hs_descriptor.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073
  1. /* Copyright (c) 2016-2019, The Tor Project, Inc. */
  2. /* See LICENSE for licensing information */
  3. /**
  4. * \file hs_descriptor.c
  5. * \brief Handle hidden service descriptor encoding/decoding.
  6. *
  7. * \details
  8. * Here is a graphical depiction of an HS descriptor and its layers:
  9. *
  10. * +------------------------------------------------------+
  11. * |DESCRIPTOR HEADER: |
  12. * | hs-descriptor 3 |
  13. * | descriptor-lifetime 180 |
  14. * | ... |
  15. * | superencrypted |
  16. * |+---------------------------------------------------+ |
  17. * ||SUPERENCRYPTED LAYER (aka OUTER ENCRYPTED LAYER): | |
  18. * || desc-auth-type x25519 | |
  19. * || desc-auth-ephemeral-key | |
  20. * || auth-client | |
  21. * || auth-client | |
  22. * || ... | |
  23. * || encrypted | |
  24. * ||+-------------------------------------------------+| |
  25. * |||ENCRYPTED LAYER (aka INNER ENCRYPTED LAYER): || |
  26. * ||| create2-formats || |
  27. * ||| intro-auth-required || |
  28. * ||| introduction-point || |
  29. * ||| introduction-point || |
  30. * ||| ... || |
  31. * ||+-------------------------------------------------+| |
  32. * |+---------------------------------------------------+ |
  33. * +------------------------------------------------------+
  34. *
  35. * The DESCRIPTOR HEADER section is completely unencrypted and contains generic
  36. * descriptor metadata.
  37. *
  38. * The SUPERENCRYPTED LAYER section is the first layer of encryption, and it's
  39. * encrypted using the blinded public key of the hidden service to protect
  40. * against entities who don't know its onion address. The clients of the hidden
  41. * service know its onion address and blinded public key, whereas third-parties
  42. * (like HSDirs) don't know it (except if it's a public hidden service).
  43. *
  44. * The ENCRYPTED LAYER section is the second layer of encryption, and it's
  45. * encrypted using the client authorization key material (if those exist). When
  46. * client authorization is enabled, this second layer of encryption protects
  47. * the descriptor content from unauthorized entities. If client authorization
  48. * is disabled, this second layer of encryption does not provide any extra
  49. * security but is still present. The plaintext of this layer contains all the
  50. * information required to connect to the hidden service like its list of
  51. * introduction points.
  52. **/
  53. /* For unit tests.*/
  54. #define HS_DESCRIPTOR_PRIVATE
  55. #include "core/or/or.h"
  56. #include "trunnel/ed25519_cert.h" /* Trunnel interface. */
  57. #include "feature/hs/hs_descriptor.h"
  58. #include "core/or/circuitbuild.h"
  59. #include "lib/crypt_ops/crypto_rand.h"
  60. #include "lib/crypt_ops/crypto_util.h"
  61. #include "feature/dirparse/parsecommon.h"
  62. #include "feature/rend/rendcache.h"
  63. #include "feature/hs/hs_cache.h"
  64. #include "feature/hs/hs_config.h"
  65. #include "feature/nodelist/torcert.h" /* tor_cert_encode_ed22519() */
  66. #include "lib/memarea/memarea.h"
  67. #include "lib/crypt_ops/crypto_format.h"
  68. #include "core/or/extend_info_st.h"
  69. /* Constant string value used for the descriptor format. */
  70. #define str_hs_desc "hs-descriptor"
  71. #define str_desc_cert "descriptor-signing-key-cert"
  72. #define str_rev_counter "revision-counter"
  73. #define str_superencrypted "superencrypted"
  74. #define str_encrypted "encrypted"
  75. #define str_signature "signature"
  76. #define str_lifetime "descriptor-lifetime"
  77. /* Constant string value for the encrypted part of the descriptor. */
  78. #define str_create2_formats "create2-formats"
  79. #define str_intro_auth_required "intro-auth-required"
  80. #define str_single_onion "single-onion-service"
  81. #define str_intro_point "introduction-point"
  82. #define str_ip_onion_key "onion-key"
  83. #define str_ip_auth_key "auth-key"
  84. #define str_ip_enc_key "enc-key"
  85. #define str_ip_enc_key_cert "enc-key-cert"
  86. #define str_ip_legacy_key "legacy-key"
  87. #define str_ip_legacy_key_cert "legacy-key-cert"
  88. #define str_intro_point_start "\n" str_intro_point " "
  89. /* Constant string value for the construction to encrypt the encrypted data
  90. * section. */
  91. #define str_enc_const_superencryption "hsdir-superencrypted-data"
  92. #define str_enc_const_encryption "hsdir-encrypted-data"
  93. /* Prefix required to compute/verify HS desc signatures */
  94. #define str_desc_sig_prefix "Tor onion service descriptor sig v3"
  95. #define str_desc_auth_type "desc-auth-type"
  96. #define str_desc_auth_key "desc-auth-ephemeral-key"
  97. #define str_desc_auth_client "auth-client"
  98. #define str_encrypted "encrypted"
  99. /* Authentication supported types. */
  100. static const struct {
  101. hs_desc_auth_type_t type;
  102. const char *identifier;
  103. } intro_auth_types[] = {
  104. { HS_DESC_AUTH_ED25519, "ed25519" },
  105. /* Indicate end of array. */
  106. { 0, NULL }
  107. };
  108. /* Descriptor ruleset. */
  109. static token_rule_t hs_desc_v3_token_table[] = {
  110. T1_START(str_hs_desc, R_HS_DESCRIPTOR, EQ(1), NO_OBJ),
  111. T1(str_lifetime, R3_DESC_LIFETIME, EQ(1), NO_OBJ),
  112. T1(str_desc_cert, R3_DESC_SIGNING_CERT, NO_ARGS, NEED_OBJ),
  113. T1(str_rev_counter, R3_REVISION_COUNTER, EQ(1), NO_OBJ),
  114. T1(str_superencrypted, R3_SUPERENCRYPTED, NO_ARGS, NEED_OBJ),
  115. T1_END(str_signature, R3_SIGNATURE, EQ(1), NO_OBJ),
  116. END_OF_TABLE
  117. };
  118. /* Descriptor ruleset for the superencrypted section. */
  119. static token_rule_t hs_desc_superencrypted_v3_token_table[] = {
  120. T1_START(str_desc_auth_type, R3_DESC_AUTH_TYPE, GE(1), NO_OBJ),
  121. T1(str_desc_auth_key, R3_DESC_AUTH_KEY, GE(1), NO_OBJ),
  122. T1N(str_desc_auth_client, R3_DESC_AUTH_CLIENT, GE(3), NO_OBJ),
  123. T1(str_encrypted, R3_ENCRYPTED, NO_ARGS, NEED_OBJ),
  124. END_OF_TABLE
  125. };
  126. /* Descriptor ruleset for the encrypted section. */
  127. static token_rule_t hs_desc_encrypted_v3_token_table[] = {
  128. T1_START(str_create2_formats, R3_CREATE2_FORMATS, CONCAT_ARGS, NO_OBJ),
  129. T01(str_intro_auth_required, R3_INTRO_AUTH_REQUIRED, ARGS, NO_OBJ),
  130. T01(str_single_onion, R3_SINGLE_ONION_SERVICE, ARGS, NO_OBJ),
  131. END_OF_TABLE
  132. };
  133. /* Descriptor ruleset for the introduction points section. */
  134. static token_rule_t hs_desc_intro_point_v3_token_table[] = {
  135. T1_START(str_intro_point, R3_INTRODUCTION_POINT, EQ(1), NO_OBJ),
  136. T1N(str_ip_onion_key, R3_INTRO_ONION_KEY, GE(2), OBJ_OK),
  137. T1(str_ip_auth_key, R3_INTRO_AUTH_KEY, NO_ARGS, NEED_OBJ),
  138. T1(str_ip_enc_key, R3_INTRO_ENC_KEY, GE(2), OBJ_OK),
  139. T1(str_ip_enc_key_cert, R3_INTRO_ENC_KEY_CERT, ARGS, OBJ_OK),
  140. T01(str_ip_legacy_key, R3_INTRO_LEGACY_KEY, ARGS, NEED_KEY_1024),
  141. T01(str_ip_legacy_key_cert, R3_INTRO_LEGACY_KEY_CERT, ARGS, OBJ_OK),
  142. END_OF_TABLE
  143. };
  144. /* Using a key, salt and encrypted payload, build a MAC and put it in mac_out.
  145. * We use SHA3-256 for the MAC computation.
  146. * This function can't fail. */
  147. static void
  148. build_mac(const uint8_t *mac_key, size_t mac_key_len,
  149. const uint8_t *salt, size_t salt_len,
  150. const uint8_t *encrypted, size_t encrypted_len,
  151. uint8_t *mac_out, size_t mac_len)
  152. {
  153. crypto_digest_t *digest;
  154. const uint64_t mac_len_netorder = tor_htonll(mac_key_len);
  155. const uint64_t salt_len_netorder = tor_htonll(salt_len);
  156. tor_assert(mac_key);
  157. tor_assert(salt);
  158. tor_assert(encrypted);
  159. tor_assert(mac_out);
  160. digest = crypto_digest256_new(DIGEST_SHA3_256);
  161. /* As specified in section 2.5 of proposal 224, first add the mac key
  162. * then add the salt first and then the encrypted section. */
  163. crypto_digest_add_bytes(digest, (const char *) &mac_len_netorder, 8);
  164. crypto_digest_add_bytes(digest, (const char *) mac_key, mac_key_len);
  165. crypto_digest_add_bytes(digest, (const char *) &salt_len_netorder, 8);
  166. crypto_digest_add_bytes(digest, (const char *) salt, salt_len);
  167. crypto_digest_add_bytes(digest, (const char *) encrypted, encrypted_len);
  168. crypto_digest_get_digest(digest, (char *) mac_out, mac_len);
  169. crypto_digest_free(digest);
  170. }
  171. /* Using a secret data and a given decriptor object, build the secret
  172. * input needed for the KDF.
  173. *
  174. * secret_input = SECRET_DATA | subcredential | INT_8(revision_counter)
  175. *
  176. * Then, set the newly allocated buffer in secret_input_out and return the
  177. * length of the buffer. */
  178. static size_t
  179. build_secret_input(const hs_descriptor_t *desc,
  180. const uint8_t *secret_data,
  181. size_t secret_data_len,
  182. uint8_t **secret_input_out)
  183. {
  184. size_t offset = 0;
  185. size_t secret_input_len = secret_data_len + DIGEST256_LEN + sizeof(uint64_t);
  186. uint8_t *secret_input = NULL;
  187. tor_assert(desc);
  188. tor_assert(secret_data);
  189. tor_assert(secret_input_out);
  190. secret_input = tor_malloc_zero(secret_input_len);
  191. /* Copy the secret data. */
  192. memcpy(secret_input, secret_data, secret_data_len);
  193. offset += secret_data_len;
  194. /* Copy subcredential. */
  195. memcpy(secret_input + offset, desc->subcredential, DIGEST256_LEN);
  196. offset += DIGEST256_LEN;
  197. /* Copy revision counter value. */
  198. set_uint64(secret_input + offset,
  199. tor_htonll(desc->plaintext_data.revision_counter));
  200. offset += sizeof(uint64_t);
  201. tor_assert(secret_input_len == offset);
  202. *secret_input_out = secret_input;
  203. return secret_input_len;
  204. }
  205. /* Do the KDF construction and put the resulting data in key_out which is of
  206. * key_out_len length. It uses SHAKE-256 as specified in the spec. */
  207. static void
  208. build_kdf_key(const hs_descriptor_t *desc,
  209. const uint8_t *secret_data,
  210. size_t secret_data_len,
  211. const uint8_t *salt, size_t salt_len,
  212. uint8_t *key_out, size_t key_out_len,
  213. int is_superencrypted_layer)
  214. {
  215. uint8_t *secret_input = NULL;
  216. size_t secret_input_len;
  217. crypto_xof_t *xof;
  218. tor_assert(desc);
  219. tor_assert(secret_data);
  220. tor_assert(salt);
  221. tor_assert(key_out);
  222. /* Build the secret input for the KDF computation. */
  223. secret_input_len = build_secret_input(desc, secret_data,
  224. secret_data_len, &secret_input);
  225. xof = crypto_xof_new();
  226. /* Feed our KDF. [SHAKE it like a polaroid picture --Yawning]. */
  227. crypto_xof_add_bytes(xof, secret_input, secret_input_len);
  228. crypto_xof_add_bytes(xof, salt, salt_len);
  229. /* Feed in the right string constant based on the desc layer */
  230. if (is_superencrypted_layer) {
  231. crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_superencryption,
  232. strlen(str_enc_const_superencryption));
  233. } else {
  234. crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_encryption,
  235. strlen(str_enc_const_encryption));
  236. }
  237. /* Eat from our KDF. */
  238. crypto_xof_squeeze_bytes(xof, key_out, key_out_len);
  239. crypto_xof_free(xof);
  240. memwipe(secret_input, 0, secret_input_len);
  241. tor_free(secret_input);
  242. }
  243. /* Using the given descriptor, secret data, and salt, run it through our
  244. * KDF function and then extract a secret key in key_out, the IV in iv_out
  245. * and MAC in mac_out. This function can't fail. */
  246. static void
  247. build_secret_key_iv_mac(const hs_descriptor_t *desc,
  248. const uint8_t *secret_data,
  249. size_t secret_data_len,
  250. const uint8_t *salt, size_t salt_len,
  251. uint8_t *key_out, size_t key_len,
  252. uint8_t *iv_out, size_t iv_len,
  253. uint8_t *mac_out, size_t mac_len,
  254. int is_superencrypted_layer)
  255. {
  256. size_t offset = 0;
  257. uint8_t kdf_key[HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN];
  258. tor_assert(desc);
  259. tor_assert(secret_data);
  260. tor_assert(salt);
  261. tor_assert(key_out);
  262. tor_assert(iv_out);
  263. tor_assert(mac_out);
  264. build_kdf_key(desc, secret_data, secret_data_len,
  265. salt, salt_len, kdf_key, sizeof(kdf_key),
  266. is_superencrypted_layer);
  267. /* Copy the bytes we need for both the secret key and IV. */
  268. memcpy(key_out, kdf_key, key_len);
  269. offset += key_len;
  270. memcpy(iv_out, kdf_key + offset, iv_len);
  271. offset += iv_len;
  272. memcpy(mac_out, kdf_key + offset, mac_len);
  273. /* Extra precaution to make sure we are not out of bound. */
  274. tor_assert((offset + mac_len) == sizeof(kdf_key));
  275. memwipe(kdf_key, 0, sizeof(kdf_key));
  276. }
  277. /* === ENCODING === */
  278. /* Encode the given link specifier objects into a newly allocated string.
