; } /** Return the age of the oldest buffer chunk on conn, where age is * taken in timestamp units before the time now. If the connection has * no data, treat it as having age zero. **/ static uint32_t conn_get_buffer_age(const connection_t *conn, uint32_t now_ts) { uint32_t age = 0, age2; if (conn->outbuf) { age2 = buf_get_oldest_chunk_timestamp(conn->outbuf, now_ts); if (age2 > age) age = age2; } if (conn->inbuf) { age2 = buf_get_oldest_chunk_timestamp(conn->inbuf, now_ts); if (age2 > age) age = age2; } return age; } /** Return the age in timestamp units of the oldest buffer chunk on any stream * in the linked list stream, where age is taken in timestamp units * before the timestamp now. */ static uint32_t circuit_get_streams_max_data_age(const edge_connection_t *stream, uint32_t now) { uint32_t age = 0, age2; for (; stream; stream = stream->next_stream) { const connection_t *conn = TO_CONN(stream); age2 = conn_get_buffer_age(conn, now); if (age2 > age) age = age2; if (conn->linked_conn) { age2 = conn_get_buffer_age(conn->linked_conn, now); if (age2 > age) age = age2; } } return age; } /** Return the age in timestamp units of the oldest buffer chunk on any stream * attached to the circuit c, where age is taken before the timestamp * now. */ STATIC uint32_t circuit_max_queued_data_age(const circuit_t *c, uint32_t now) { if (CIRCUIT_IS_ORIGIN(c)) { return circuit_get_streams_max_data_age( CONST_TO_ORIGIN_CIRCUIT(c)->p_streams, now); } else { return circuit_get_streams_max_data_age( CONST_TO_OR_CIRCUIT(c)->n_streams, now); } } /** Return the age of the oldest cell or stream buffer chunk on the circuit * c, where age is taken in timestamp units before the timestamp * now */ STATIC uint32_t circuit_max_queued_item_age(const circuit_t *c, uint32_t now) { uint32_t cell_age = circuit_max_queued_cell_age(c, now); uint32_t data_age = circuit_max_queued_data_age(c, now); if (cell_age > data_age) return cell_age; else return data_age; } /** Helper to sort a list of circuit_t by age of oldest item, in descending * order. */ static int circuits_compare_by_oldest_queued_item_(const void **a_, const void **b_) { const circuit_t *a = *a_; const circuit_t *b = *b_; uint32_t age_a = a->age_tmp; uint32_t age_b = b->age_tmp; if (age_a < age_b) return 1; else if (age_a == age_b) return 0; else return -1; } static uint32_t now_ts_for_buf_cmp; /** Helper to sort a list of circuit_t by age of oldest item, in descending * order. */ static int conns_compare_by_buffer_age_(const void **a_, const void **b_) { const connection_t *a = *a_; const connection_t *b = *b_; time_t age_a = conn_get_buffer_age(a, now_ts_for_buf_cmp); time_t age_b = conn_get_buffer_age(b, now_ts_for_buf_cmp); if (age_a < age_b) return 1; else if (age_a == age_b) return 0; else return -1; } #define FRACTION_OF_DATA_TO_RETAIN_ON_OOM 0.90 /** We're out of memory for cells, having allocated current_allocation * bytes' worth. Kill the 'worst' circuits until we're under * FRACTION_OF_DATA_TO_RETAIN_ON_OOM of our maximum usage. */ void circuits_handle_oom(size_t current_allocation) { smartlist_t *circlist; smartlist_t *connection_array = get_connection_array(); int conn_idx; size_t mem_to_recover; size_t mem_recovered=0; int n_circuits_killed=0; int n_dirconns_killed=0; uint32_t now_ts; log_notice(LD_GENERAL, "We're low on memory (cell queues total alloc:" " %"TOR_PRIuSZ" buffer