  279. * This can't fail so caller can always assume a valid string being
  280. * returned. */
  281. STATIC char *
  282. encode_link_specifiers(const smartlist_t *specs)
  283. {
  284. char *encoded_b64 = NULL;
  285. link_specifier_list_t *lslist = link_specifier_list_new();
  286. tor_assert(specs);
  287. /* No link specifiers is a code flow error, can't happen. */
  288. tor_assert(smartlist_len(specs) > 0);
  289. tor_assert(smartlist_len(specs) <= UINT8_MAX);
  290. link_specifier_list_set_n_spec(lslist, smartlist_len(specs));
  291. SMARTLIST_FOREACH_BEGIN(specs, const hs_desc_link_specifier_t *,
  292. spec) {
  293. link_specifier_t *ls = hs_desc_lspec_to_trunnel(spec);
  294. if (ls) {
  295. link_specifier_list_add_spec(lslist, ls);
  296. }
  297. } SMARTLIST_FOREACH_END(spec);
  298. {
  299. uint8_t *encoded;
  300. ssize_t encoded_len, encoded_b64_len, ret;
  301. encoded_len = link_specifier_list_encoded_len(lslist);
  302. tor_assert(encoded_len > 0);
  303. encoded = tor_malloc_zero(encoded_len);
  304. ret = link_specifier_list_encode(encoded, encoded_len, lslist);
  305. tor_assert(ret == encoded_len);
  306. /* Base64 encode our binary format. Add extra NUL byte for the base64
  307. * encoded value. */
  308. encoded_b64_len = base64_encode_size(encoded_len, 0) + 1;
  309. encoded_b64 = tor_malloc_zero(encoded_b64_len);
  310. ret = base64_encode(encoded_b64, encoded_b64_len, (const char *) encoded,
  311. encoded_len, 0);
  312. tor_assert(ret == (encoded_b64_len - 1));
  313. tor_free(encoded);
  314. }
  315. link_specifier_list_free(lslist);
  316. return encoded_b64;
  317. }
  318. /* Encode an introduction point legacy key and certificate. Return a newly
  319. * allocated string with it. On failure, return NULL. */
  320. static char *
  321. encode_legacy_key(const hs_desc_intro_point_t *ip)
  322. {
  323. char *key_str, b64_cert[256], *encoded = NULL;
  324. size_t key_str_len;
  325. tor_assert(ip);
  326. /* Encode cross cert. */
  327. if (base64_encode(b64_cert, sizeof(b64_cert),
  328. (const char *) ip->legacy.cert.encoded,
  329. ip->legacy.cert.len, BASE64_ENCODE_MULTILINE) < 0) {
  330. log_warn(LD_REND, "Unable to encode legacy crosscert.");
  331. goto done;
  332. }
  333. /* Convert the encryption key to PEM format NUL terminated. */
  334. if (crypto_pk_write_public_key_to_string(ip->legacy.key, &key_str,
  335. &key_str_len) < 0) {
  336. log_warn(LD_REND, "Unable to encode legacy encryption key.");
  337. goto done;
  338. }
  339. tor_asprintf(&encoded,
  340. "%s \n%s" /* Newline is added by the call above. */
  341. "%s\n"
  342. "-----BEGIN CROSSCERT-----\n"
  343. "%s"
  344. "-----END CROSSCERT-----",
  345. str_ip_legacy_key, key_str,
  346. str_ip_legacy_key_cert, b64_cert);
  347. tor_free(key_str);
  348. done:
  349. return encoded;
  350. }
  351. /* Encode an introduction point encryption key and certificate. Return a newly
  352. * allocated string with it. On failure, return NULL. */
  353. static char *
  354. encode_enc_key(const hs_desc_intro_point_t *ip)
  355. {
  356. char *encoded = NULL, *encoded_cert;
  357. char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
  358. tor_assert(ip);
  359. /* Base64 encode the encryption key for the "enc-key" field. */
  360. if (curve25519_public_to_base64(key_b64, &ip->enc_key) < 0) {
  361. goto done;
  362. }
  363. if (tor_cert_encode_ed22519(ip->enc_key_cert, &encoded_cert) < 0) {
  364. goto done;
  365. }
  366. tor_asprintf(&encoded,
  367. "%s ntor %s\n"
  368. "%s\n%s",
  369. str_ip_enc_key, key_b64,
  370. str_ip_enc_key_cert, encoded_cert);
  371. tor_free(encoded_cert);
  372. done:
  373. return encoded;
  374. }
  375. /* Encode an introduction point onion key. Return a newly allocated string
  376. * with it. On failure, return NULL. */
  377. static char *
  378. encode_onion_key(const hs_desc_intro_point_t *ip)
  379. {
  380. char *encoded = NULL;
  381. char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
  382. tor_assert(ip);
  383. /* Base64 encode the encryption key for the "onion-key" field. */
  384. if (curve25519_public_to_base64(key_b64, &ip->onion_key) < 0) {
  385. goto done;
  386. }
  387. tor_asprintf(&encoded, "%s ntor %s", str_ip_onion_key, key_b64);
  388. done:
  389. return encoded;
  390. }
  391. /* Encode an introduction point object and return a newly allocated string
  392. * with it. On failure, return NULL. */
  393. static char *
  394. encode_intro_point(const ed25519_public_key_t *sig_key,
  395. const hs_desc_intro_point_t *ip)
  396. {
  397. char *encoded_ip = NULL;
  398. smartlist_t *lines = smartlist_new();
  399. tor_assert(ip);
  400. tor_assert(sig_key);
  401. /* Encode link specifier. */
  402. {
  403. char *ls_str = encode_link_specifiers(ip->link_specifiers);
  404. smartlist_add_asprintf(lines, "%s %s", str_intro_point, ls_str);
  405. tor_free(ls_str);
  406. }
  407. /* Onion key encoding. */
  408. {
  409. char *encoded_onion_key = encode_onion_key(ip);
  410. if (encoded_onion_key == NULL) {
  411. goto err;
  412. }
  413. smartlist_add_asprintf(lines, "%s", encoded_onion_key);
  414. tor_free(encoded_onion_key);
  415. }
  416. /* Authentication key encoding. */
  417. {
  418. char *encoded_cert;
  419. if (tor_cert_encode_ed22519(ip->auth_key_cert, &encoded_cert) < 0) {
  420. goto err;
  421. }
  422. smartlist_add_asprintf(lines, "%s\n%s", str_ip_auth_key, encoded_cert);
  423. tor_free(encoded_cert);
  424. }
  425. /* Encryption key encoding. */
  426. {
  427. char *encoded_enc_key = encode_enc_key(ip);
  428. if (encoded_enc_key == NULL) {
  429. goto err;
  430. }
  431. smartlist_add_asprintf(lines, "%s", encoded_enc_key);
  432. tor_free(encoded_enc_key);
  433. }
  434. /* Legacy key if any. */
  435. if (ip->legacy.key != NULL) {
  436. /* Strong requirement else the IP creation was badly done. */
  437. tor_assert(ip->legacy.cert.encoded);
  438. char *encoded_legacy_key = encode_legacy_key(ip);
  439. if (encoded_legacy_key == NULL) {
  440. goto err;
  441. }
  442. smartlist_add_asprintf(lines, "%s", encoded_legacy_key);
  443. tor_free(encoded_legacy_key);
  444. }
  445. /* Join them all in one blob of text. */
  446. encoded_ip = smartlist_join_strings(lines, "\n", 1, NULL);
  447. err:
  448. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  449. smartlist_free(lines);
  450. return encoded_ip;
  451. }
  452. /* Given a source length, return the new size including padding for the
  453. * plaintext encryption. */
  454. static size_t
  455. compute_padded_plaintext_length(size_t plaintext_len)
  456. {
  457. size_t plaintext_padded_len;
  458. const int padding_block_length = HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE;
  459. /* Make sure we won't overflow. */
  460. tor_assert(plaintext_len <= (SIZE_T_CEILING - padding_block_length));
  461. /* Get the extra length we need to add. For example, if srclen is 10200
  462. * bytes, this will expand to (2 * 10k) == 20k thus an extra 9800 bytes. */
  463. plaintext_padded_len = CEIL_DIV(plaintext_len, padding_block_length) *
  464. padding_block_length;
  465. /* Can never be extra careful. Make sure we are _really_ padded. */
  466. tor_assert(!(plaintext_padded_len % padding_block_length));
  467. return plaintext_padded_len;
  468. }
  469. /* Given a buffer, pad it up to the encrypted section padding requirement. Set
  470. * the newly allocated string in padded_out and return the length of the
  471. * padded buffer. */
  472. STATIC size_t
  473. build_plaintext_padding(const char *plaintext, size_t plaintext_len,
  474. uint8_t **padded_out)
  475. {
  476. size_t padded_len;
  477. uint8_t *padded;
  478. tor_assert(plaintext);
  479. tor_assert(padded_out);
  480. /* Allocate the final length including padding. */
  481. padded_len = compute_padded_plaintext_length(plaintext_len);
  482. tor_assert(padded_len >= plaintext_len);
  483. padded = tor_malloc_zero(padded_len);
  484. memcpy(padded, plaintext, plaintext_len);
  485. *padded_out = padded;
  486. return padded_len;
  487. }
  488. /* Using a key, IV and plaintext data of length plaintext_len, create the
  489. * encrypted section by encrypting it and setting encrypted_out with the
  490. * data. Return size of the encrypted data buffer. */
  491. static size_t
  492. build_encrypted(const uint8_t *key, const uint8_t *iv, const char *plaintext,
  493. size_t plaintext_len, uint8_t **encrypted_out,
  494. int is_superencrypted_layer)
  495. {
  496. size_t encrypted_len;
  497. uint8_t *padded_plaintext, *encrypted;
  498. crypto_cipher_t *cipher;
  499. tor_assert(key);
  500. tor_assert(iv);
  501. tor_assert(plaintext);
  502. tor_assert(encrypted_out);
  503. /* If we are encrypting the middle layer of the descriptor, we need to first
  504. pad the plaintext */
  505. if (is_superencrypted_layer) {
  506. encrypted_len = build_plaintext_padding(plaintext, plaintext_len,
  507. &padded_plaintext);
  508. /* Extra precautions that we have a valid padding length. */
  509. tor_assert(!(encrypted_len % HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE));
  510. } else { /* No padding required for inner layers */
  511. padded_plaintext = tor_memdup(plaintext, plaintext_len);
  512. encrypted_len = plaintext_len;
  513. }
  514. /* This creates a cipher for AES. It can't fail. */
  515. cipher = crypto_cipher_new_with_iv_and_bits(key, iv,
  516. HS_DESC_ENCRYPTED_BIT_SIZE);
  517. /* We use a stream cipher so the encrypted length will be the same as the
  518. * plaintext padded length. */
  519. encrypted = tor_malloc_zero(encrypted_len);
  520. /* This can't fail. */
  521. crypto_cipher_encrypt(cipher, (char *) encrypted,
  522. (const char *) padded_plaintext, encrypted_len);
  523. *encrypted_out = encrypted;
  524. /* Cleanup. */
  525. crypto_cipher_free(cipher);
  526. tor_free(padded_plaintext);
  527. return encrypted_len;
  528. }
  529. /* Encrypt the given <b>plaintext</b> buffer using <b>desc</b> and
  530. * <b>secret_data</b> to get the keys. Set encrypted_out with the encrypted
  531. * data and return the length of it. <b>is_superencrypted_layer</b> is set
  532. * if this is the outer encrypted layer of the descriptor. */
  533. static size_t
  534. encrypt_descriptor_data(const hs_descriptor_t *desc,
  535. const uint8_t *secret_data,
  536. size_t secret_data_len,
  537. const char *plaintext,
  538. char **encrypted_out, int is_superencrypted_layer)
  539. {
  540. char *final_blob;
  541. size_t encrypted_len, final_blob_len, offset = 0;
  542. uint8_t *encrypted;
  543. uint8_t salt[HS_DESC_ENCRYPTED_SALT_LEN];
  544. uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  545. uint8_t mac_key[DIGEST256_LEN], mac[DIGEST256_LEN];
  546. tor_assert(desc);
  547. tor_assert(secret_data);
  548. tor_assert(plaintext);
  549. tor_assert(encrypted_out);
  550. /* Get our salt. The returned bytes are already hashed. */
  551. crypto_strongest_rand(salt, sizeof(salt));
  552. /* KDF construction resulting in a key from which the secret key, IV and MAC
  553. * key are extracted which is what we need for the encryption. */
  554. build_secret_key_iv_mac(desc, secret_data, secret_data_len,
  555. salt, sizeof(salt),
  556. secret_key, sizeof(secret_key),
  557. secret_iv, sizeof(secret_iv),
  558. mac_key, sizeof(mac_key),
  559. is_superencrypted_layer);
  560. /* Build the encrypted part that is do the actual encryption. */
  561. encrypted_len = build_encrypted(secret_key, secret_iv, plaintext,
  562. strlen(plaintext), &encrypted,
  563. is_superencrypted_layer);
  564. memwipe(secret_key, 0, sizeof(secret_key));
  565. memwipe(secret_iv, 0, sizeof(secret_iv));
  566. /* This construction is specified in section 2.5 of proposal 224. */
  567. final_blob_len = sizeof(salt) + encrypted_len + DIGEST256_LEN;
  568. final_blob = tor_malloc_zero(final_blob_len);
  569. /* Build the MAC. */
  570. build_mac(mac_key, sizeof(mac_key), salt, sizeof(salt),
  571. encrypted, encrypted_len, mac, sizeof(mac));
  572. memwipe(mac_key, 0, sizeof(mac_key));
  573. /* The salt is the first value. */
  574. memcpy(final_blob, salt, sizeof(salt));
  575. offset = sizeof(salt);
  576. /* Second value is the encrypted data. */
  577. memcpy(final_blob + offset, encrypted, encrypted_len);
  578. offset += encrypted_len;
  579. /* Third value is the MAC. */
  580. memcpy(final_blob + offset, mac, sizeof(mac));
  581. offset += sizeof(mac);
  582. /* Cleanup the buffers. */
  583. memwipe(salt, 0, sizeof(salt));
  584. memwipe(encrypted, 0, encrypted_len);
  585. tor_free(encrypted);
  586. /* Extra precaution. */
  587. tor_assert(offset == final_blob_len);
  588. *encrypted_out = final_blob;
  589. return final_blob_len;
  590. }
  591. /* Create and return a string containing a client-auth entry. It's the
  592. * responsibility of the caller to free the returned string. This function
  593. * will never fail. */
  594. static char *
  595. get_auth_client_str(const hs_desc_authorized_client_t *client)
  596. {
  597. int ret;
  598. char *auth_client_str = NULL;
  599. /* We are gonna fill these arrays with base64 data. They are all double
  600. * the size of their binary representation to fit the base64 overhead. */
  601. char client_id_b64[HS_DESC_CLIENT_ID_LEN * 2];
  602. char iv_b64[CIPHER_IV_LEN * 2];
  603. char encrypted_cookie_b64[HS_DESC_ENCRYPED_COOKIE_LEN * 2];
  604. #define ASSERT_AND_BASE64(field) STMT_BEGIN \
  605. tor_assert(!tor_mem_is_zero((char *) client->field, \
  606. sizeof(client->field))); \
  607. ret = base64_encode_nopad(field##_b64, sizeof(field##_b64), \
  608. client->field, sizeof(client->field)); \
  609. tor_assert(ret > 0); \
  610. STMT_END
  611. ASSERT_AND_BASE64(client_id);
  612. ASSERT_AND_BASE64(iv);
  613. ASSERT_AND_BASE64(encrypted_cookie);
  614. /* Build the final string */
  615. tor_asprintf(&auth_client_str, "%s %s %s %s", str_desc_auth_client,
  616. client_id_b64, iv_b64, encrypted_cookie_b64);
  617. #undef ASSERT_AND_BASE64
  618. return auth_client_str;
  619. }
  620. /** Create the "client-auth" part of the descriptor and return a
  621. * newly-allocated string with it. It's the responsibility of the caller to
  622. * free the returned string. */
  623. static char *
  624. get_all_auth_client_lines(const hs_descriptor_t *desc)
  625. {
  626. smartlist_t *auth_client_lines = smartlist_new();
  627. char *auth_client_lines_str = NULL;
  628. tor_assert(desc);
  629. tor_assert(desc->superencrypted_data.clients);
  630. tor_assert(smartlist_len(desc->superencrypted_data.clients) != 0);
  631. tor_assert(smartlist_len(desc->superencrypted_data.clients)
  632. % HS_DESC_AUTH_CLIENT_MULTIPLE == 0);
  633. /* Make a line for each client */
  634. SMARTLIST_FOREACH_BEGIN(desc->superencrypted_data.clients,
  635. const hs_desc_authorized_client_t *, client) {
  636. char *auth_client_str = NULL;
  637. auth_client_str = get_auth_client_str(client);
  638. smartlist_add(auth_client_lines, auth_client_str);
  639. } SMARTLIST_FOREACH_END(client);
  640. /* Join all lines together to form final string */
  641. auth_client_lines_str = smartlist_join_strings(auth_client_lines,
  642. "\n", 1, NULL);
  643. /* Cleanup the mess */
  644. SMARTLIST_FOREACH(auth_client_lines, char *, a, tor_free(a));
  645. smartlist_free(auth_client_lines);
  646. return auth_client_lines_str;
  647. }
  648. /* Create the inner layer of the descriptor (which includes the intro points,
  649. * etc.). Return a newly-allocated string with the layer plaintext, or NULL if
  650. * an error occurred. It's the responsibility of the caller to free the
  651. * returned string. */
  652. static char *
  653. get_inner_encrypted_layer_plaintext(const hs_descriptor_t *desc)
  654. {
  655. char *encoded_str = NULL;
  656. smartlist_t *lines = smartlist_new();
  657. /* Build the start of the section prior to the introduction points. */
  658. {
  659. if (!desc->encrypted_data.create2_ntor) {
  660. log_err(LD_BUG, "HS desc doesn't have recognized handshake type.");
  661. goto err;
  662. }
  663. smartlist_add_asprintf(lines, "%s %d\n", str_create2_formats,
  664. ONION_HANDSHAKE_TYPE_NTOR);
  665. if (desc->encrypted_data.intro_auth_types &&
  666. smartlist_len(desc->encrypted_data.intro_auth_types)) {
  667. /* Put the authentication-required line. */
  668. char *buf = smartlist_join_strings(desc->encrypted_data.intro_auth_types,
  669. " ", 0, NULL);
  670. smartlist_add_asprintf(lines, "%s %s\n", str_intro_auth_required, buf);
  671. tor_free(buf);
  672. }
  673. if (desc->encrypted_data.single_onion_service) {
  674. smartlist_add_asprintf(lines, "%s\n", str_single_onion);
  675. }
  676. }
  677. /* Build the introduction point(s) section. */
  678. SMARTLIST_FOREACH_BEGIN(desc->encrypted_data.intro_points,
  679. const hs_desc_intro_point_t *, ip) {
  680. char *encoded_ip = encode_intro_point(&desc->plaintext_data.signing_pubkey,
  681. ip);
  682. if (encoded_ip == NULL) {
  683. log_err(LD_BUG, "HS desc intro point is malformed.");
  684. goto err;
  685. }
  686. smartlist_add(lines, encoded_ip);
  687. } SMARTLIST_FOREACH_END(ip);
  688. /* Build the entire encrypted data section into one encoded plaintext and
  689. * then encrypt it. */
  690. encoded_str = smartlist_join_strings(lines, "", 0, NULL);
  691. err:
  692. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  693. smartlist_free(lines);
  694. return encoded_str;
  695. }
  696. /* Create the middle layer of the descriptor, which includes the client auth
  697. * data and the encrypted inner layer (provided as a base64 string at
  698. * <b>layer2_b64_ciphertext</b>). Return a newly-allocated string with the
  699. * layer plaintext, or NULL if an error occurred. It's the responsibility of
  700. * the caller to free the returned string. */
  701. static char *
  702. get_outer_encrypted_layer_plaintext(const hs_descriptor_t *desc,
  703. const char *layer2_b64_ciphertext)
  704. {
  705. char *layer1_str = NULL;
  706. smartlist_t *lines = smartlist_new();
  707. /* Specify auth type */
  708. smartlist_add_asprintf(lines, "%s %s\n", str_desc_auth_type, "x25519");
  709. { /* Print ephemeral x25519 key */
  710. char ephemeral_key_base64[CURVE25519_BASE64_PADDED_LEN + 1];
  711. const curve25519_public_key_t *ephemeral_pubkey;
  712. ephemeral_pubkey = &desc->superencrypted_data.auth_ephemeral_pubkey;
  713. tor_assert(!tor_mem_is_zero((char *) ephemeral_pubkey->public_key,
  714. CURVE25519_PUBKEY_LEN));
  715. if (curve25519_public_to_base64(ephemeral_key_base64,
  716. ephemeral_pubkey) < 0) {
  717. goto done;
  718. }
  719. smartlist_add_asprintf(lines, "%s %s\n",
  720. str_desc_auth_key, ephemeral_key_base64);
  721. memwipe(ephemeral_key_base64, 0, sizeof(ephemeral_key_base64));
  722. }
  723. { /* Create auth-client lines. */
  724. char *auth_client_lines = get_all_auth_client_lines(desc);
  725. tor_assert(auth_client_lines);
  726. smartlist_add(lines, auth_client_lines);
  727. }
  728. /* create encrypted section */
  729. {
  730. smartlist_add_asprintf(lines,
  731. "%s\n"
  732. "-----BEGIN MESSAGE-----\n"
  733. "%s"
  734. "-----END MESSAGE-----",
  735. str_encrypted, layer2_b64_ciphertext);
  736. }
  737. layer1_str = smartlist_join_strings(lines, "", 0, NULL);
  738. done:
  739. /* We need to memwipe all lines because it contains the ephemeral key */
  740. SMARTLIST_FOREACH(lines, char *, a, memwipe(a, 0, strlen(a)));
  741. SMARTLIST_FOREACH(lines, char *, a, tor_free(a));
  742. smartlist_free(lines);
  743. return layer1_str;
  744. }
  745. /* Encrypt <b>encoded_str</b> into an encrypted blob and then base64 it before
  746. * returning it. <b>desc</b> is provided to derive the encryption
  747. * keys. <b>secret_data</b> is also proved to derive the encryption keys.
  748. * <b>is_superencrypted_layer</b> is set if <b>encoded_str</b> is the
  749. * middle (superencrypted) layer of the descriptor. It's the responsibility of
  750. * the caller to free the returned string. */
  751. static char *
  752. encrypt_desc_data_and_base64(const hs_descriptor_t *desc,
  753. const uint8_t *secret_data,
  754. size_t secret_data_len,
  755. const char *encoded_str,
  756. int is_superencrypted_layer)
  757. {
  758. char *enc_b64;
  759. ssize_t enc_b64_len, ret_len, enc_len;
  760. char *encrypted_blob = NULL;
  761. enc_len = encrypt_descriptor_data(desc, secret_data, secret_data_len,
  762. encoded_str, &encrypted_blob,
  763. is_superencrypted_layer);
  764. /* Get the encoded size plus a NUL terminating byte. */
  765. enc_b64_len = base64_encode_size(enc_len, BASE64_ENCODE_MULTILINE) + 1;
  766. enc_b64 = tor_malloc_zero(enc_b64_len);
  767. /* Base64 the encrypted blob before returning it. */
  768. ret_len = base64_encode(enc_b64, enc_b64_len, encrypted_blob, enc_len,
  769. BASE64_ENCODE_MULTILINE);
  770. /* Return length doesn't count the NUL byte. */
  771. tor_assert(ret_len == (enc_b64_len - 1));
  772. tor_free(encrypted_blob);
  773. return enc_b64;
  774. }
  775. /* Generate the secret data which is used to encrypt/decrypt the descriptor.
  776. *
  777. * SECRET_DATA = blinded-public-key
  778. * SECRET_DATA = blinded-public-key | descriptor_cookie
  779. *
  780. * The descriptor_cookie is optional but if it exists, it must be at least
  781. * HS_DESC_DESCRIPTOR_COOKIE_LEN bytes long.
  782. *
  783. * A newly allocated secret data is put in secret_data_out. Return the
  784. * length of the secret data. This function cannot fail. */
  785. static size_t
  786. build_secret_data(const ed25519_public_key_t *blinded_pubkey,
  787. const uint8_t *descriptor_cookie,
  788. uint8_t **secret_data_out)
  789. {
  790. size_t secret_data_len;
  791. uint8_t *secret_data;
  792. tor_assert(blinded_pubkey);
  793. tor_assert(secret_data_out);
  794. if (descriptor_cookie) {
  795. /* If the descriptor cookie is present, we need both the blinded
  796. * pubkey and the descriptor cookie as a secret data. */
  797. secret_data_len = ED25519_PUBKEY_LEN + HS_DESC_DESCRIPTOR_COOKIE_LEN;
  798. secret_data = tor_malloc(secret_data_len);
  799. memcpy(secret_data,
  800. blinded_pubkey->pubkey,
  801. ED25519_PUBKEY_LEN);
  802. memcpy(secret_data + ED25519_PUBKEY_LEN,
  803. descriptor_cookie,
  804. HS_DESC_DESCRIPTOR_COOKIE_LEN);
  805. } else {
  806. /* If the descriptor cookie is not present, we need only the blinded
  807. * pubkey as a secret data. */
  808. secret_data_len = ED25519_PUBKEY_LEN;
  809. secret_data = tor_malloc(secret_data_len);
  810. memcpy(secret_data,
  811. blinded_pubkey->pubkey,
  812. ED25519_PUBKEY_LEN);
  813. }
  814. *secret_data_out = secret_data;
  815. return secret_data_len;
  816. }
  817. /* Generate and encode the superencrypted portion of <b>desc</b>. This also
  818. * involves generating the encrypted portion of the descriptor, and performing
  819. * the superencryption. A newly allocated NUL-terminated string pointer
  820. * containing the encrypted encoded blob is put in encrypted_blob_out. Return 0
  821. * on success else a negative value. */
  822. static int
  823. encode_superencrypted_data(const hs_descriptor_t *desc,
  824. const uint8_t *descriptor_cookie,
  825. char **encrypted_blob_out)
  826. {
  827. int ret = -1;
  828. uint8_t *secret_data = NULL;
  829. size_t secret_data_len = 0;
  830. char *layer2_str = NULL;
  831. char *layer2_b64_ciphertext = NULL;
  832. char *layer1_str = NULL;
  833. char *layer1_b64_ciphertext = NULL;
  834. tor_assert(desc);
  835. tor_assert(encrypted_blob_out);
  836. /* Func logic: We first create the inner layer of the descriptor (layer2).
  837. * We then encrypt it and use it to create the middle layer of the descriptor
  838. * (layer1). Finally we superencrypt the middle layer and return it to our
  839. * caller. */
  840. /* Create inner descriptor layer */
  841. layer2_str = get_inner_encrypted_layer_plaintext(desc);
  842. if (!layer2_str) {
  843. goto err;
  844. }
  845. secret_data_len = build_secret_data(&desc->plaintext_data.blinded_pubkey,
  846. descriptor_cookie,
  847. &secret_data);
  848. /* Encrypt and b64 the inner layer */
  849. layer2_b64_ciphertext =
  850. encrypt_desc_data_and_base64(desc, secret_data, secret_data_len,
  851. layer2_str, 0);
  852. if (!layer2_b64_ciphertext) {
  853. goto err;
  854. }
  855. /* Now create middle descriptor layer given the inner layer */
  856. layer1_str = get_outer_encrypted_layer_plaintext(desc,layer2_b64_ciphertext);
  857. if (!layer1_str) {
  858. goto err;
  859. }
  860. /* Encrypt and base64 the middle layer */
  861. layer1_b64_ciphertext =
  862. encrypt_desc_data_and_base64(desc,
  863. desc->plaintext_data.blinded_pubkey.pubkey,
  864. ED25519_PUBKEY_LEN,
  865. layer1_str, 1);
  866. if (!layer1_b64_ciphertext) {
  867. goto err;
  868. }
  869. /* Success! */
  870. ret = 0;
  871. err:
  872. memwipe(secret_data, 0, secret_data_len);
  873. tor_free(secret_data);
  874. tor_free(layer1_str);
  875. tor_free(layer2_str);
  876. tor_free(layer2_b64_ciphertext);
  877. *encrypted_blob_out = layer1_b64_ciphertext;
  878. return ret;
  879. }
  880. /* Encode a v3 HS descriptor. Return 0 on success and set encoded_out to the
  881. * newly allocated string of the encoded descriptor. On error, -1 is returned
  882. * and encoded_out is untouched. */
  883. static int
  884. desc_encode_v3(const hs_descriptor_t *desc,
  885. const ed25519_keypair_t *signing_kp,
  886. const uint8_t *descriptor_cookie,
  887. char **encoded_out)
  888. {
  889. int ret = -1;
  890. char *encoded_str = NULL;
  891. size_t encoded_len;
  892. smartlist_t *lines = smartlist_new();
  893. tor_assert(desc);
  894. tor_assert(signing_kp);
  895. tor_assert(encoded_out);
  896. tor_assert(desc->plaintext_data.version == 3);
  897. if (BUG(desc->subcredential == NULL)) {
  898. goto err;
  899. }
  900. /* Build the non-encrypted values. */
  901. {
  902. char *encoded_cert;
  903. /* Encode certificate then create the first line of the descriptor. */
  904. if (desc->plaintext_data.signing_key_cert->cert_type
  905. != CERT_TYPE_SIGNING_HS_DESC) {
  906. log_err(LD_BUG, "HS descriptor signing key has an unexpected cert type "
  907. "(%d)", (int) desc->plaintext_data.signing_key_cert->cert_type);
  908. goto err;
  909. }
  910. if (tor_cert_encode_ed22519(desc->plaintext_data.signing_key_cert,
  911. &encoded_cert) < 0) {
  912. /* The function will print error logs. */
  913. goto err;
  914. }
  915. /* Create the hs descriptor line. */
  916. smartlist_add_asprintf(lines, "%s %" PRIu32, str_hs_desc,
  917. desc->plaintext_data.version);
  918. /* Add the descriptor lifetime line (in minutes). */
  919. smartlist_add_asprintf(lines, "%s %" PRIu32, str_lifetime,
  920. desc->plaintext_data.lifetime_sec / 60);
  921. /* Create the descriptor certificate line. */
  922. smartlist_add_asprintf(lines, "%s\n%s", str_desc_cert, encoded_cert);
  923. tor_free(encoded_cert);
  924. /* Create the revision counter line. */
  925. smartlist_add_asprintf(lines, "%s %" PRIu64, str_rev_counter,
  926. desc->plaintext_data.revision_counter);
  927. }
  928. /* Build the superencrypted data section. */
  929. {
  930. char *enc_b64_blob=NULL;
  931. if (encode_superencrypted_data(desc, descriptor_cookie,
  932. &enc_b64_blob) < 0) {
  933. goto err;
  934. }
  935. smartlist_add_asprintf(lines,
  936. "%s\n"
  937. "-----BEGIN MESSAGE-----\n"
  938. "%s"
  939. "-----END MESSAGE-----",
  940. str_superencrypted, enc_b64_blob);
  941. tor_free(enc_b64_blob);
  942. }
  943. /* Join all lines in one string so we can generate a signature and append
  944. * it to the descriptor. */
  945. encoded_str = smartlist_join_strings(lines, "\n", 1, &encoded_len);
  946. /* Sign all fields of the descriptor with our short term signing key. */
  947. {
  948. ed25519_signature_t sig;
  949. char ed_sig_b64[ED25519_SIG_BASE64_LEN + 1];
  950. if (ed25519_sign_prefixed(&sig,
  951. (const uint8_t *) encoded_str, encoded_len,
  952. str_desc_sig_prefix, signing_kp) < 0) {
  953. log_warn(LD_BUG, "Can't sign encoded HS descriptor!");
  954. tor_free(encoded_str);
  955. goto err;
  956. }
  957. if (ed25519_signature_to_base64(ed_sig_b64, &sig) < 0) {
  958. log_warn(LD_BUG, "Can't base64 encode descriptor signature!");
  959. tor_free(encoded_str);
  960. goto err;
  961. }
  962. /* Create the signature line. */
  963. smartlist_add_asprintf(lines, "%s %s", str_signature, ed_sig_b64);
  964. }
  965. /* Free previous string that we used so compute the signature. */
  966. tor_free(encoded_str);
  967. encoded_str = smartlist_join_strings(lines, "\n", 1, NULL);
  968. *encoded_out = encoded_str;
  969. if (strlen(encoded_str) >= hs_cache_get_max_descriptor_size()) {
  970. log_warn(LD_GENERAL, "We just made an HS descriptor that's too big (%d)."