total alloc: %" TOR_PRIuSZ "," " tor compress total alloc: %" TOR_PRIuSZ " (zlib: %" TOR_PRIuSZ ", zstd: %" TOR_PRIuSZ "," " lzma: %" TOR_PRIuSZ ")," " rendezvous cache total alloc: %" TOR_PRIuSZ "). Killing" " circuits withover-long queues. (This behavior is controlled by" " MaxMemInQueues.)", cell_queues_get_total_allocation(), buf_get_total_allocation(), tor_compress_get_total_allocation(), tor_zlib_get_total_allocation(), tor_zstd_get_total_allocation(), tor_lzma_get_total_allocation(), rend_cache_get_total_allocation()); { size_t mem_target = (size_t)(get_options()->MaxMemInQueues * FRACTION_OF_DATA_TO_RETAIN_ON_OOM); if (current_allocation <= mem_target) return; mem_to_recover = current_allocation - mem_target; } now_ts = monotime_coarse_get_stamp(); circlist = circuit_get_global_list(); SMARTLIST_FOREACH_BEGIN(circlist, circuit_t *, circ) { circ->age_tmp = circuit_max_queued_item_age(circ, now_ts); } SMARTLIST_FOREACH_END(circ); /* This is O(n log n); there are faster algorithms we could use instead. * Let's hope this doesn't happen enough to be in the critical path. */ smartlist_sort(circlist, circuits_compare_by_oldest_queued_item_); /* Fix up the indices before we run into trouble */ SMARTLIST_FOREACH_BEGIN(circlist, circuit_t *, circ) { circ->global_circuitlist_idx = circ_sl_idx; } SMARTLIST_FOREACH_END(circ); /* Now sort the connection array ... */ now_ts_for_buf_cmp = now_ts; smartlist_sort(connection_array, conns_compare_by_buffer_age_); now_ts_for_buf_cmp = 0; /* Fix up the connection array to its new order. */ SMARTLIST_FOREACH_BEGIN(connection_array, connection_t *, conn) { conn->conn_array_index = conn_sl_idx; } SMARTLIST_FOREACH_END(conn); /* Okay, now the worst circuits and connections are at the front of their * respective lists. Let's mark them, and reclaim their storage * aggressively. */ conn_idx = 0; SMARTLIST_FOREACH_BEGIN(circlist, circuit_t *, circ) { size_t n; size_t freed; /* Free storage in any non-linked directory connections that have buffered * data older than this circuit. */ while (conn_idx < smartlist_len(connection_array)) { connection_t *conn = smartlist_get(connection_array, conn_idx); uint32_t conn_age = conn_get_buffer_age(conn, now_ts); if (conn_age < circ->age_tmp) { break; } if (conn->type == CONN_TYPE_DIR && conn->linked_conn == NULL) { if (!conn->marked_for_close) connection_mark_for_close(conn); mem_recovered += single_conn_free_bytes(conn); ++n_dirconns_killed; if (mem_recovered >= mem_to_recover) goto done_recovering_mem; } ++conn_idx; } /* Now, kill the circuit. */ n = n_cells_in_circ_queues(circ); const size_t half_stream_alloc = circuit_alloc_in_half_streams(circ); if (! circ->marked_for_close) { circuit_mark_for_close(circ, END_CIRC_REASON_RESOURCELIMIT); } marked_circuit_free_cells(circ); freed = marked_circuit_free_stream_bytes(circ); ++n_circuits_killed; mem_recovered += n * packed_cell_mem_cost(); mem_recovered += half_stream_alloc; mem_recovered += freed; if (mem_recovered >= mem_to_recover) goto done_recovering_mem; } SMARTLIST_FOREACH_END(circ); done_recovering_mem: log_notice(LD_GENERAL, "Removed %"TOR_PRIuSZ" bytes by killing %d circuits; " "%d circuits remain alive. Also killed %d non-linked directory " "connections.", mem_recovered, n_circuits_killed, smartlist_len(circlist) - n_circuits_killed, n_dirconns_killed); } /** Verify that cpath layer cp