  971. "Failing.", (int)strlen(encoded_str));
  972. tor_free(encoded_str);
  973. goto err;
  974. }
  975. /* XXX: Trigger a control port event. */
  976. /* Success! */
  977. ret = 0;
  978. err:
  979. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  980. smartlist_free(lines);
  981. return ret;
  982. }
  983. /* === DECODING === */
  984. /* Given the token tok for an auth client, decode it as
  985. * hs_desc_authorized_client_t. tok->args MUST contain at least 3 elements
  986. * Return 0 on success else -1 on failure. */
  987. static int
  988. decode_auth_client(const directory_token_t *tok,
  989. hs_desc_authorized_client_t *client)
  990. {
  991. int ret = -1;
  992. tor_assert(tok);
  993. tor_assert(tok->n_args >= 3);
  994. tor_assert(client);
  995. if (base64_decode((char *) client->client_id, sizeof(client->client_id),
  996. tok->args[0], strlen(tok->args[0])) !=
  997. sizeof(client->client_id)) {
  998. goto done;
  999. }
  1000. if (base64_decode((char *) client->iv, sizeof(client->iv),
  1001. tok->args[1], strlen(tok->args[1])) !=
  1002. sizeof(client->iv)) {
  1003. goto done;
  1004. }
  1005. if (base64_decode((char *) client->encrypted_cookie,
  1006. sizeof(client->encrypted_cookie),
  1007. tok->args[2], strlen(tok->args[2])) !=
  1008. sizeof(client->encrypted_cookie)) {
  1009. goto done;
  1010. }
  1011. /* Success. */
  1012. ret = 0;
  1013. done:
  1014. return ret;
  1015. }
  1016. /* Given an encoded string of the link specifiers, return a newly allocated
  1017. * list of decoded link specifiers. Return NULL on error. */
  1018. STATIC smartlist_t *
  1019. decode_link_specifiers(const char *encoded)
  1020. {
  1021. int decoded_len;
  1022. size_t encoded_len, i;
  1023. uint8_t *decoded;
  1024. smartlist_t *results = NULL;
  1025. link_specifier_list_t *specs = NULL;
  1026. tor_assert(encoded);
  1027. encoded_len = strlen(encoded);
  1028. decoded = tor_malloc(encoded_len);
  1029. decoded_len = base64_decode((char *) decoded, encoded_len, encoded,
  1030. encoded_len);
  1031. if (decoded_len < 0) {
  1032. goto err;
  1033. }
  1034. if (link_specifier_list_parse(&specs, decoded,
  1035. (size_t) decoded_len) < decoded_len) {
  1036. goto err;
  1037. }
  1038. tor_assert(specs);
  1039. results = smartlist_new();
  1040. for (i = 0; i < link_specifier_list_getlen_spec(specs); i++) {
  1041. hs_desc_link_specifier_t *hs_spec;
  1042. link_specifier_t *ls = link_specifier_list_get_spec(specs, i);
  1043. tor_assert(ls);
  1044. hs_spec = tor_malloc_zero(sizeof(*hs_spec));
  1045. hs_spec->type = link_specifier_get_ls_type(ls);
  1046. switch (hs_spec->type) {
  1047. case LS_IPV4:
  1048. tor_addr_from_ipv4h(&hs_spec->u.ap.addr,
  1049. link_specifier_get_un_ipv4_addr(ls));
  1050. hs_spec->u.ap.port = link_specifier_get_un_ipv4_port(ls);
  1051. break;
  1052. case LS_IPV6:
  1053. tor_addr_from_ipv6_bytes(&hs_spec->u.ap.addr, (const char *)
  1054. link_specifier_getarray_un_ipv6_addr(ls));
  1055. hs_spec->u.ap.port = link_specifier_get_un_ipv6_port(ls);
  1056. break;
  1057. case LS_LEGACY_ID:
  1058. /* Both are known at compile time so let's make sure they are the same
  1059. * else we can copy memory out of bound. */
  1060. tor_assert(link_specifier_getlen_un_legacy_id(ls) ==
  1061. sizeof(hs_spec->u.legacy_id));
  1062. memcpy(hs_spec->u.legacy_id, link_specifier_getarray_un_legacy_id(ls),
  1063. sizeof(hs_spec->u.legacy_id));
  1064. break;
  1065. case LS_ED25519_ID:
  1066. /* Both are known at compile time so let's make sure they are the same
  1067. * else we can copy memory out of bound. */
  1068. tor_assert(link_specifier_getlen_un_ed25519_id(ls) ==
  1069. sizeof(hs_spec->u.ed25519_id));
  1070. memcpy(hs_spec->u.ed25519_id,
  1071. link_specifier_getconstarray_un_ed25519_id(ls),
  1072. sizeof(hs_spec->u.ed25519_id));
  1073. break;
  1074. default:
  1075. tor_free(hs_spec);
  1076. goto err;
  1077. }
  1078. smartlist_add(results, hs_spec);
  1079. }
  1080. goto done;
  1081. err:
  1082. if (results) {
  1083. SMARTLIST_FOREACH(results, hs_desc_link_specifier_t *, s, tor_free(s));
  1084. smartlist_free(results);
  1085. results = NULL;
  1086. }
  1087. done:
  1088. link_specifier_list_free(specs);
  1089. tor_free(decoded);
  1090. return results;
  1091. }
  1092. /* Given a list of authentication types, decode it and put it in the encrypted
  1093. * data section. Return 1 if we at least know one of the type or 0 if we know
  1094. * none of them. */
  1095. static int
  1096. decode_auth_type(hs_desc_encrypted_data_t *desc, const char *list)
  1097. {
  1098. int match = 0;
  1099. tor_assert(desc);
  1100. tor_assert(list);
  1101. desc->intro_auth_types = smartlist_new();
  1102. smartlist_split_string(desc->intro_auth_types, list, " ", 0, 0);
  1103. /* Validate the types that we at least know about one. */
  1104. SMARTLIST_FOREACH_BEGIN(desc->intro_auth_types, const char *, auth) {
  1105. for (int idx = 0; intro_auth_types[idx].identifier; idx++) {
  1106. if (!strncmp(auth, intro_auth_types[idx].identifier,
  1107. strlen(intro_auth_types[idx].identifier))) {
  1108. match = 1;
  1109. break;
  1110. }
  1111. }
  1112. } SMARTLIST_FOREACH_END(auth);
  1113. return match;
  1114. }
  1115. /* Parse a space-delimited list of integers representing CREATE2 formats into
  1116. * the bitfield in hs_desc_encrypted_data_t. Ignore unrecognized values. */
  1117. static void
  1118. decode_create2_list(hs_desc_encrypted_data_t *desc, const char *list)
  1119. {
  1120. smartlist_t *tokens;
  1121. tor_assert(desc);
  1122. tor_assert(list);
  1123. tokens = smartlist_new();
  1124. smartlist_split_string(tokens, list, " ", 0, 0);
  1125. SMARTLIST_FOREACH_BEGIN(tokens, char *, s) {
  1126. int ok;
  1127. unsigned long type = tor_parse_ulong(s, 10, 1, UINT16_MAX, &ok, NULL);
  1128. if (!ok) {
  1129. log_warn(LD_REND, "Unparseable value %s in create2 list", escaped(s));
  1130. continue;
  1131. }
  1132. switch (type) {
  1133. case ONION_HANDSHAKE_TYPE_NTOR:
  1134. desc->create2_ntor = 1;
  1135. break;
  1136. default:
  1137. /* We deliberately ignore unsupported handshake types */
  1138. continue;
  1139. }
  1140. } SMARTLIST_FOREACH_END(s);
  1141. SMARTLIST_FOREACH(tokens, char *, s, tor_free(s));
  1142. smartlist_free(tokens);
  1143. }
  1144. /* Given a certificate, validate the certificate for certain conditions which
  1145. * are if the given type matches the cert's one, if the signing key is
  1146. * included and if the that key was actually used to sign the certificate.
  1147. *
  1148. * Return 1 iff if all conditions pass or 0 if one of them fails. */
  1149. STATIC int
  1150. cert_is_valid(tor_cert_t *cert, uint8_t type, const char *log_obj_type)
  1151. {
  1152. tor_assert(log_obj_type);
  1153. if (cert == NULL) {
  1154. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", log_obj_type);
  1155. goto err;
  1156. }
  1157. if (cert->cert_type != type) {
  1158. log_warn(LD_REND, "Invalid cert type %02x for %s.", cert->cert_type,
  1159. log_obj_type);
  1160. goto err;
  1161. }
  1162. /* All certificate must have its signing key included. */
  1163. if (!cert->signing_key_included) {
  1164. log_warn(LD_REND, "Signing key is NOT included for %s.", log_obj_type);
  1165. goto err;
  1166. }
  1167. /* The following will not only check if the signature matches but also the
  1168. * expiration date and overall validity. */
  1169. if (tor_cert_checksig(cert, &cert->signing_key, approx_time()) < 0) {
  1170. log_warn(LD_REND, "Invalid signature for %s: %s", log_obj_type,
  1171. tor_cert_describe_signature_status(cert));
  1172. goto err;
  1173. }
  1174. return 1;
  1175. err:
  1176. return 0;
  1177. }
  1178. /* Given some binary data, try to parse it to get a certificate object. If we
  1179. * have a valid cert, validate it using the given wanted type. On error, print
  1180. * a log using the err_msg has the certificate identifier adding semantic to
  1181. * the log and cert_out is set to NULL. On success, 0 is returned and cert_out
  1182. * points to a newly allocated certificate object. */
  1183. static int
  1184. cert_parse_and_validate(tor_cert_t **cert_out, const char *data,
  1185. size_t data_len, unsigned int cert_type_wanted,
  1186. const char *err_msg)
  1187. {
  1188. tor_cert_t *cert;
  1189. tor_assert(cert_out);
  1190. tor_assert(data);
  1191. tor_assert(err_msg);
  1192. /* Parse certificate. */
  1193. cert = tor_cert_parse((const uint8_t *) data, data_len);
  1194. if (!cert) {
  1195. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", err_msg);
  1196. goto err;
  1197. }
  1198. /* Validate certificate. */
  1199. if (!cert_is_valid(cert, cert_type_wanted, err_msg)) {
  1200. goto err;
  1201. }
  1202. *cert_out = cert;
  1203. return 0;
  1204. err:
  1205. tor_cert_free(cert);
  1206. *cert_out = NULL;
  1207. return -1;
  1208. }
  1209. /* Return true iff the given length of the encrypted data of a descriptor
  1210. * passes validation. */
  1211. STATIC int
  1212. encrypted_data_length_is_valid(size_t len)
  1213. {
  1214. /* Make sure there is enough data for the salt and the mac. The equality is
  1215. there to ensure that there is at least one byte of encrypted data. */
  1216. if (len <= HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN) {
  1217. log_warn(LD_REND, "Length of descriptor's encrypted data is too small. "
  1218. "Got %lu but minimum value is %d",
  1219. (unsigned long)len, HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  1220. goto err;
  1221. }
  1222. return 1;
  1223. err:
  1224. return 0;
  1225. }
  1226. /* Decrypt the descriptor cookie given the descriptor, the auth client,
  1227. * and the client secret key. On sucess, return 0 and a newly allocated
  1228. * descriptor cookie descriptor_cookie_out. On error or if the client id
  1229. * is invalid, return -1 and descriptor_cookie_out is set to
  1230. * NULL. */
  1231. static int
  1232. decrypt_descriptor_cookie(const hs_descriptor_t *desc,
  1233. const hs_desc_authorized_client_t *client,
  1234. const curve25519_secret_key_t *client_auth_sk,
  1235. uint8_t **descriptor_cookie_out)
  1236. {
  1237. int ret = -1;
  1238. uint8_t secret_seed[CURVE25519_OUTPUT_LEN];
  1239. uint8_t keystream[HS_DESC_CLIENT_ID_LEN + HS_DESC_COOKIE_KEY_LEN];
  1240. uint8_t *cookie_key = NULL;
  1241. uint8_t *descriptor_cookie = NULL;
  1242. crypto_cipher_t *cipher = NULL;
  1243. crypto_xof_t *xof = NULL;
  1244. tor_assert(desc);
  1245. tor_assert(client);
  1246. tor_assert(client_auth_sk);
  1247. tor_assert(!tor_mem_is_zero(
  1248. (char *) &desc->superencrypted_data.auth_ephemeral_pubkey,
  1249. sizeof(desc->superencrypted_data.auth_ephemeral_pubkey)));
  1250. tor_assert(!tor_mem_is_zero((char *) client_auth_sk,
  1251. sizeof(*client_auth_sk)));
  1252. tor_assert(!tor_mem_is_zero((char *) desc->subcredential, DIGEST256_LEN));
  1253. /* Calculate x25519(client_x, hs_Y) */
  1254. curve25519_handshake(secret_seed, client_auth_sk,
  1255. &desc->superencrypted_data.auth_ephemeral_pubkey);
  1256. /* Calculate KEYS = KDF(subcredential | SECRET_SEED, 40) */
  1257. xof = crypto_xof_new();
  1258. crypto_xof_add_bytes(xof, desc->subcredential, DIGEST256_LEN);
  1259. crypto_xof_add_bytes(xof, secret_seed, sizeof(secret_seed));
  1260. crypto_xof_squeeze_bytes(xof, keystream, sizeof(keystream));
  1261. crypto_xof_free(xof);
  1262. /* If the client id of auth client is not the same as the calculcated
  1263. * client id, it means that this auth client is invaild according to the
  1264. * client secret key client_auth_sk. */
  1265. if (tor_memneq(client->client_id, keystream, HS_DESC_CLIENT_ID_LEN)) {
  1266. goto done;
  1267. }
  1268. cookie_key = keystream + HS_DESC_CLIENT_ID_LEN;
  1269. /* This creates a cipher for AES. It can't fail. */
  1270. cipher = crypto_cipher_new_with_iv_and_bits(cookie_key, client->iv,
  1271. HS_DESC_COOKIE_KEY_BIT_SIZE);
  1272. descriptor_cookie = tor_malloc_zero(HS_DESC_DESCRIPTOR_COOKIE_LEN);
  1273. /* This can't fail. */
  1274. crypto_cipher_decrypt(cipher, (char *) descriptor_cookie,
  1275. (const char *) client->encrypted_cookie,
  1276. sizeof(client->encrypted_cookie));
  1277. /* Success. */
  1278. ret = 0;
  1279. done:
  1280. *descriptor_cookie_out = descriptor_cookie;
  1281. if (cipher) {
  1282. crypto_cipher_free(cipher);
  1283. }
  1284. memwipe(secret_seed, 0, sizeof(secret_seed));
  1285. memwipe(keystream, 0, sizeof(keystream));
  1286. return ret;
  1287. }
  1288. /** Decrypt an encrypted descriptor layer at <b>encrypted_blob</b> of size
  1289. * <b>encrypted_blob_size</b>. The descriptor cookie is optional. Use
  1290. * the descriptor object <b>desc</b> and <b>descriptor_cookie</b>
  1291. * to generate the right decryption keys; set <b>decrypted_out</b> to
  1292. * the plaintext. If <b>is_superencrypted_layer</b> is set, this is
  1293. * the outter encrypted layer of the descriptor.
  1294. *
  1295. * On any error case, including an empty output, return 0 and set
  1296. * *<b>decrypted_out</b> to NULL.
  1297. */
  1298. MOCK_IMPL(STATIC size_t,
  1299. decrypt_desc_layer,(const hs_descriptor_t *desc,
  1300. const uint8_t *encrypted_blob,
  1301. size_t encrypted_blob_size,
  1302. const uint8_t *descriptor_cookie,
  1303. int is_superencrypted_layer,
  1304. char **decrypted_out))
  1305. {
  1306. uint8_t *decrypted = NULL;
  1307. uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  1308. uint8_t *secret_data = NULL;
  1309. size_t secret_data_len = 0;
  1310. uint8_t mac_key[DIGEST256_LEN], our_mac[DIGEST256_LEN];
  1311. const uint8_t *salt, *encrypted, *desc_mac;
  1312. size_t encrypted_len, result_len = 0;
  1313. tor_assert(decrypted_out);
  1314. tor_assert(desc);
  1315. tor_assert(encrypted_blob);
  1316. /* Construction is as follow: SALT | ENCRYPTED_DATA | MAC .
  1317. * Make sure we have enough space for all these things. */
  1318. if (!encrypted_data_length_is_valid(encrypted_blob_size)) {
  1319. goto err;
  1320. }
  1321. /* Start of the blob thus the salt. */
  1322. salt = encrypted_blob;
  1323. /* Next is the encrypted data. */
  1324. encrypted = encrypted_blob + HS_DESC_ENCRYPTED_SALT_LEN;
  1325. encrypted_len = encrypted_blob_size -
  1326. (HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  1327. tor_assert(encrypted_len > 0); /* guaranteed by the check above */
  1328. /* And last comes the MAC. */
  1329. desc_mac = encrypted_blob + encrypted_blob_size - DIGEST256_LEN;
  1330. /* Build secret data to be used in the decryption. */
  1331. secret_data_len = build_secret_data(&desc->plaintext_data.blinded_pubkey,
  1332. descriptor_cookie,
  1333. &secret_data);
  1334. /* KDF construction resulting in a key from which the secret key, IV and MAC
  1335. * key are extracted which is what we need for the decryption. */
  1336. build_secret_key_iv_mac(desc, secret_data, secret_data_len,
  1337. salt, HS_DESC_ENCRYPTED_SALT_LEN,
  1338. secret_key, sizeof(secret_key),
  1339. secret_iv, sizeof(secret_iv),
  1340. mac_key, sizeof(mac_key),
  1341. is_superencrypted_layer);
  1342. /* Build MAC. */
  1343. build_mac(mac_key, sizeof(mac_key), salt, HS_DESC_ENCRYPTED_SALT_LEN,
  1344. encrypted, encrypted_len, our_mac, sizeof(our_mac));
  1345. memwipe(mac_key, 0, sizeof(mac_key));
  1346. /* Verify MAC; MAC is H(mac_key || salt || encrypted)
  1347. *
  1348. * This is a critical check that is making sure the computed MAC matches the
  1349. * one in the descriptor. */
  1350. if (!tor_memeq(our_mac, desc_mac, sizeof(our_mac))) {
  1351. log_info(LD_REND, "Encrypted service descriptor MAC check failed");
  1352. goto err;
  1353. }
  1354. {
  1355. /* Decrypt. Here we are assured that the encrypted length is valid for
  1356. * decryption. */
  1357. crypto_cipher_t *cipher;
  1358. cipher = crypto_cipher_new_with_iv_and_bits(secret_key, secret_iv,
  1359. HS_DESC_ENCRYPTED_BIT_SIZE);
  1360. /* Extra byte for the NUL terminated byte. */
  1361. decrypted = tor_malloc_zero(encrypted_len + 1);
  1362. crypto_cipher_decrypt(cipher, (char *) decrypted,
  1363. (const char *) encrypted, encrypted_len);
  1364. crypto_cipher_free(cipher);
  1365. }
  1366. {
  1367. /* Adjust length to remove NUL padding bytes */
  1368. uint8_t *end = memchr(decrypted, 0, encrypted_len);
  1369. result_len = encrypted_len;
  1370. if (end) {
  1371. result_len = end - decrypted;
  1372. }
  1373. }
  1374. if (result_len == 0) {
  1375. /* Treat this as an error, so that somebody will free the output. */
  1376. goto err;
  1377. }
  1378. /* Make sure to NUL terminate the string. */
  1379. decrypted[encrypted_len] = '\0';
  1380. *decrypted_out = (char *) decrypted;
  1381. goto done;
  1382. err:
  1383. if (decrypted) {
  1384. tor_free(decrypted);
  1385. }
  1386. *decrypted_out = NULL;
  1387. result_len = 0;
  1388. done:
  1389. memwipe(secret_data, 0, secret_data_len);
  1390. memwipe(secret_key, 0, sizeof(secret_key));
  1391. memwipe(secret_iv, 0, sizeof(secret_iv));
  1392. tor_free(secret_data);
  1393. return result_len;
  1394. }
  1395. /* Decrypt the superencrypted section of the descriptor using the given
  1396. * descriptor object <b>desc</b>. A newly allocated NUL terminated string is
  1397. * put in decrypted_out which contains the superencrypted layer of the
  1398. * descriptor. Return the length of decrypted_out on success else 0 is
  1399. * returned and decrypted_out is set to NULL. */
  1400. static size_t
  1401. desc_decrypt_superencrypted(const hs_descriptor_t *desc, char **decrypted_out)
  1402. {
  1403. size_t superencrypted_len = 0;
  1404. char *superencrypted_plaintext = NULL;
  1405. tor_assert(desc);
  1406. tor_assert(decrypted_out);
  1407. superencrypted_len = decrypt_desc_layer(desc,
  1408. desc->plaintext_data.superencrypted_blob,
  1409. desc->plaintext_data.superencrypted_blob_size,
  1410. NULL, 1, &superencrypted_plaintext);
  1411. if (!superencrypted_len) {
  1412. log_warn(LD_REND, "Decrypting superencrypted desc failed.");
  1413. goto done;
  1414. }
  1415. tor_assert(superencrypted_plaintext);
  1416. done:
  1417. /* In case of error, superencrypted_plaintext is already NULL, so the
  1418. * following line makes sense. */
  1419. *decrypted_out = superencrypted_plaintext;
  1420. /* This makes sense too, because, in case of error, this is zero. */
  1421. return superencrypted_len;
  1422. }
  1423. /* Decrypt the encrypted section of the descriptor using the given descriptor
  1424. * object <b>desc</b>. A newly allocated NUL terminated string is put in
  1425. * decrypted_out which contains the encrypted layer of the descriptor.
  1426. * Return the length of decrypted_out on success else 0 is returned and
  1427. * decrypted_out is set to NULL. */
  1428. static size_t
  1429. desc_decrypt_encrypted(const hs_descriptor_t *desc,
  1430. const curve25519_secret_key_t *client_auth_sk,
  1431. char **decrypted_out)
  1432. {
  1433. size_t encrypted_len = 0;
  1434. char *encrypted_plaintext = NULL;
  1435. uint8_t *descriptor_cookie = NULL;
  1436. tor_assert(desc);
  1437. tor_assert(desc->superencrypted_data.clients);
  1438. tor_assert(decrypted_out);
  1439. /* If the client secret key is provided, try to find a valid descriptor
  1440. * cookie. Otherwise, leave it NULL. */
  1441. if (client_auth_sk) {
  1442. SMARTLIST_FOREACH_BEGIN(desc->superencrypted_data.clients,
  1443. hs_desc_authorized_client_t *, client) {
  1444. /* If we can decrypt the descriptor cookie successfully, we will use that
  1445. * descriptor cookie and break from the loop. */
  1446. if (!decrypt_descriptor_cookie(desc, client, client_auth_sk,
  1447. &descriptor_cookie)) {
  1448. break;
  1449. }
  1450. } SMARTLIST_FOREACH_END(client);
  1451. }
  1452. encrypted_len = decrypt_desc_layer(desc,
  1453. desc->superencrypted_data.encrypted_blob,
  1454. desc->superencrypted_data.encrypted_blob_size,
  1455. descriptor_cookie, 0, &encrypted_plaintext);
  1456. if (!encrypted_len) {
  1457. goto err;
  1458. }
  1459. tor_assert(encrypted_plaintext);
  1460. err:
  1461. /* In case of error, encrypted_plaintext is already NULL, so the
  1462. * following line makes sense. */
  1463. *decrypted_out = encrypted_plaintext;
  1464. if (descriptor_cookie) {
  1465. memwipe(descriptor_cookie, 0, HS_DESC_DESCRIPTOR_COOKIE_LEN);
  1466. }
  1467. tor_free(descriptor_cookie);
  1468. /* This makes sense too, because, in case of error, this is zero. */
  1469. return encrypted_len;
  1470. }
  1471. /* Given the token tok for an intro point legacy key, the list of tokens, the
  1472. * introduction point ip being decoded and the descriptor desc from which it
  1473. * comes from, decode the legacy key and set the intro point object. Return 0
  1474. * on success else -1 on failure. */
  1475. static int
  1476. decode_intro_legacy_key(const directory_token_t *tok,
  1477. smartlist_t *tokens,
  1478. hs_desc_intro_point_t *ip,
  1479. const hs_descriptor_t *desc)
  1480. {
  1481. tor_assert(tok);
  1482. tor_assert(tokens);
  1483. tor_assert(ip);
  1484. tor_assert(desc);
  1485. if (!crypto_pk_public_exponent_ok(tok->key)) {
  1486. log_warn(LD_REND, "Introduction point legacy key is invalid");
  1487. goto err;
  1488. }
  1489. ip->legacy.key = crypto_pk_dup_key(tok->key);
  1490. /* Extract the legacy cross certification cert which MUST be present if we
  1491. * have a legacy key. */
  1492. tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY_CERT);
  1493. if (!tok) {
  1494. log_warn(LD_REND, "Introduction point legacy key cert is missing");
  1495. goto err;
  1496. }
  1497. tor_assert(tok->object_body);
  1498. if (strcmp(tok->object_type, "CROSSCERT")) {
  1499. /* Info level because this might be an unknown field that we should
  1500. * ignore. */
  1501. log_info(LD_REND, "Introduction point legacy encryption key "
  1502. "cross-certification has an unknown format.");
  1503. goto err;
  1504. }
  1505. /* Keep a copy of the certificate. */
  1506. ip->legacy.cert.encoded = tor_memdup(tok->object_body, tok->object_size);
  1507. ip->legacy.cert.len = tok->object_size;
  1508. /* The check on the expiration date is for the entire lifetime of a
  1509. * certificate which is 24 hours. However, a descriptor has a maximum
  1510. * lifetime of 12 hours meaning we have a 12h difference between the two
  1511. * which ultimately accommodate the clock skewed client. */
  1512. if (rsa_ed25519_crosscert_check(ip->legacy.cert.encoded,
  1513. ip->legacy.cert.len, ip->legacy.key,
  1514. &desc->plaintext_data.signing_pubkey,
  1515. approx_time() - HS_DESC_CERT_LIFETIME)) {
  1516. log_warn(LD_REND, "Unable to check cross-certification on the "
  1517. "introduction point legacy encryption key.");
  1518. ip->cross_certified = 0;
  1519. goto err;
  1520. }
  1521. /* Success. */
  1522. return 0;
  1523. err:
  1524. return -1;
  1525. }
  1526. /* Dig into the descriptor <b>tokens</b> to find the onion key we should use
  1527. * for this intro point, and set it into <b>onion_key_out</b>. Return 0 if it
  1528. * was found and well-formed, otherwise return -1 in case of errors. */
  1529. static int
  1530. set_intro_point_onion_key(curve25519_public_key_t *onion_key_out,
  1531. const smartlist_t *tokens)
  1532. {
  1533. int retval = -1;
  1534. smartlist_t *onion_keys = NULL;
  1535. tor_assert(onion_key_out);
  1536. onion_keys = find_all_by_keyword(tokens, R3_INTRO_ONION_KEY);
  1537. if (!onion_keys) {
  1538. log_warn(LD_REND, "Descriptor did not contain intro onion keys");
  1539. goto err;
  1540. }
  1541. SMARTLIST_FOREACH_BEGIN(onion_keys, directory_token_t *, tok) {
  1542. /* This field is using GE(2) so for possible forward compatibility, we
  1543. * accept more fields but must be at least 2. */
  1544. tor_assert(tok->n_args >= 2);
  1545. /* Try to find an ntor key, it's the only recognized type right now */
  1546. if (!strcmp(tok->args[0], "ntor")) {
  1547. if (curve25519_public_from_base64(onion_key_out, tok->args[1]) < 0) {
  1548. log_warn(LD_REND, "Introduction point ntor onion-key is invalid");
  1549. goto err;
  1550. }
  1551. /* Got the onion key! Set the appropriate retval */
  1552. retval = 0;
  1553. }
  1554. } SMARTLIST_FOREACH_END(tok);
  1555. /* Log an error if we didn't find it :( */
  1556. if (retval < 0) {
  1557. log_warn(LD_REND, "Descriptor did not contain ntor onion keys");
  1558. }
  1559. err:
  1560. smartlist_free(onion_keys);
  1561. return retval;
  1562. }
  1563. /* Given the start of a section and the end of it, decode a single
  1564. * introduction point from that section. Return a newly allocated introduction
  1565. * point object containing the decoded data. Return NULL if the section can't
  1566. * be decoded. */
  1567. STATIC hs_desc_intro_point_t *
  1568. decode_introduction_point(const hs_descriptor_t *desc, const char *start)
  1569. {
  1570. hs_desc_intro_point_t *ip = NULL;
  1571. memarea_t *area = NULL;
  1572. smartlist_t *tokens = NULL;
  1573. const directory_token_t *tok;
  1574. tor_assert(desc);
  1575. tor_assert(start);
  1576. area = memarea_new();
  1577. tokens = smartlist_new();
  1578. if (tokenize_string(area, start, start + strlen(start),
  1579. tokens, hs_desc_intro_point_v3_token_table, 0) < 0) {
  1580. log_warn(LD_REND, "Introduction point is not parseable");
  1581. goto err;
  1582. }
  1583. /* Ok we seem to have a well formed section containing enough tokens to
  1584. * parse. Allocate our IP object and try to populate it. */
  1585. ip = hs_desc_intro_point_new();
  1586. /* "introduction-point" SP link-specifiers NL */
  1587. tok = find_by_keyword(tokens, R3_INTRODUCTION_POINT);
  1588. tor_assert(tok->n_args == 1);
  1589. /* Our constructor creates this list by default so free it. */
  1590. smartlist_free(ip->link_specifiers);
  1591. ip->link_specifiers = decode_link_specifiers(tok->args[0]);
  1592. if (!ip->link_specifiers) {
  1593. log_warn(LD_REND, "Introduction point has invalid link specifiers");
  1594. goto err;
  1595. }
  1596. /* "onion-key" SP ntor SP key NL */
  1597. if (set_intro_point_onion_key(&ip->onion_key, tokens) < 0) {
  1598. goto err;
  1599. }
  1600. /* "auth-key" NL certificate NL */
  1601. tok = find_by_keyword(tokens, R3_INTRO_AUTH_KEY);
  1602. tor_assert(tok->object_body);
  1603. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1604. log_warn(LD_REND, "Unexpected object type for introduction auth key");
  1605. goto err;
  1606. }
  1607. /* Parse cert and do some validation. */
  1608. if (cert_parse_and_validate(&ip->auth_key_cert, tok->object_body,
  1609. tok->object_size, CERT_TYPE_AUTH_HS_IP_KEY,
  1610. "introduction point auth-key") < 0) {
  1611. goto err;
  1612. }
  1613. /* Validate authentication certificate with descriptor signing key. */
  1614. if (tor_cert_checksig(ip->auth_key_cert,
  1615. &desc->plaintext_data.signing_pubkey, 0) < 0) {
  1616. log_warn(LD_REND, "Invalid authentication key signature: %s",
  1617. tor_cert_describe_signature_status(ip->auth_key_cert));
  1618. goto err;
  1619. }
  1620. /* Exactly one "enc-key" SP "ntor" SP key NL */
  1621. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY);
  1622. if (!strcmp(tok->args[0], "ntor")) {
  1623. /* This field is using GE(2) so for possible forward compatibility, we
  1624. * accept more fields but must be at least 2. */
  1625. tor_assert(tok->n_args >= 2);
  1626. if (curve25519_public_from_base64(&ip->enc_key, tok->args[1]) < 0) {
  1627. log_warn(LD_REND, "Introduction point ntor enc-key is invalid");
  1628. goto err;
  1629. }
  1630. } else {
  1631. /* Unknown key type so we can't use that introduction point. */
  1632. log_warn(LD_REND, "Introduction point encryption key is unrecognized.");
  1633. goto err;
  1634. }
  1635. /* Exactly once "enc-key-cert" NL certificate NL */
  1636. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY_CERT);
  1637. tor_assert(tok->object_body);
  1638. /* Do the cross certification. */
  1639. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1640. log_warn(LD_REND, "Introduction point ntor encryption key "
  1641. "cross-certification has an unknown format.");
  1642. goto err;
  1643. }
  1644. if (cert_parse_and_validate(&ip->enc_key_cert, tok->object_body,
  1645. tok->object_size, CERT_TYPE_CROSS_HS_IP_KEYS,
  1646. "introduction point enc-key-cert") < 0) {
  1647. goto err;
  1648. }
  1649. if (tor_cert_checksig(ip->enc_key_cert,
  1650. &desc->plaintext_data.signing_pubkey, 0) < 0) {
  1651. log_warn(LD_REND, "Invalid encryption key signature: %s",
  1652. tor_cert_describe_signature_status(ip->enc_key_cert));
  1653. goto err;
  1654. }
  1655. /* It is successfully cross certified. Flag the object. */
  1656. ip->cross_certified = 1;
  1657. /* Do we have a "legacy-key" SP key NL ?*/
  1658. tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY);
  1659. if (tok) {
  1660. if (decode_intro_legacy_key(tok, tokens, ip, desc) < 0) {
  1661. goto err;
  1662. }
  1663. }
  1664. /* Introduction point has been parsed successfully. */
  1665. goto done;
  1666. err:
  1667. hs_desc_intro_point_free(ip);
  1668. ip = NULL;
  1669. done:
  1670. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1671. smartlist_free(tokens);
  1672. if (area) {
  1673. memarea_drop_all(area);
  1674. }
  1675. return ip;
  1676. }
  1677. /* Given a descriptor string at <b>data</b>, decode all possible introduction
  1678. * points that we can find. Add the introduction point object to desc_enc as we
  1679. * find them. This function can't fail and it is possible that zero
  1680. * introduction points can be decoded. */
  1681. static void
  1682. decode_intro_points(const hs_descriptor_t *desc,
  1683. hs_desc_encrypted_data_t *desc_enc,
  1684. const char *data)
  1685. {
  1686. smartlist_t *chunked_desc = smartlist_new();
  1687. smartlist_t *intro_points = smartlist_new();
  1688. tor_assert(desc);
  1689. tor_assert(desc_enc);
  1690. tor_assert(data);
  1691. tor_assert(desc_enc->intro_points);
  1692. /* Take the desc string, and extract the intro point substrings out of it */
  1693. {
  1694. /* Split the descriptor string using the intro point header as delimiter */
  1695. smartlist_split_string(chunked_desc, data, str_intro_point_start, 0, 0);
  1696. /* Check if there are actually any intro points included. The first chunk
  1697. * should be other descriptor fields (e.g. create2-formats), so it's not an
  1698. * intro point. */
  1699. if (smartlist_len(chunked_desc) < 2) {
  1700. goto done;
  1701. }
  1702. }
  1703. /* Take the intro point substrings, and prepare them for parsing */
  1704. {
  1705. int i = 0;
  1706. /* Prepend the introduction-point header to all the chunks, since
  1707. smartlist_split_string() devoured it. */
  1708. SMARTLIST_FOREACH_BEGIN(chunked_desc, char *, chunk) {
  1709. /* Ignore first chunk. It's other descriptor fields. */
  1710. if (i++ == 0) {
  1711. continue;
  1712. }
  1713. smartlist_add_asprintf(intro_points, "%s %s", str_intro_point, chunk);
  1714. } SMARTLIST_FOREACH_END(chunk);
  1715. }
  1716. /* Parse the intro points! */
  1717. SMARTLIST_FOREACH_BEGIN(intro_points, const char *, intro_point) {
  1718. hs_desc_intro_point_t *ip = decode_introduction_point(desc, intro_point);
  1719. if (!ip) {
  1720. /* Malformed introduction point section. We'll ignore this introduction
  1721. * point and continue parsing. New or unknown fields are possible for
  1722. * forward compatibility. */
  1723. continue;
  1724. }
  1725. smartlist_add(desc_enc->intro_points, ip);
  1726. } SMARTLIST_FOREACH_END(intro_point);
  1727. done:
  1728. SMARTLIST_FOREACH(chunked_desc, char *, a, tor_free(a));
  1729. smartlist_free(chunked_desc);
  1730. SMARTLIST_FOREACH(intro_points, char *, a, tor_free(a));
  1731. smartlist_free(intro_points);
  1732. }
  1733. /* Return 1 iff the given base64 encoded signature in b64_sig from the encoded
  1734. * descriptor in encoded_desc validates the descriptor content. */
  1735. STATIC int
  1736. desc_sig_is_valid(const char *b64_sig,
  1737. const ed25519_public_key_t *signing_pubkey,
  1738. const char *encoded_desc, size_t encoded_len)
  1739. {
  1740. int ret = 0;
  1741. ed25519_signature_t sig;
  1742. const char *sig_start;
  1743. tor_assert(b64_sig);
  1744. tor_assert(signing_pubkey);
  1745. tor_assert(encoded_desc);
  1746. /* Verifying nothing won't end well :). */
  1747. tor_assert(encoded_len > 0);
  1748. /* Signature length check. */
  1749. if (strlen(b64_sig) != ED25519_SIG_BASE64_LEN) {
  1750. log_warn(LD_REND, "Service descriptor has an invalid signature length."