has all of its invariants * correct. Trigger an assert if anything is invalid. */ void assert_cpath_layer_ok(const crypt_path_t *cp) { // tor_assert(cp->addr); /* these are zero for rendezvous extra-hops */ // tor_assert(cp->port); tor_assert(cp); tor_assert(cp->magic == CRYPT_PATH_MAGIC); switch (cp->state) { case CPATH_STATE_OPEN: relay_crypto_assert_ok(&cp->crypto); /* fall through */ case CPATH_STATE_CLOSED: /*XXXX Assert that there's no handshake_state either. */ tor_assert(!cp->rend_dh_handshake_state); break; case CPATH_STATE_AWAITING_KEYS: /* tor_assert(cp->dh_handshake_state); */ break; default: log_fn(LOG_ERR, LD_BUG, "Unexpected state %d", cp->state); tor_assert(0); } tor_assert(cp->package_window >= 0); tor_assert(cp->deliver_window >= 0); } /** Verify that cpath cp has all of its invariants * correct. Trigger an assert if anything is invalid. */ static void assert_cpath_ok(const crypt_path_t *cp) { const crypt_path_t *start = cp; do { assert_cpath_layer_ok(cp); /* layers must be in sequence of: "open* awaiting? closed*" */ if (cp != start) { if (cp->state == CPATH_STATE_AWAITING_KEYS) { tor_assert(cp->prev->state == CPATH_STATE_OPEN); } else if (cp->state == CPATH_STATE_OPEN) { tor_assert(cp->prev->state == CPATH_STATE_OPEN); } } cp = cp->next; tor_assert(cp); } while (cp != start); } /** Verify that circuit c has all of its invariants * correct. Trigger an assert if anything is invalid. */ MOCK_IMPL(void, assert_circuit_ok,(const circuit_t *c)) { edge_connection_t *conn; const or_circuit_t *or_circ = NULL; const origin_circuit_t *origin_circ = NULL; tor_assert(c); tor_assert(c->magic == ORIGIN_CIRCUIT_MAGIC || c->magic == OR_CIRCUIT_MAGIC); tor_assert(c->purpose >= CIRCUIT_PURPOSE_MIN_ && c->purpose <= CIRCUIT_PURPOSE_MAX_); if (CIRCUIT_IS_ORIGIN(c)) origin_circ = CONST_TO_ORIGIN_CIRCUIT(c); else or_circ = CONST_TO_OR_CIRCUIT(c); if (c->n_chan) { tor_assert(!c->n_hop); if (c->n_circ_id) { /* We use the _impl variant here to make sure we don't fail on marked * circuits, which would not be returned by the regular function. */ circuit_t *c2 = circuit_get_by_circid_channel_impl(c->n_circ_id, c->n_chan, NULL); tor_assert(c == c2); } } if (or_circ && or_circ->p_chan) { if (or_circ->p_circ_id) { /* ibid */ circuit_t *c2 = circuit_get_by_circid_channel_impl(or_circ->p_circ_id, or_circ->p_chan, NULL); tor_assert(c == c2); } } if (or_circ) for (conn = or_circ->n_streams; conn; conn = conn->next_stream) tor_assert(conn->base_.type == CONN_TYPE_EXIT); tor_assert(c->deliver_window >= 0); tor_assert(c->package_window >= 0); if (c->state == CIRCUIT_STATE_OPEN || c->state == CIRCUIT_STATE_GUARD_WAIT) { tor_assert(!c->n_chan_create_cell); if (or_circ) { relay_crypto_assert_ok(&or_circ->crypto); } } if (c->state == CIRCUIT_STATE_CHAN_WAIT && !c->marked_for_close) { tor_assert(circuits_pending_chans && smartlist_contains(circuits_pending_chans, c)); } else { tor_assert(!circuits_pending_chans || !smartlist_contains(circuits_pending_chans, c)); } if (origin_circ && origin_circ->cpath) { assert_cpath_ok(origin_circ->cpath); } if (c->purpose == CIRCUIT_PURPOSE_REND_ESTABLISHED) { tor_assert(or_circ); if (!c->marked_for_close) { tor_assert(or_circ->rend_splice); tor_assert(or_circ->rend_splice->rend_splice == or_circ); } tor_assert(or_circ->rend_splice != or_circ); } else { tor_assert(!or_circ || !or_circ->rend_splice); } }