  1751. "Exptected %d but got %lu",
  1752. ED25519_SIG_BASE64_LEN, (unsigned long) strlen(b64_sig));
  1753. goto err;
  1754. }
  1755. /* First, convert base64 blob to an ed25519 signature. */
  1756. if (ed25519_signature_from_base64(&sig, b64_sig) != 0) {
  1757. log_warn(LD_REND, "Service descriptor does not contain a valid "
  1758. "signature");
  1759. goto err;
  1760. }
  1761. /* Find the start of signature. */
  1762. sig_start = tor_memstr(encoded_desc, encoded_len, "\n" str_signature " ");
  1763. /* Getting here means the token parsing worked for the signature so if we
  1764. * can't find the start of the signature, we have a code flow issue. */
  1765. if (!sig_start) {
  1766. log_warn(LD_GENERAL, "Malformed signature line. Rejecting.");
  1767. goto err;
  1768. }
  1769. /* Skip newline, it has to go in the signature check. */
  1770. sig_start++;
  1771. /* Validate signature with the full body of the descriptor. */
  1772. if (ed25519_checksig_prefixed(&sig,
  1773. (const uint8_t *) encoded_desc,
  1774. sig_start - encoded_desc,
  1775. str_desc_sig_prefix,
  1776. signing_pubkey) != 0) {
  1777. log_warn(LD_REND, "Invalid signature on service descriptor");
  1778. goto err;
  1779. }
  1780. /* Valid signature! All is good. */
  1781. ret = 1;
  1782. err:
  1783. return ret;
  1784. }
  1785. /* Decode descriptor plaintext data for version 3. Given a list of tokens, an
  1786. * allocated plaintext object that will be populated and the encoded
  1787. * descriptor with its length. The last one is needed for signature
  1788. * verification. Unknown tokens are simply ignored so this won't error on
  1789. * unknowns but requires that all v3 token be present and valid.
  1790. *
  1791. * Return 0 on success else a negative value. */
  1792. static int
  1793. desc_decode_plaintext_v3(smartlist_t *tokens,
  1794. hs_desc_plaintext_data_t *desc,
  1795. const char *encoded_desc, size_t encoded_len)
  1796. {
  1797. int ok;
  1798. directory_token_t *tok;
  1799. tor_assert(tokens);
  1800. tor_assert(desc);
  1801. /* Version higher could still use this function to decode most of the
  1802. * descriptor and then they decode the extra part. */
  1803. tor_assert(desc->version >= 3);
  1804. /* Descriptor lifetime parsing. */
  1805. tok = find_by_keyword(tokens, R3_DESC_LIFETIME);
  1806. tor_assert(tok->n_args == 1);
  1807. desc->lifetime_sec = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  1808. UINT32_MAX, &ok, NULL);
  1809. if (!ok) {
  1810. log_warn(LD_REND, "Service descriptor lifetime value is invalid");
  1811. goto err;
  1812. }
  1813. /* Put it from minute to second. */
  1814. desc->lifetime_sec *= 60;
  1815. if (desc->lifetime_sec > HS_DESC_MAX_LIFETIME) {
  1816. log_warn(LD_REND, "Service descriptor lifetime is too big. "
  1817. "Got %" PRIu32 " but max is %d",
  1818. desc->lifetime_sec, HS_DESC_MAX_LIFETIME);
  1819. goto err;
  1820. }
  1821. /* Descriptor signing certificate. */
  1822. tok = find_by_keyword(tokens, R3_DESC_SIGNING_CERT);
  1823. tor_assert(tok->object_body);
  1824. /* Expecting a prop220 cert with the signing key extension, which contains
  1825. * the blinded public key. */
  1826. if (strcmp(tok->object_type, "ED25519 CERT") != 0) {
  1827. log_warn(LD_REND, "Service descriptor signing cert wrong type (%s)",
  1828. escaped(tok->object_type));
  1829. goto err;
  1830. }
  1831. if (cert_parse_and_validate(&desc->signing_key_cert, tok->object_body,
  1832. tok->object_size, CERT_TYPE_SIGNING_HS_DESC,
  1833. "service descriptor signing key") < 0) {
  1834. goto err;
  1835. }
  1836. /* Copy the public keys into signing_pubkey and blinded_pubkey */
  1837. memcpy(&desc->signing_pubkey, &desc->signing_key_cert->signed_key,
  1838. sizeof(ed25519_public_key_t));
  1839. memcpy(&desc->blinded_pubkey, &desc->signing_key_cert->signing_key,
  1840. sizeof(ed25519_public_key_t));
  1841. /* Extract revision counter value. */
  1842. tok = find_by_keyword(tokens, R3_REVISION_COUNTER);
  1843. tor_assert(tok->n_args == 1);
  1844. desc->revision_counter = tor_parse_uint64(tok->args[0], 10, 0,
  1845. UINT64_MAX, &ok, NULL);
  1846. if (!ok) {
  1847. log_warn(LD_REND, "Service descriptor revision-counter is invalid");
  1848. goto err;
  1849. }
  1850. /* Extract the superencrypted data section. */
  1851. tok = find_by_keyword(tokens, R3_SUPERENCRYPTED);
  1852. tor_assert(tok->object_body);
  1853. if (strcmp(tok->object_type, "MESSAGE") != 0) {
  1854. log_warn(LD_REND, "Desc superencrypted data section is invalid");
  1855. goto err;
  1856. }
  1857. /* Make sure the length of the superencrypted blob is valid. */
  1858. if (!encrypted_data_length_is_valid(tok->object_size)) {
  1859. goto err;
  1860. }
  1861. /* Copy the superencrypted blob to the descriptor object so we can handle it
  1862. * latter if needed. */
  1863. desc->superencrypted_blob = tor_memdup(tok->object_body, tok->object_size);
  1864. desc->superencrypted_blob_size = tok->object_size;
  1865. /* Extract signature and verify it. */
  1866. tok = find_by_keyword(tokens, R3_SIGNATURE);
  1867. tor_assert(tok->n_args == 1);
  1868. /* First arg here is the actual encoded signature. */
  1869. if (!desc_sig_is_valid(tok->args[0], &desc->signing_pubkey,
  1870. encoded_desc, encoded_len)) {
  1871. goto err;
  1872. }
  1873. return 0;
  1874. err:
  1875. return -1;
  1876. }
  1877. /* Decode the version 3 superencrypted section of the given descriptor desc.
  1878. * The desc_superencrypted_out will be populated with the decoded data.
  1879. * Return 0 on success else -1. */
  1880. static int
  1881. desc_decode_superencrypted_v3(const hs_descriptor_t *desc,
  1882. hs_desc_superencrypted_data_t *
  1883. desc_superencrypted_out)
  1884. {
  1885. int ret = -1;
  1886. char *message = NULL;
  1887. size_t message_len;
  1888. memarea_t *area = NULL;
  1889. directory_token_t *tok;
  1890. smartlist_t *tokens = NULL;
  1891. /* Rename the parameter because it is too long. */
  1892. hs_desc_superencrypted_data_t *superencrypted = desc_superencrypted_out;
  1893. tor_assert(desc);
  1894. tor_assert(desc_superencrypted_out);
  1895. /* Decrypt the superencrypted data that is located in the plaintext section
  1896. * in the descriptor as a blob of bytes. */
  1897. message_len = desc_decrypt_superencrypted(desc, &message);
  1898. if (!message_len) {
  1899. log_warn(LD_REND, "Service descriptor decryption failed.");
  1900. goto err;
  1901. }
  1902. tor_assert(message);
  1903. area = memarea_new();
  1904. tokens = smartlist_new();
  1905. if (tokenize_string(area, message, message + message_len,
  1906. tokens, hs_desc_superencrypted_v3_token_table, 0) < 0) {
  1907. log_warn(LD_REND, "Superencrypted service descriptor is not parseable.");
  1908. goto err;
  1909. }
  1910. /* Verify desc auth type */
  1911. tok = find_by_keyword(tokens, R3_DESC_AUTH_TYPE);
  1912. tor_assert(tok->n_args >= 1);
  1913. if (strcmp(tok->args[0], "x25519")) {
  1914. log_warn(LD_DIR, "Unrecognized desc auth type");
  1915. goto err;
  1916. }
  1917. /* Extract desc auth ephemeral key */
  1918. tok = find_by_keyword(tokens, R3_DESC_AUTH_KEY);
  1919. tor_assert(tok->n_args >= 1);
  1920. if (curve25519_public_from_base64(&superencrypted->auth_ephemeral_pubkey,
  1921. tok->args[0]) < 0) {
  1922. log_warn(LD_DIR, "Bogus desc auth ephemeral key in HS desc");
  1923. goto err;
  1924. }
  1925. /* Extract desc auth client items */
  1926. if (!superencrypted->clients) {
  1927. superencrypted->clients = smartlist_new();
  1928. }
  1929. SMARTLIST_FOREACH_BEGIN(tokens, const directory_token_t *, token) {
  1930. if (token->tp == R3_DESC_AUTH_CLIENT) {
  1931. tor_assert(token->n_args >= 3);
  1932. hs_desc_authorized_client_t *client =
  1933. tor_malloc_zero(sizeof(hs_desc_authorized_client_t));
  1934. if (decode_auth_client(token, client) < 0) {
  1935. log_warn(LD_REND, "Descriptor client authorization section can't "
  1936. "be decoded.");
  1937. tor_free(client);
  1938. goto err;
  1939. }
  1940. smartlist_add(superencrypted->clients, client);
  1941. }
  1942. } SMARTLIST_FOREACH_END(token);
  1943. /* Extract the encrypted data section. */
  1944. tok = find_by_keyword(tokens, R3_ENCRYPTED);
  1945. tor_assert(tok->object_body);
  1946. if (strcmp(tok->object_type, "MESSAGE") != 0) {
  1947. log_warn(LD_REND, "Desc encrypted data section is invalid");
  1948. goto err;
  1949. }
  1950. /* Make sure the length of the encrypted blob is valid. */
  1951. if (!encrypted_data_length_is_valid(tok->object_size)) {
  1952. goto err;
  1953. }
  1954. /* Copy the encrypted blob to the descriptor object so we can handle it
  1955. * latter if needed. */
  1956. tor_assert(tok->object_size <= INT_MAX);
  1957. superencrypted->encrypted_blob = tor_memdup(tok->object_body,
  1958. tok->object_size);
  1959. superencrypted->encrypted_blob_size = tok->object_size;
  1960. ret = 0;
  1961. goto done;
  1962. err:
  1963. tor_assert(ret < 0);
  1964. hs_desc_superencrypted_data_free_contents(desc_superencrypted_out);
  1965. done:
  1966. if (tokens) {
  1967. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1968. smartlist_free(tokens);
  1969. }
  1970. if (area) {
  1971. memarea_drop_all(area);
  1972. }
  1973. if (message) {
  1974. tor_free(message);
  1975. }
  1976. return ret;
  1977. }
  1978. /* Decode the version 3 encrypted section of the given descriptor desc. The
  1979. * desc_encrypted_out will be populated with the decoded data. Return 0 on
  1980. * success else -1. */
  1981. static int
  1982. desc_decode_encrypted_v3(const hs_descriptor_t *desc,
  1983. const curve25519_secret_key_t *client_auth_sk,
  1984. hs_desc_encrypted_data_t *desc_encrypted_out)
  1985. {
  1986. int ret = -1;
  1987. char *message = NULL;
  1988. size_t message_len;
  1989. memarea_t *area = NULL;
  1990. directory_token_t *tok;
  1991. smartlist_t *tokens = NULL;
  1992. tor_assert(desc);
  1993. tor_assert(desc_encrypted_out);
  1994. /* Decrypt the encrypted data that is located in the superencrypted section
  1995. * in the descriptor as a blob of bytes. */
  1996. message_len = desc_decrypt_encrypted(desc, client_auth_sk, &message);
  1997. if (!message_len) {
  1998. /* Two possible situation here. Either we have a client authorization
  1999. * configured that didn't work or we do not have any configured for this
  2000. * onion address so likely the descriptor is for authorized client only,
  2001. * we are not. */
  2002. if (client_auth_sk) {
  2003. /* At warning level so the client can notice that its client
  2004. * authorization is failing. */
  2005. log_warn(LD_REND, "Client authorization for requested onion address "
  2006. "is invalid. Can't decrypt the descriptor.");
  2007. } else {
  2008. /* Inform at notice level that the onion address requested can't be
  2009. * reached without client authorization most likely. */
  2010. log_notice(LD_REND, "Fail to decrypt descriptor for requested onion "
  2011. "address. It is likely requiring client "
  2012. "authorization.");
  2013. }
  2014. goto err;
  2015. }
  2016. tor_assert(message);
  2017. area = memarea_new();
  2018. tokens = smartlist_new();
  2019. if (tokenize_string(area, message, message + message_len,
  2020. tokens, hs_desc_encrypted_v3_token_table, 0) < 0) {
  2021. log_warn(LD_REND, "Encrypted service descriptor is not parseable.");
  2022. goto err;
  2023. }
  2024. /* CREATE2 supported cell format. It's mandatory. */
  2025. tok = find_by_keyword(tokens, R3_CREATE2_FORMATS);
  2026. tor_assert(tok);
  2027. decode_create2_list(desc_encrypted_out, tok->args[0]);
  2028. /* Must support ntor according to the specification */
  2029. if (!desc_encrypted_out->create2_ntor) {
  2030. log_warn(LD_REND, "Service create2-formats does not include ntor.");
  2031. goto err;
  2032. }
  2033. /* Authentication type. It's optional but only once. */
  2034. tok = find_opt_by_keyword(tokens, R3_INTRO_AUTH_REQUIRED);
  2035. if (tok) {
  2036. if (!decode_auth_type(desc_encrypted_out, tok->args[0])) {
  2037. log_warn(LD_REND, "Service descriptor authentication type has "
  2038. "invalid entry(ies).");
  2039. goto err;
  2040. }
  2041. }
  2042. /* Is this service a single onion service? */
  2043. tok = find_opt_by_keyword(tokens, R3_SINGLE_ONION_SERVICE);
  2044. if (tok) {
  2045. desc_encrypted_out->single_onion_service = 1;
  2046. }
  2047. /* Initialize the descriptor's introduction point list before we start
  2048. * decoding. Having 0 intro point is valid. Then decode them all. */
  2049. desc_encrypted_out->intro_points = smartlist_new();
  2050. decode_intro_points(desc, desc_encrypted_out, message);
  2051. /* Validation of maximum introduction points allowed. */
  2052. if (smartlist_len(desc_encrypted_out->intro_points) >
  2053. HS_CONFIG_V3_MAX_INTRO_POINTS) {
  2054. log_warn(LD_REND, "Service descriptor contains too many introduction "
  2055. "points. Maximum allowed is %d but we have %d",
  2056. HS_CONFIG_V3_MAX_INTRO_POINTS,
  2057. smartlist_len(desc_encrypted_out->intro_points));
  2058. goto err;
  2059. }
  2060. /* NOTE: Unknown fields are allowed because this function could be used to
  2061. * decode other descriptor version. */
  2062. ret = 0;
  2063. goto done;
  2064. err:
  2065. tor_assert(ret < 0);
  2066. hs_desc_encrypted_data_free_contents(desc_encrypted_out);
  2067. done:
  2068. if (tokens) {
  2069. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  2070. smartlist_free(tokens);
  2071. }
  2072. if (area) {
  2073. memarea_drop_all(area);
  2074. }
  2075. if (message) {
  2076. tor_free(message);
  2077. }
  2078. return ret;
  2079. }
  2080. /* Table of encrypted decode function version specific. The function are
  2081. * indexed by the version number so v3 callback is at index 3 in the array. */
  2082. static int
  2083. (*decode_encrypted_handlers[])(
  2084. const hs_descriptor_t *desc,
  2085. const curve25519_secret_key_t *client_auth_sk,
  2086. hs_desc_encrypted_data_t *desc_encrypted) =
  2087. {
  2088. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2089. desc_decode_encrypted_v3,
  2090. };
  2091. /* Decode the encrypted data section of the given descriptor and store the
  2092. * data in the given encrypted data object. Return 0 on success else a
  2093. * negative value on error. */
  2094. int
  2095. hs_desc_decode_encrypted(const hs_descriptor_t *desc,
  2096. const curve25519_secret_key_t *client_auth_sk,
  2097. hs_desc_encrypted_data_t *desc_encrypted)
  2098. {
  2099. int ret;
  2100. uint32_t version;
  2101. tor_assert(desc);
  2102. /* Ease our life a bit. */
  2103. version = desc->plaintext_data.version;
  2104. tor_assert(desc_encrypted);
  2105. /* Calling this function without an encrypted blob to parse is a code flow
  2106. * error. The superencrypted parsing should never succeed in the first place
  2107. * without an encrypted section. */
  2108. tor_assert(desc->superencrypted_data.encrypted_blob);
  2109. /* Let's make sure we have a supported version as well. By correctly parsing
  2110. * the plaintext, this should not fail. */
  2111. if (BUG(!hs_desc_is_supported_version(version))) {
  2112. ret = -1;
  2113. goto err;
  2114. }
  2115. /* Extra precaution. Having no handler for the supported version should
  2116. * never happened else we forgot to add it but we bumped the version. */
  2117. tor_assert(ARRAY_LENGTH(decode_encrypted_handlers) >= version);
  2118. tor_assert(decode_encrypted_handlers[version]);
  2119. /* Run the version specific plaintext decoder. */
  2120. ret = decode_encrypted_handlers[version](desc, client_auth_sk,
  2121. desc_encrypted);
  2122. if (ret < 0) {
  2123. goto err;
  2124. }
  2125. err:
  2126. return ret;
  2127. }
  2128. /* Table of superencrypted decode function version specific. The function are
  2129. * indexed by the version number so v3 callback is at index 3 in the array. */
  2130. static int
  2131. (*decode_superencrypted_handlers[])(
  2132. const hs_descriptor_t *desc,
  2133. hs_desc_superencrypted_data_t *desc_superencrypted) =
  2134. {
  2135. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2136. desc_decode_superencrypted_v3,
  2137. };
  2138. /* Decode the superencrypted data section of the given descriptor and store the
  2139. * data in the given superencrypted data object. Return 0 on success else a
  2140. * negative value on error. */
  2141. int
  2142. hs_desc_decode_superencrypted(const hs_descriptor_t *desc,
  2143. hs_desc_superencrypted_data_t *
  2144. desc_superencrypted)
  2145. {
  2146. int ret;
  2147. uint32_t version;
  2148. tor_assert(desc);
  2149. /* Ease our life a bit. */
  2150. version = desc->plaintext_data.version;
  2151. tor_assert(desc_superencrypted);
  2152. /* Calling this function without an superencrypted blob to parse is
  2153. * a code flow error. The plaintext parsing should never succeed in
  2154. * the first place without an superencrypted section. */
  2155. tor_assert(desc->plaintext_data.superencrypted_blob);
  2156. /* Let's make sure we have a supported version as well. By correctly parsing
  2157. * the plaintext, this should not fail. */
  2158. if (BUG(!hs_desc_is_supported_version(version))) {
  2159. ret = -1;
  2160. goto err;
  2161. }
  2162. /* Extra precaution. Having no handler for the supported version should
  2163. * never happened else we forgot to add it but we bumped the version. */
  2164. tor_assert(ARRAY_LENGTH(decode_superencrypted_handlers) >= version);
  2165. tor_assert(decode_superencrypted_handlers[version]);
  2166. /* Run the version specific plaintext decoder. */
  2167. ret = decode_superencrypted_handlers[version](desc, desc_superencrypted);
  2168. if (ret < 0) {
  2169. goto err;
  2170. }
  2171. err:
  2172. return ret;
  2173. }
  2174. /* Table of plaintext decode function version specific. The function are
  2175. * indexed by the version number so v3 callback is at index 3 in the array. */
  2176. static int
  2177. (*decode_plaintext_handlers[])(
  2178. smartlist_t *tokens,
  2179. hs_desc_plaintext_data_t *desc,
  2180. const char *encoded_desc,
  2181. size_t encoded_len) =
  2182. {
  2183. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2184. desc_decode_plaintext_v3,
  2185. };
  2186. /* Fully decode the given descriptor plaintext and store the data in the
  2187. * plaintext data object. Returns 0 on success else a negative value. */
  2188. int
  2189. hs_desc_decode_plaintext(const char *encoded,
  2190. hs_desc_plaintext_data_t *plaintext)
  2191. {
  2192. int ok = 0, ret = -1;
  2193. memarea_t *area = NULL;
  2194. smartlist_t *tokens = NULL;
  2195. size_t encoded_len;
  2196. directory_token_t *tok;
  2197. tor_assert(encoded);
  2198. tor_assert(plaintext);
  2199. /* Check that descriptor is within size limits. */
  2200. encoded_len = strlen(encoded);
  2201. if (encoded_len >= hs_cache_get_max_descriptor_size()) {
  2202. log_warn(LD_REND, "Service descriptor is too big (%lu bytes)",
  2203. (unsigned long) encoded_len);
  2204. goto err;
  2205. }
  2206. area = memarea_new();
  2207. tokens = smartlist_new();
  2208. /* Tokenize the descriptor so we can start to parse it. */
  2209. if (tokenize_string(area, encoded, encoded + encoded_len, tokens,
  2210. hs_desc_v3_token_table, 0) < 0) {
  2211. log_warn(LD_REND, "Service descriptor is not parseable");
  2212. goto err;
  2213. }
  2214. /* Get the version of the descriptor which is the first mandatory field of
  2215. * the descriptor. From there, we'll decode the right descriptor version. */
  2216. tok = find_by_keyword(tokens, R_HS_DESCRIPTOR);
  2217. tor_assert(tok->n_args == 1);
  2218. plaintext->version = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  2219. UINT32_MAX, &ok, NULL);
  2220. if (!ok) {
  2221. log_warn(LD_REND, "Service descriptor has unparseable version %s",
  2222. escaped(tok->args[0]));
  2223. goto err;
  2224. }
  2225. if (!hs_desc_is_supported_version(plaintext->version)) {
  2226. log_warn(LD_REND, "Service descriptor has unsupported version %" PRIu32,
  2227. plaintext->version);
  2228. goto err;
  2229. }
  2230. /* Extra precaution. Having no handler for the supported version should
  2231. * never happened else we forgot to add it but we bumped the version. */
  2232. tor_assert(ARRAY_LENGTH(decode_plaintext_handlers) >= plaintext->version);
  2233. tor_assert(decode_plaintext_handlers[plaintext->version]);
  2234. /* Run the version specific plaintext decoder. */
  2235. ret = decode_plaintext_handlers[plaintext->version](tokens, plaintext,
  2236. encoded, encoded_len);
  2237. if (ret < 0) {
  2238. goto err;
  2239. }
  2240. /* Success. Descriptor has been populated with the data. */
  2241. ret = 0;
  2242. err:
  2243. if (tokens) {
  2244. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  2245. smartlist_free(tokens);
  2246. }
  2247. if (area) {
  2248. memarea_drop_all(area);
  2249. }
  2250. return ret;
  2251. }
  2252. /* Fully decode an encoded descriptor and set a newly allocated descriptor
  2253. * object in desc_out. Client secret key is used to decrypt the "encrypted"
  2254. * section if not NULL else it's ignored.
  2255. *
  2256. * Return 0 on success. A negative value is returned on error and desc_out is
  2257. * set to NULL. */
  2258. int
  2259. hs_desc_decode_descriptor(const char *encoded,
  2260. const uint8_t *subcredential,
  2261. const curve25519_secret_key_t *client_auth_sk,
  2262. hs_descriptor_t **desc_out)
  2263. {
  2264. int ret = -1;
  2265. hs_descriptor_t *desc;
  2266. tor_assert(encoded);
  2267. desc = tor_malloc_zero(sizeof(hs_descriptor_t));
  2268. /* Subcredentials are not optional. */
  2269. if (BUG(!subcredential ||
  2270. tor_mem_is_zero((char*)subcredential, DIGEST256_LEN))) {
  2271. log_warn(LD_GENERAL, "Tried to decrypt without subcred. Impossible!");
  2272. goto err;
  2273. }
  2274. memcpy(desc->subcredential, subcredential, sizeof(desc->subcredential));
  2275. ret = hs_desc_decode_plaintext(encoded, &desc->plaintext_data);
  2276. if (ret < 0) {
  2277. goto err;
  2278. }
  2279. ret = hs_desc_decode_superencrypted(desc, &desc->superencrypted_data);
  2280. if (ret < 0) {
  2281. goto err;
  2282. }
  2283. ret = hs_desc_decode_encrypted(desc, client_auth_sk, &desc->encrypted_data);
  2284. if (ret < 0) {
  2285. goto err;
  2286. }
  2287. if (desc_out) {
  2288. *desc_out = desc;
  2289. } else {
  2290. hs_descriptor_free(desc);
  2291. }
  2292. return ret;
  2293. err:
  2294. hs_descriptor_free(desc);
  2295. if (desc_out) {
  2296. *desc_out = NULL;
  2297. }
  2298. tor_assert(ret < 0);
  2299. return ret;
  2300. }
  2301. /* Table of encode function version specific. The functions are indexed by the
  2302. * version number so v3 callback is at index 3 in the array. */
  2303. static int
  2304. (*encode_handlers[])(
  2305. const hs_descriptor_t *desc,
  2306. const ed25519_keypair_t *signing_kp,
  2307. const uint8_t *descriptor_cookie,
  2308. char **encoded_out) =
  2309. {
  2310. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2311. desc_encode_v3,
  2312. };
  2313. /* Encode the given descriptor desc including signing with the given key pair
  2314. * signing_kp and encrypting with the given descriptor cookie.
  2315. *
  2316. * If the client authorization is enabled, descriptor_cookie must be the same
  2317. * as the one used to build hs_desc_authorized_client_t in the descriptor.
  2318. * Otherwise, it must be NULL. On success, encoded_out points to a newly
  2319. * allocated NUL terminated string that contains the encoded descriptor as
  2320. * a string.
  2321. *
  2322. * Return 0 on success and encoded_out is a valid pointer. On error, -1 is
  2323. * returned and encoded_out is set to NULL. */
  2324. MOCK_IMPL(int,
  2325. hs_desc_encode_descriptor,(const hs_descriptor_t *desc,
  2326. const ed25519_keypair_t *signing_kp,
  2327. const uint8_t *descriptor_cookie,
  2328. char **encoded_out))
  2329. {
  2330. int ret = -1;
  2331. uint32_t version;
  2332. tor_assert(desc);
  2333. tor_assert(encoded_out);
  2334. /* Make sure we support the version of the descriptor format. */
  2335. version = desc->plaintext_data.version;
  2336. if (!hs_desc_is_supported_version(version)) {
  2337. goto err;
  2338. }
  2339. /* Extra precaution. Having no handler for the supported version should
  2340. * never happened else we forgot to add it but we bumped the version. */
  2341. tor_assert(ARRAY_LENGTH(encode_handlers) >= version);
  2342. tor_assert(encode_handlers[version]);
  2343. ret = encode_handlers[version](desc, signing_kp,
  2344. descriptor_cookie, encoded_out);
  2345. if (ret < 0) {
  2346. goto err;
  2347. }
  2348. /* Try to decode what we just encoded. Symmetry is nice!, but it is
  2349. * symmetric only if the client auth is disabled. That is, the descriptor
  2350. * cookie will be NULL. */
  2351. if (!descriptor_cookie) {
  2352. ret = hs_desc_decode_descriptor(*encoded_out, desc->subcredential,
  2353. NULL, NULL);
  2354. if (BUG(ret < 0)) {
  2355. goto err;
  2356. }
  2357. }
  2358. return 0;
  2359. err:
  2360. *encoded_out = NULL;
  2361. return ret;
  2362. }
  2363. /* Free the content of the plaintext section of a descriptor. */
  2364. void
  2365. hs_desc_plaintext_data_free_contents(hs_desc_plaintext_data_t *desc)
  2366. {
  2367. if (!desc) {
  2368. return;
  2369. }
  2370. if (desc->superencrypted_blob) {
  2371. tor_free(desc->superencrypted_blob);
  2372. }
  2373. tor_cert_free(desc->signing_key_cert);
  2374. memwipe(desc, 0, sizeof(*desc));
  2375. }
  2376. /* Free the content of the superencrypted section of a descriptor. */
  2377. void
  2378. hs_desc_superencrypted_data_free_contents(hs_desc_superencrypted_data_t *desc)
  2379. {
  2380. if (!desc) {
  2381. return;
  2382. }
  2383. if (desc->encrypted_blob) {
  2384. tor_free(desc->encrypted_blob);
  2385. }
  2386. if (desc->clients) {
  2387. SMARTLIST_FOREACH(desc->clients, hs_desc_authorized_client_t *, client,
  2388. hs_desc_authorized_client_free(client));
  2389. smartlist_free(desc->clients);
  2390. }
  2391. memwipe(desc, 0, sizeof(*desc));
  2392. }
  2393. /* Free the content of the encrypted section of a descriptor. */
  2394. void
  2395. hs_desc_encrypted_data_free_contents(hs_desc_encrypted_data_t *desc)
  2396. {
  2397. if (!desc) {
  2398. return;
  2399. }
  2400. if (desc->intro_auth_types) {
  2401. SMARTLIST_FOREACH(desc->intro_auth_types, char *, a, tor_free(a));
  2402. smartlist_free(desc->intro_auth_types);
  2403. }
  2404. if (desc->intro_points) {
  2405. SMARTLIST_FOREACH(desc->intro_points, hs_desc_intro_point_t *, ip,
  2406. hs_desc_intro_point_free(ip));
  2407. smartlist_free(desc->intro_points);
  2408. }
  2409. memwipe(desc, 0, sizeof(*desc));
  2410. }
  2411. /* Free the descriptor plaintext data object. */
  2412. void
  2413. hs_desc_plaintext_data_free_(hs_desc_plaintext_data_t *desc)
  2414. {
  2415. hs_desc_plaintext_data_free_contents(desc);
  2416. tor_free(desc);
  2417. }
  2418. /* Free the descriptor plaintext data object. */
  2419. void
  2420. hs_desc_superencrypted_data_free_(hs_desc_superencrypted_data_t *desc)
  2421. {
  2422. hs_desc_superencrypted_data_free_contents(desc);
  2423. tor_free(desc);
  2424. }
  2425. /* Free the descriptor encrypted data object. */
  2426. void
  2427. hs_desc_encrypted_data_free_(hs_desc_encrypted_data_t *desc)
  2428. {
  2429. hs_desc_encrypted_data_free_contents(desc);
  2430. tor_free(desc);
  2431. }
  2432. /* Free the given descriptor object. */
  2433. void
  2434. hs_descriptor_free_(hs_descriptor_t *desc)
  2435. {
  2436. if (!desc) {
  2437. return;
  2438. }
  2439. hs_desc_plaintext_data_free_contents(&desc->plaintext_data);
  2440. hs_desc_superencrypted_data_free_contents(&desc->superencrypted_data);
  2441. hs_desc_encrypted_data_free_contents(&desc->encrypted_data);
  2442. tor_free(desc);
  2443. }
  2444. /* Return the size in bytes of the given plaintext data object. A sizeof() is
  2445. * not enough because the object contains pointers and the encrypted blob.
  2446. * This is particularly useful for our OOM subsystem that tracks the HSDir
  2447. * cache size for instance. */
  2448. size_t
  2449. hs_desc_plaintext_obj_size(const hs_desc_plaintext_data_t *data)
  2450. {
  2451. tor_assert(data);
  2452. return (sizeof(*data) + sizeof(*data->signing_key_cert) +
  2453. data->superencrypted_blob_size);
  2454. }
  2455. /* Return the size in bytes of the given encrypted data object. Used by OOM
  2456. * subsystem. */
  2457. static size_t
  2458. hs_desc_encrypted_obj_size(const hs_desc_encrypted_data_t *data)
  2459. {
  2460. tor_assert(data);
  2461. size_t intro_size = 0;
  2462. if (data->intro_auth_types) {
  2463. intro_size +=
  2464. smartlist_len(data->intro_auth_types) * sizeof(intro_auth_types);
  2465. }
  2466. if (data->intro_points) {
  2467. /* XXX could follow pointers here and get more accurate size */
  2468. intro_size +=
  2469. smartlist_len(data->intro_points) * sizeof(hs_desc_intro_point_t);
  2470. }
  2471. return sizeof(*data) + intro_size;
  2472. }
  2473. /* Return the size in bytes of the given descriptor object. Used by OOM
  2474. * subsystem. */
  2475. size_t
  2476. hs_desc_obj_size(const hs_descriptor_t *data)
  2477. {
  2478. tor_assert(data);
  2479. return (hs_desc_plaintext_obj_size(&data->plaintext_data) +
  2480. hs_desc_encrypted_obj_size(&data->encrypted_data) +
  2481. sizeof(data->subcredential));
  2482. }
  2483. /* Return a newly allocated descriptor intro point. */
  2484. hs_desc_intro_point_t *
  2485. hs_desc_intro_point_new(void)
  2486. {
  2487. hs_desc_intro_point_t *ip = tor_malloc_zero(sizeof(*ip));
  2488. ip->link_specifiers = smartlist_new();
  2489. return ip;
  2490. }
  2491. /* Free a descriptor intro point object. */
  2492. void
  2493. hs_desc_intro_point_free_(hs_desc_intro_point_t *ip)
  2494. {
  2495. if (ip == NULL) {
  2496. return;
  2497. }
  2498. if (ip->link_specifiers) {
  2499. SMARTLIST_FOREACH(ip->link_specifiers, hs_desc_link_specifier_t *,
  2500. ls, hs_desc_link_specifier_free(ls));
  2501. smartlist_free(ip->link_specifiers);
  2502. }
  2503. tor_cert_free(ip->auth_key_cert);
  2504. tor_cert_free(ip->enc_key_cert);
  2505. crypto_pk_free(ip->legacy.key);
  2506. tor_free(ip->legacy.cert.encoded);
  2507. tor_free(ip);
  2508. }
  2509. /* Allocate and build a new fake client info for the descriptor. Return a
  2510. * newly allocated object. This can't fail. */
  2511. hs_desc_authorized_client_t *
  2512. hs_desc_build_fake_authorized_client(void)
  2513. {
  2514. hs_desc_authorized_client_t *client_auth =
  2515. tor_malloc_zero(sizeof(*client_auth));
  2516. crypto_rand((char *) client_auth->client_id,
  2517. sizeof(client_auth->client_id));
  2518. crypto_rand((char *) client_auth->iv,
  2519. sizeof(client_auth->iv));
  2520. crypto_rand((char *) client_auth->encrypted_cookie,
  2521. sizeof(client_auth->encrypted_cookie));
  2522. return client_auth;
  2523. }
  2524. /* Using the service's subcredential, client public key, auth ephemeral secret
  2525. * key, and descriptor cookie, build the auth client so we can then encode the
  2526. * descriptor for publication. client_out must be already allocated. */
  2527. void
  2528. hs_desc_build_authorized_client(const uint8_t *subcredential,
  2529. const curve25519_public_key_t *client_auth_pk,
  2530. const curve25519_secret_key_t *
  2531. auth_ephemeral_sk,
  2532. const uint8_t *descriptor_cookie,
  2533. hs_desc_authorized_client_t *client_out)
  2534. {
  2535. uint8_t secret_seed[CURVE25519_OUTPUT_LEN];
  2536. uint8_t keystream[HS_DESC_CLIENT_ID_LEN + HS_DESC_COOKIE_KEY_LEN];
  2537. uint8_t *cookie_key;
  2538. crypto_cipher_t *cipher;
  2539. crypto_xof_t *xof;
  2540. tor_assert(client_auth_pk);
  2541. tor_assert(auth_ephemeral_sk);
  2542. tor_assert(descriptor_cookie);
  2543. tor_assert(client_out);
  2544. tor_assert(subcredential);
  2545. tor_assert(!tor_mem_is_zero((char *) auth_ephemeral_sk,
  2546. sizeof(*auth_ephemeral_sk)));
  2547. tor_assert(!tor_mem_is_zero((char *) client_auth_pk,
  2548. sizeof(*client_auth_pk)));
  2549. tor_assert(!tor_mem_is_zero((char *) descriptor_cookie,
  2550. HS_DESC_DESCRIPTOR_COOKIE_LEN));
  2551. tor_assert(!tor_mem_is_zero((char *) subcredential,
  2552. DIGEST256_LEN));
  2553. /* Calculate x25519(hs_y, client_X) */
  2554. curve25519_handshake(secret_seed,
  2555. auth_ephemeral_sk,
  2556. client_auth_pk);
  2557. /* Calculate KEYS = KDF(subcredential | SECRET_SEED, 40) */
  2558. xof = crypto_xof_new();
  2559. crypto_xof_add_bytes(xof, subcredential, DIGEST256_LEN);
  2560. crypto_xof_add_bytes(xof, secret_seed, sizeof(secret_seed));
  2561. crypto_xof_squeeze_bytes(xof, keystream, sizeof(keystream));
  2562. crypto_xof_free(xof);
  2563. memcpy(client_out->client_id, keystream, HS_DESC_CLIENT_ID_LEN);
  2564. cookie_key = keystream + HS_DESC_CLIENT_ID_LEN;
  2565. /* Random IV */
  2566. crypto_strongest_rand(client_out->iv, sizeof(client_out->iv));
  2567. /* This creates a cipher for AES. It can't fail. */
  2568. cipher = crypto_cipher_new_with_iv_and_bits(cookie_key, client_out->iv,
  2569. HS_DESC_COOKIE_KEY_BIT_SIZE);
  2570. /* This can't fail. */
  2571. crypto_cipher_encrypt(cipher, (char *) client_out->encrypted_cookie,
  2572. (const char *) descriptor_cookie,
  2573. HS_DESC_DESCRIPTOR_COOKIE_LEN);
  2574. memwipe(secret_seed, 0, sizeof(secret_seed));
  2575. memwipe(keystream, 0, sizeof(keystream));
  2576. crypto_cipher_free(cipher);
  2577. }
  2578. /* Free an authoriezd client object. */
  2579. void
  2580. hs_desc_authorized_client_free_(hs_desc_authorized_client_t *client)
  2581. {
  2582. tor_free(client);
  2583. }
  2584. /* Free the given descriptor link specifier. */
  2585. void
  2586. hs_desc_link_specifier_free_(hs_desc_link_specifier_t *ls)
  2587. {
  2588. if (ls == NULL) {
  2589. return;
  2590. }
  2591. tor_free(ls);
  2592. }
  2593. /* Return a newly allocated descriptor link specifier using the given extend
  2594. * info and requested type. Return NULL on error. */
  2595. hs_desc_link_specifier_t *
  2596. hs_desc_link_specifier_new(const extend_info_t *info, uint8_t type)
  2597. {
  2598. hs_desc_link_specifier_t *ls = NULL;
  2599. tor_assert(info);
  2600. ls = tor_malloc_zero(sizeof(*ls));
  2601. ls->type = type;
  2602. switch (ls->type) {
  2603. case LS_IPV4:
  2604. if (info->addr.family != AF_INET) {
  2605. goto err;
  2606. }
  2607. tor_addr_copy(&ls->u.ap.addr, &info->addr);
  2608. ls->u.ap.port = info->port;
  2609. break;
  2610. case LS_IPV6:
  2611. if (info->addr.family != AF_INET6) {
  2612. goto err;
  2613. }
  2614. tor_addr_copy(&ls->u.ap.addr, &info->addr);
  2615. ls->u.ap.port = info->port;
  2616. break;
  2617. case LS_LEGACY_ID:
  2618. /* Bug out if the identity digest is not set */
  2619. if (BUG(tor_mem_is_zero(info->identity_digest,
  2620. sizeof(info->identity_digest)))) {
  2621. goto err;
  2622. }
  2623. memcpy(ls->u.legacy_id, info->identity_digest, sizeof(ls->u.legacy_id));
  2624. break;
  2625. case LS_ED25519_ID:
  2626. /* ed25519 keys are optional for intro points */
  2627. if (ed25519_public_key_is_zero(&info->ed_identity)) {
  2628. goto err;
  2629. }
  2630. memcpy(ls->u.ed25519_id, info->ed_identity.pubkey,
  2631. sizeof(ls->u.ed25519_id));
  2632. break;
  2633. default:
  2634. /* Unknown type is code flow error. */
  2635. tor_assert(0);
  2636. }
  2637. return ls;
  2638. err:
  2639. tor_free(ls);
  2640. return NULL;
  2641. }
  2642. /* From the given descriptor, remove and free every introduction point. */
  2643. void
  2644. hs_descriptor_clear_intro_points(hs_descriptor_t *desc)
  2645. {
  2646. smartlist_t *ips;
  2647. tor_assert(desc);
  2648. ips = desc->encrypted_data.intro_points;
  2649. if (ips) {
  2650. SMARTLIST_FOREACH(ips, hs_desc_intro_point_t *,
  2651. ip, hs_desc_intro_point_free(ip));
  2652. smartlist_clear(ips);
  2653. }
  2654. }
  2655. /* From a descriptor link specifier object spec, returned a newly allocated
  2656. * link specifier object that is the encoded representation of spec. Return
  2657. * NULL on error. */
  2658. link_specifier_t *
  2659. hs_desc_lspec_to_trunnel(const hs_desc_link_specifier_t *spec)
  2660. {
  2661. tor_assert(spec);
  2662. link_specifier_t *ls = link_specifier_new();
  2663. link_specifier_set_ls_type(ls, spec->type);
  2664. switch (spec->type) {
  2665. case LS_IPV4:
  2666. link_specifier_set_un_ipv4_addr(ls,
  2667. tor_addr_to_ipv4h(&spec->u.ap.addr));
  2668. link_specifier_set_un_ipv4_port(ls, spec->u.ap.port);
  2669. /* Four bytes IPv4 and two bytes port. */
  2670. link_specifier_set_ls_len(ls, sizeof(spec->u.ap.addr.addr.in_addr) +
  2671. sizeof(spec->u.ap.port));
  2672. break;
  2673. case LS_IPV6:
  2674. {
  2675. size_t addr_len = link_specifier_getlen_un_ipv6_addr(ls);
  2676. const uint8_t *in6_addr = tor_addr_to_in6_addr8(&spec->u.ap.addr);
  2677. uint8_t *ipv6_array = link_specifier_getarray_un_ipv6_addr(ls);
  2678. memcpy(ipv6_array, in6_addr, addr_len);
  2679. link_specifier_set_un_ipv6_port(ls, spec->u.ap.port);
  2680. /* Sixteen bytes IPv6 and two bytes port. */
  2681. link_specifier_set_ls_len(ls, addr_len + sizeof(spec->u.ap.port));
  2682. break;
  2683. }
  2684. case LS_LEGACY_ID:
  2685. {
  2686. size_t legacy_id_len = link_specifier_getlen_un_legacy_id(ls);
  2687. uint8_t *legacy_id_array = link_specifier_getarray_un_legacy_id(ls);
  2688. memcpy(legacy_id_array, spec->u.legacy_id, legacy_id_len);
  2689. link_specifier_set_ls_len(ls, legacy_id_len);
  2690. break;
  2691. }
  2692. case LS_ED25519_ID:
  2693. {
  2694. size_t ed25519_id_len = link_specifier_getlen_un_ed25519_id(ls);
  2695. uint8_t *ed25519_id_array = link_specifier_getarray_un_ed25519_id(ls);
  2696. memcpy(ed25519_id_array, spec->u.ed25519_id, ed25519_id_len);
  2697. link_specifier_set_ls_len(ls, ed25519_id_len);
  2698. break;
  2699. }
  2700. default:
  2701. tor_assert_nonfatal_unreached();
  2702. link_specifier_free(ls);
  2703. ls = NULL;
  2704. }
  2705. return ls;
  2706. }